1932

Abstract

Complement constitutes a major part of the innate immune system. The study of complement in human health has historically focused on infection risks associated with complement protein deficiencies; however, recent interest in the field has focused on overactivation of complement as a cause of immune injury and the development of anticomplement therapies to treat human diseases. The kidneys are particularly sensitive to complement injury, and anticomplement therapies for several kidney diseases have been investigated. Overactivation of complement can result from loss-of-function mutations in complement regulators; gain-of-function mutations in key complement proteins such as C3 and factor B; or autoantibody production, infection, or tissue stresses, such as ischemia and reperfusion, that perturb the balance of complement activation and regulation. Here, we provide a high-level review of the status of anticomplement therapies, with an emphasis on the transition from rare diseases to more common kidney diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-042921-102405
2024-01-29
2024-12-09
Loading full text...

Full text loading...

/deliver/fulltext/med/75/1/annurev-med-042921-102405.html?itemId=/content/journals/10.1146/annurev-med-042921-102405&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Walport MJ. 2001. Complement. First of two parts. N. Engl. J. Med. 344:105866
    [Google Scholar]
  2. 2.
    Walport MJ. 2001. Complement. Second of two parts. N. Engl. J. Med. 344:114044
    [Google Scholar]
  3. 3.
    Merle NS, Noe R, Halbwachs-Mecarelli L et al. 2015. Complement system part II: role in immunity. Front. Immunol. 6:257
    [Google Scholar]
  4. 4.
    Takahashi M, Ishida Y, Iwaki D et al. 2010. Essential role of mannose-binding lectin-associated serine protease-1 in activation of the complement factor D. J. Exp. Med. 207:2937
    [Google Scholar]
  5. 5.
    Morgan BP, Harris CL. 2015. Complement, a target for therapy in inflammatory and degenerative diseases. Nat. Rev. Drug Discov. 14:85777
    [Google Scholar]
  6. 6.
    Heiderscheit AK, Hauer JJ, Smith RJH. 2022. C3 glomerulopathy: understanding an ultra-rare complement-mediated renal disease. Am. J. Med. Genet. C Semin. Med. Genet. 190:34457
    [Google Scholar]
  7. 7.
    Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. 2015. Complement system part I—molecular mechanisms of activation and regulation. Front. Immunol. 6:262
    [Google Scholar]
  8. 8.
    Liszewski MK, Java A, Schramm EC, Atkinson JP. 2017. Complement dysregulation and disease: insights from contemporary genetics. Annu. Rev. Pathol. Mech. Dis. 12:2552
    [Google Scholar]
  9. 9.
    Ghosh P, Sahoo R, Vaidya A et al. 2015. Role of complement and complement regulatory proteins in the complications of diabetes. Endocr. Rev. 36:27288
    [Google Scholar]
  10. 10.
    Kooyman DL, Byrne GW, McClellan S et al. 1995. In vivo transfer of GPI-linked complement restriction factors from erythrocytes to the endothelium. Science 269:8992
    [Google Scholar]
  11. 11.
    Ferreira VP, Pangburn MK, Cortes C. 2010. Complement control protein factor H: the good, the bad, and the inadequate. Mol. Immunol. 47:218797
    [Google Scholar]
  12. 12.
    Rother RP, Rollins SA, Mojcik CF et al. 2007. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat. Biotechnol. 25:125664
    [Google Scholar]
  13. 13.
    Markiewski MM, Lambris JD. 2007. The role of complement in inflammatory diseases from behind the scenes into the spotlight. Am. J. Pathol. 171:71527
    [Google Scholar]
  14. 14.
    Hill A, Kelly RJ, Hillmen P. 2013. Thrombosis in paroxysmal nocturnal hemoglobinuria. Blood 121:498596
    [Google Scholar]
  15. 15.
    Zhou Y, Xu Z, Liu Z. 2022. Impact of neutrophil extracellular traps on thrombosis formation: new findings and future perspective. Front. Cell. Infect. Microbiol. 12:910908
    [Google Scholar]
  16. 16.
    Hill A, DeZern AE, Kinoshita T, Brodsky RA. 2017. Paroxysmal nocturnal haemoglobinuria. Nat. Rev. Dis. Primers 3:17028
    [Google Scholar]
  17. 17.
    Benamu E, Montoya JG. 2016. Infections associated with the use of eculizumab: recommendations for prevention and prophylaxis. Curr. Opin. Infect. Dis. 29:31929
    [Google Scholar]
  18. 18.
    Kulasekararaj AG, Hill A, Rottinghaus ST et al. 2019. Ravulizumab (ALXN1210) versus eculizumab in C5-inhibitor-experienced adult patients with PNH: the 302 study. Blood 133:54049
    [Google Scholar]
  19. 19.
    Risitano AM, Notaro R, Marando L et al. 2009. Complement fraction 3 binding on erythrocytes as additional mechanism of disease in paroxysmal nocturnal hemoglobinuria patients treated by eculizumab. Blood 113:4094100
    [Google Scholar]
  20. 20.
    Molina H, Miwa T, Zhou L et al. 2002. Complement-mediated clearance of erythrocytes: mechanism and delineation of the regulatory roles of Crry and DAF.. Blood 100:454449
    [Google Scholar]
  21. 21.
    Notaro R, Luzzatto L. 2022. Breakthrough hemolysis in PNH with proximal or terminal complement inhibition. N. Engl. J. Med. 387:16066
    [Google Scholar]
  22. 22.
    Hillmen P, Risitano AM, Peffault de Latour R. 2021. Pegcetacoplan versus eculizumab in PNH. Reply. N. Engl. J. Med. 385:172526
    [Google Scholar]
  23. 23.
    Griffin M, Muus P, Munir T et al. 2023. Experience of compassionate-use pegcetacoplan for paroxysmal nocturnal hemoglobinuria. Blood 141:11620
    [Google Scholar]
  24. 24.
    Jokiranta TS. 2017. HUS and atypical HUS. Blood 129:284756
    [Google Scholar]
  25. 25.
    Trachtman H, Austin C, Lewinski M, Stahl RA. 2012. Renal and neurological involvement in typical Shiga toxin-associated HUS. Nat. Rev. Nephrol. 8:65869
    [Google Scholar]
  26. 26.
    Nester CM, Barbour T, de Cordoba SR, Dragon-Durey MA, Fremeaux-Bacchi V et al. 2015. Atypical aHUS: state of the art. Mol. Immunol. 67:3142
    [Google Scholar]
  27. 27.
    Legendre CM, Licht C, Muus P et al. 2013. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 368:216981
    [Google Scholar]
  28. 28.
    Ueda Y, Mohammed I, Song D et al. 2017. Murine systemic thrombophilia and hemolytic uremic syndrome from a factor H point mutation. Blood 129:118496
    [Google Scholar]
  29. 29.
    Ueda Y, Miwa T, Ito D, Kim H, Sato S et al. 2019. Differential contribution of C5aR and C5b-9 pathways to renal thrombic microangiopathy and macrovascular thrombosis in mice carrying an atypical hemolytic syndrome-related factor H mutation. Kidney Int. 96:6779
    [Google Scholar]
  30. 30.
    Sheridan D, Yu ZX, Zhang Y, Patel R, Sun F et al. 2018. Design and preclinical characterization of ALXN1210: a novel anti-C5 antibody with extended duration of action. PLOS ONE 13:e0195909
    [Google Scholar]
  31. 31.
    Rondeau E, Scully M, Ariceta G et al. 2020. The long-acting C5 inhibitor, Ravulizumab, is effective and safe in adult patients with atypical hemolytic uremic syndrome naive to complement inhibitor treatment. Kidney Int. 97:128796
    [Google Scholar]
  32. 32.
    Yenerel MN, Sicre de Fontbrune F, Piatek C et al. 2023. Phase 3 study of subcutaneous versus intravenous ravulizumab in eculizumab-experienced adult patients with PNH: primary analysis and 1-year follow-up. Adv. Ther. 40:21132
    [Google Scholar]
  33. 33.
    Jayne DRW, Merkel PA, Bekker P. 2021. Avacopan for the treatment of ANCA-associated vasculitis. Reply. N. Engl. J. Med. 384:e81
    [Google Scholar]
  34. 34.
    Roth A, Barcellini W, D'Sa S et al. 2021. Sutimlimab in cold agglutinin disease. N. Engl. J. Med. 384:132334
    [Google Scholar]
  35. 35.
    Nishimura J, Yamamoto M, Hayashi S et al. 2014. Genetic variants in C5 and poor response to eculizumab. N. Engl. J. Med. 370:63239
    [Google Scholar]
  36. 36.
    Ochakovski GA, Bartz-Schmidt KU, Fischer MD. 2017. Retinal gene therapy: surgical vector delivery in the translation to clinical trials. Front. Neurosci. 11:174
    [Google Scholar]
  37. 37.
    Fakhouri F, Le Quintrec M, Fremeaux-Bacchi V 2020. Practical management of C3 glomerulopathy and Ig-mediated MPGN: facts and uncertainties. Kidney Int. 98:113548
    [Google Scholar]
  38. 38.
    Pickering MC, D'Agati VD, Nester CM et al. 2013. C3 glomerulopathy: consensus report. Kidney Int. 84:107989
    [Google Scholar]
  39. 39.
    Sethi S, Fervenza FC. 2012. Membranoproliferative glomerulonephritis—a new look at an old entity. N. Engl. J. Med. 366:111931
    [Google Scholar]
  40. 40.
    Welte T, Arnold F, Kappes J et al. 2018. Treating C3 glomerulopathy with eculizumab. BMC Nephrol. 19:7
    [Google Scholar]
  41. 41.
    Bomback AS, Smith RJ, Barile GR et al. 2012. Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin. J. Am. Soc. Nephrol. 7:74856
    [Google Scholar]
  42. 42.
    Williams AL, Gullipalli D, Ueda Y et al. 2017. C5 inhibition prevents renal failure in a mouse model of lethal C3 glomerulopathy. Kidney Int. 91:138697
    [Google Scholar]
  43. 43.
    Nester C, Appel GB, Bomback AS et al. 2022. Clinical outcomes of patients with C3G or IC-MPGN treated with the factor D inhibitor danicopan: final results from two phase 2 studies. Am. J. Nephrol. 53:687700
    [Google Scholar]
  44. 44.
    Bomback A, Herlitz LC, Yue H et al. 2022. POS-112 effect of avacopan, a selective C5a receptor inhibitor, on complement 3 glomerulopathy histologic index of disease chronicity. Kidney Int. Rep. 7:S4748
    [Google Scholar]
  45. 45.
    Poppelaars F, Faria B, Schwaeble W, Daha MR. 2021. The contribution of complement to the pathogenesis of IgA nephropathy: Are complement-targeted therapies moving from rare disorders to more common diseases?. J. Clin. Med. 10:4715
    [Google Scholar]
  46. 46.
    Habas E, Ali E, Farfar K et al. 2022. IgA nephropathy pathogenesis and therapy: review and updates. Medicine 101:e31219
    [Google Scholar]
  47. 47.
    Zhu L, Zhai YL, Wang FM et al. 2015. Variants in complement factor H and complement factor H-related protein genes, CFHR3 and CFHR1, affect complement activation in IgA nephropathy. J. Am. Soc. Nephrol. 26:1195204
    [Google Scholar]
  48. 48.
    Gharavi AG, Kiryluk K, Choi M et al. 2011. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat. Genet. 43:32127
    [Google Scholar]
  49. 49.
    Zhang B, Xing G. 2022. Thrombotic microangiopathy mediates poor prognosis among lupus nephritis via complement lectin and alternative pathway activation. Front. Immunol. 13:1081942
    [Google Scholar]
  50. 50.
    Li NL, Birmingham DJ, Rovin BH. 2021. Expanding the role of complement therapies: the case for lupus nephritis. J. Clin. Med. 10:626
    [Google Scholar]
  51. 51.
    Bao L, Cunningham PN, Quigg RJ. 2015. Complement in lupus nephritis: new perspectives. Kidney Dis. 1:9199
    [Google Scholar]
  52. 52.
    Wang Y, Hu Q, Madri JA et al. 1996. Amelioration of lupus-like autoimmune disease in NZB/WF1 mice after treatment with a blocking monoclonal antibody specific for complement component C5. PNAS 93:856368
    [Google Scholar]
  53. 53.
    Bao L, Quigg RJ 2011. The many effects of complement in lupus nephritis. Lupus Nephritis EJ Lewis, MM Schwartz, SM Korbet, DTM Chan 83104. Oxford, UK: Oxford Univ. Press. , 2nd ed..
    [Google Scholar]
  54. 54.
    Wright RD, Bannerman F, Beresford MW, Oni L. 2020. A systematic review of the role of eculizumab in systemic lupus erythematosus-associated thrombotic microangiopathy. BMC Nephrol. 21:245
    [Google Scholar]
  55. 55.
    Ronco P, Beck L, Debiec H et al. 2021. Membranous nephropathy. Nat. Rev. Dis. Primers 7:69
    [Google Scholar]
  56. 56.
    Schubart A, Anderson K, Mainolfi N et al. 2019. Small-molecule factor B inhibitor for the treatment of complement-mediated diseases. PNAS 116:792631
    [Google Scholar]
  57. 57.
    Luo W, Olaru F, Miner JH et al. 2018. Alternative pathway is essential for glomerular complement activation and proteinuria in a mouse model of membranous nephropathy. Front. Immunol. 9:1433
    [Google Scholar]
  58. 58.
    Teisseyre M, Beyze A, Perrochia H et al. 2023. C5b-9 glomerular deposits are associated with poor renal survival in membranous nephropathy. Kidney Int. Rep. 8:10314
    [Google Scholar]
  59. 59.
    Cunningham PN, Quigg RJ. 2005. Contrasting roles of complement activation and its regulation in membranous nephropathy. J. Am. Soc. Nephrol. 16:121422
    [Google Scholar]
  60. 60.
    Fogo AB. 2015. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat. Rev. Nephrol 11:7687
    [Google Scholar]
  61. 61.
    Andrighetto S, Leventhal J, Zaza G, Cravedi P. 2019. Complement and complement targeting therapies in glomerular diseases. Int. J. Mol. Sci. 20:6336
    [Google Scholar]
  62. 62.
    Thurman JM, Wong M, Renner B et al. 2015. Complement activation in patients with focal segmental glomerulosclerosis. PLOS ONE 10:e0136558
    [Google Scholar]
  63. 63.
    Lenderink AM, Liegel K, Ljubanovic D et al. 2007. The alternative pathway of complement is activated in the glomeruli and tubulointerstitium of mice with adriamycin nephropathy. Am. J. Physiol. Renal. Physiol. 293:F55564
    [Google Scholar]
  64. 64.
    Angeletti A, Cantarelli C, Petrosyan A et al. 2020. Loss of decay-accelerating factor triggers podocyte injury and glomerulosclerosis. J. Exp. Med. 217:e20191699
    [Google Scholar]
  65. 65.
    Bao L, Haas M, Pippin J et al. 2009. Focal and segmental glomerulosclerosis induced in mice lacking decay-accelerating factor in T cells. J. Clin. Investig. 119:126474
    [Google Scholar]
  66. 66.
    Thomas MC, Brownlee M, Susztak K et al. 2015. Diabetic kidney disease. Nat. Rev. Dis. Primers 1:15018
    [Google Scholar]
  67. 67.
    Budge K, Dellepiane S, Yu SM, Cravedi P. 2020. Complement, a therapeutic target in diabetic kidney disease. Front. Med. 7:599236
    [Google Scholar]
  68. 68.
    Li XQ, Chang DY, Chen M, Zhao MH. 2019. Deficiency of C3a receptor attenuates the development of diabetic nephropathy. BMJ Open Diabetes Res. Care 7:e000817
    [Google Scholar]
  69. 69.
    Li L, Wei T, Liu S et al. 2021. Complement C5 activation promotes type 2 diabetic kidney disease via activating STAT3 pathway and disrupting the gut-kidney axis. J. Cell. Mol. Med. 25:96074
    [Google Scholar]
/content/journals/10.1146/annurev-med-042921-102405
Loading
/content/journals/10.1146/annurev-med-042921-102405
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error