1932

Abstract

Resistant hypertension (RH) is a severe form of hypertension associated with increased cardiovascular risk. Although true RH affects less than 10% of the patients receiving antihypertensive therapy, the absolute number is high and continues to increase. The workup of these patients requires screening for secondary hypertension and pseudoresistance, including poor adherence to prescribed medicines and the white-coat phenomenon. The treatment of RH consists of lifestyle modifications and pharmacological therapies. Lifestyle modifications include dietary adjustments, weight loss, physical activity, and limiting alcohol consumption; pharmacological therapies include diuretics, mineralocorticoid receptor antagonists, beta blockers, angiotensin receptor–neprilysin inhibitors, and others. Over the last 15 years, interventional approaches have emerged as adjunct treatment options; we highlight catheter-based renal denervation. This review summarizes the rationales and latest clinical evidence and, based thereon, proposes an updated algorithm for the management of RH.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-050922-052605
2024-01-29
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/med/75/1/annurev-med-050922-052605.html?itemId=/content/journals/10.1146/annurev-med-050922-052605&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    GBD 2019 Risk Factors Collaborators 2020. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396:122349
    [Google Scholar]
  2. 2.
    Thomopoulos C, Parati G, Zanchetti A. 2014. Effects of blood pressure lowering on outcome incidence in hypertension. 1. Overview, meta-analyses, and meta-regression analyses of randomized trials. J. Hypertens. 32:228595
    [Google Scholar]
  3. 3.
    Lv J, Ehteshami P, Sarnak MJ et al. 2013. Effects of intensive blood pressure lowering on the progression of chronic kidney disease: a systematic review and meta-analysis. Can. Med. Assoc. J. 185:94957
    [Google Scholar]
  4. 4.
    NCD Risk Factor Collaboration 2021. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 398:95780
    [Google Scholar]
  5. 5.
    Aggarwal R, Chiu N, Wadhera RK et al. 2021. Racial/ethnic disparities in hypertension prevalence, awareness, treatment, and control in the United States, 2013 to 2018. Hypertension 78:171926
    [Google Scholar]
  6. 6.
    Whelton PK, Carey RM, Aronow WS et al. 2018. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 71:1269324
    [Google Scholar]
  7. 7.
    Williams B, Mancia G, Spiering W et al. 2018. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur. Heart J. 39:3021104
    [Google Scholar]
  8. 8.
    Umemura S, Arima H, Arima S et al. 2019. The Japanese Society of Hypertension guidelines for the management of hypertension (JSH 2019). Hypertens. Res. 42:1235481
    [Google Scholar]
  9. 9.
    Unger T, Borghi C, Charchar F et al. 2020. 2020 International Society of Hypertension global hypertension practice guidelines. J. Hypertens. 38:9821004
    [Google Scholar]
  10. 10.
    Mancia G, Kreutz R, Brunström M et al. 2023. 2023 ESH guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J. Hypertens. 41:18742071
    [Google Scholar]
  11. 11.
    Wunder C, Persu A, Lengele JP et al. 2019. Adherence to antihypertensive drug treatment in patients with apparently treatment-resistant hypertension in the INSPiRED pilot study. Blood Press. 28:16872
    [Google Scholar]
  12. 12.
    Noubiap JJ, Nansseu JR, Nyaga UF et al. 2019. Global prevalence of resistant hypertension: a meta-analysis of data from 3.2 million patients. Heart 105:98105
    [Google Scholar]
  13. 13.
    Smith SM, Gurka MJ, Winterstein AG et al. 2019. Incidence, prevalence, and predictors of treatment-resistant hypertension with intensive blood pressure lowering. J. Clin. Hypertens. 21:82534
    [Google Scholar]
  14. 14.
    Nazarzadeh M, Pinho-Gomes AC, Rahimi K. 2019. Resistant hypertension in times of changing definitions and treatment recommendations. Heart 105:9697
    [Google Scholar]
  15. 15.
    Sim JJ, Bhandari SK, Shi J et al. 2013. Characteristics of resistant hypertension in a large, ethnically diverse hypertension population of an integrated health system. Mayo Clin. Proc. 88:1099107
    [Google Scholar]
  16. 16.
    Cuspidi C, Macca G, Sampieri L et al. 2001. High prevalence of cardiac and extracardiac target organ damage in refractory hypertension. J. Hypertens. 19:206370
    [Google Scholar]
  17. 17.
    Persell SD. 2011. Prevalence of resistant hypertension in the United States, 2003–2008. Hypertension 57:107680
    [Google Scholar]
  18. 18.
    Georges CMG, Ritscher S, Pappaccogli M et al. 2022. Psychological determinants of drug adherence and severity of hypertension in patients with apparently treatment-resistant versus controlled hypertension. Blood Press. 31:16977
    [Google Scholar]
  19. 19.
    Kario K, Hoshide S, Narita K et al. 2021. Cardiovascular prognosis in drug-resistant hypertension stratified by 24-hour ambulatory blood pressure: the JAMP study. Hypertension 78:178190
    [Google Scholar]
  20. 20.
    Taler SJ, Textor SC, Augustine JE. 2002. Resistant hypertension: comparing hemodynamic management to specialist care. Hypertension 39:98288
    [Google Scholar]
  21. 21.
    Gaddam KK, Nishizaka MK, Pratt-Ubunama MN et al. 2008. Characterization of resistant hypertension: association between resistant hypertension, aldosterone, and persistent intravascular volume expansion. Arch. Intern. Med. 168:115964
    [Google Scholar]
  22. 22.
    Williams B, MacDonald TM, Morant SV et al. 2018. Endocrine and haemodynamic changes in resistant hypertension, and blood pressure responses to spironolactone or amiloride: the PATHWAY-2 mechanisms substudies. Lancet Diabetes Endocrinol. 6:46475
    [Google Scholar]
  23. 23.
    Siddiqui M, Calhoun DA. 2017. Refractory versus resistant hypertension. Curr. Opin. Nephrol. Hypertens. 26:1419
    [Google Scholar]
  24. 24.
    Denker MG, Haddad DB, Townsend RR, Cohen DL. 2013. Blood pressure control 1 year after referral to a hypertension specialist. J. Clin. Hypertens. 15:62429
    [Google Scholar]
  25. 25.
    Lauder L, Mahfoud F, Azizi M et al. 2022. Hypertension management in patients with cardiovascular comorbidities. Eur. Heart J. 44:206677
    [Google Scholar]
  26. 26.
    Kolandaivelu K, Leiden BB, O'Gara PT, Bhatt DL 2014. Non-adherence to cardiovascular medications. Eur. Heart J. 35:326776
    [Google Scholar]
  27. 27.
    Mazzaglia G, Ambrosioni E, Alacqua M et al. 2009. Adherence to antihypertensive medications and cardiovascular morbidity among newly diagnosed hypertensive patients. Circulation 120:1598605
    [Google Scholar]
  28. 28.
    Durand H, Hayes P, Morrissey EC et al. 2017. Medication adherence among patients with apparent treatment-resistant hypertension: systematic review and meta-analysis. J. Hypertens. 35:234657
    [Google Scholar]
  29. 29.
    Kably B, Billaud EM, Boutouyrie P, Azizi M. 2020. Is there any hope for monitoring adherence in an efficient and feasible way for resistant hypertension diagnosis and follow-up?. Curr. Hypertens. Rep. 22:96
    [Google Scholar]
  30. 30.
    Lauder L, Ewen S, Kunz M et al. 2020. Adherence to antihypertensive drugs assessed by hyphenated high-resolution mass spectrometry analysis of oral fluids. J. Am. Heart Assoc. 9:e014180
    [Google Scholar]
  31. 31.
    Kandzari DE, Böhm M, Mahfoud F et al. 2018. Effect of renal denervation on blood pressure in the presence of antihypertensive drugs: 6-month efficacy and safety results from the SPYRAL HTN-ON MED proof-of-concept randomised trial. Lancet 391:234655
    [Google Scholar]
  32. 32.
    Blaschke TF, Osterberg L, Vrijens B, Urquhart J. 2012. Adherence to medications: insights arising from studies on the unreliable link between prescribed and actual drug dosing histories. Annu. Rev. Pharmacol. Toxicol. 52:275301
    [Google Scholar]
  33. 33.
    Pimenta E, Gaddam KK, Oparil S et al. 2009. Effects of dietary sodium reduction on blood pressure in subjects with resistant hypertension: results from a randomized trial. Hypertension 54:47581
    [Google Scholar]
  34. 34.
    McMahon EJ, Bauer JD, Hawley CM et al. 2013. A randomized trial of dietary sodium restriction in CKD. J. Am. Soc. Nephrol. 24:2096103
    [Google Scholar]
  35. 35.
    Neter JE, Stam BE, Kok FJ et al. 2003. Influence of weight reduction on blood pressure: a meta-analysis of randomized controlled trials. Hypertension 42:87884
    [Google Scholar]
  36. 36.
    Schiavon CA, Ikeoka D, Santucci EV et al. 2019. Effects of bariatric surgery versus medical therapy on the 24-hour ambulatory blood pressure and the prevalence of resistant hypertension. Hypertension 73:57177
    [Google Scholar]
  37. 37.
    Ahmed AR, Rickards G, Coniglio D et al. 2009. Laparoscopic Roux-en-Y gastric bypass and its early effect on blood pressure. Obes. Surg. 19:84549
    [Google Scholar]
  38. 38.
    Pareek M, Bhatt DL, Schiavon CA, Schauer PR. 2019. Metabolic surgery for hypertension in patients with obesity. Circ. Res. 124:100924
    [Google Scholar]
  39. 39.
    Holmlund T, Ekblom B, Borjesson M et al. 2021. Association between change in cardiorespiratory fitness and incident hypertension in Swedish adults. Eur. J. Prev. Cardiol. 28:151522
    [Google Scholar]
  40. 40.
    Cornelissen VA, Buys R, Smart NA. 2013. Endurance exercise beneficially affects ambulatory blood pressure: a systematic review and meta-analysis. J. Hypertens. 31:63948
    [Google Scholar]
  41. 41.
    Naci H, Salcher-Konrad M, Dias S et al. 2019. How does exercise treatment compare with antihypertensive medications? A network meta-analysis of 391 randomised controlled trials assessing exercise and medication effects on systolic blood pressure. Br. J. Sports Med. 53:85969
    [Google Scholar]
  42. 42.
    Lopes S, Mesquita-Bastos J, Garcia C et al. 2021. Effect of exercise training on ambulatory blood pressure among patients with resistant hypertension: a randomized clinical trial. JAMA Cardiol. 6:131723
    [Google Scholar]
  43. 43.
    Dassanayake S, Sole G, Wilkins G et al. 2022. Effectiveness of physical activity and exercise on ambulatory blood pressure in adults with resistant hypertension: a systematic review and meta-analysis. High Blood Press. Cardiovasc. Prev. 29:27586
    [Google Scholar]
  44. 44.
    Saco-Ledo G, Valenzuela PL, Ruilope LM, Lucia A. 2022. Physical exercise in resistant hypertension: a systematic review and meta-analysis of randomized controlled trials. Front. Cardiovasc. Med. 9:893811
    [Google Scholar]
  45. 45.
    Blumenthal JA, Hinderliter AL, Smith PJ et al. 2021. Effects of lifestyle modification on patients with resistant hypertension: results of the TRIUMPH randomized clinical trial. Circulation 144:121226
    [Google Scholar]
  46. 46.
    Webster R, Salam A, de Silva HA et al. 2018. Fixed low-dose triple combination antihypertensive medication versus usual care for blood pressure control in patients with mild to moderate hypertension in Sri Lanka: a randomized clinical trial. JAMA 320:56679
    [Google Scholar]
  47. 47.
    Chow CK, Atkins ER, Hillis GS et al. 2021. Initial treatment with a single pill containing quadruple combination of quarter doses of blood pressure medicines versus standard dose monotherapy in patients with hypertension (QUARTET): a phase 3, randomised, double-blind, active-controlled trial. Lancet 398:104352
    [Google Scholar]
  48. 48.
    Dineva S, Uzunova K, Pavlova V et al. 2019. Comparative efficacy and safety of chlorthalidone and hydrochlorothiazide-meta-analysis. J. Hum. Hypertens. 33:76674
    [Google Scholar]
  49. 49.
    Roush GC, Ernst ME, Kostis JB et al. 2015. Head-to-head comparisons of hydrochlorothiazide with indapamide and chlorthalidone: antihypertensive and metabolic effects. Hypertension 65:104146
    [Google Scholar]
  50. 50.
    Roush GC, Holford TR, Guddati AK. 2012. Chlorthalidone compared with hydrochlorothiazide in reducing cardiovascular events: systematic review and network meta-analyses. Hypertension 59:111017
    [Google Scholar]
  51. 51.
    Carey RM, Calhoun DA, Bakris GL et al. 2018. Resistant hypertension: detection, evaluation, and management: a scientific statement from the American Heart Association. Hypertension 72:e5390
    [Google Scholar]
  52. 52.
    Olde Engberink RH, Frenkel WJ, van den Bogaard B et al. 2015. Effects of thiazide-type and thiazide-like diuretics on cardiovascular events and mortality: systematic review and meta-analysis. Hypertension 65:103340
    [Google Scholar]
  53. 53.
    Chen P, Chaugai S, Zhao F, Wang DW. 2015. Cardioprotective effect of thiazide-like diuretics: a meta-analysis. Am. J. Hypertens. 28:145363
    [Google Scholar]
  54. 54.
    Hripcsak G, Suchard MA, Shea S et al. 2020. Comparison of cardiovascular and safety outcomes of chlorthalidone versus hydrochlorothiazide to treat hypertension. JAMA Intern. Med. 180:54251
    [Google Scholar]
  55. 55.
    Ishani A, Cushman WC, Leatherman SM et al. 2022. Chlorthalidone versus hydrochlorothiazide for hypertension-cardiovascular events. N. Engl. J. Med. 387:240110
    [Google Scholar]
  56. 56.
    Agarwal R, Sinha AD, Cramer AE et al. 2021. Chlorthalidone for hypertension in advanced chronic kidney disease. N. Engl. J. Med. 385:250719
    [Google Scholar]
  57. 57.
    Agarwal R, Sinha AD, Tu W. 2022. Chlorthalidone for resistant hypertension in advanced chronic kidney disease. Circulation 146:71820
    [Google Scholar]
  58. 58.
    Williams B, MacDonald TM, Morant S et al. 2015. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet 386:205968
    [Google Scholar]
  59. 59.
    Krieger EM, Drager LF, Giorgi DMA et al. 2018. Spironolactone versus clonidine as a fourth-drug therapy for resistant hypertension: the ReHOT randomized study (Resistant Hypertension Optimal Treatment). Hypertension 71:68190
    [Google Scholar]
  60. 60.
    Bazoukis G, Thomopoulos C, Tsioufis C. 2018. Effect of mineralocorticoid antagonists on blood pressure lowering: overview and meta-analysis of randomized controlled trials in hypertension. J. Hypertens. 36:98794
    [Google Scholar]
  61. 61.
    Chen C, Zhu XY, Li D, Lin Q, Zhou K. 2020. Clinical efficacy and safety of spironolactone in patients with resistant hypertension: a systematic review and meta-analysis. Medicine 99:e21694
    [Google Scholar]
  62. 62.
    Sinnott SJ, Tomlinson LA, Root AA et al. 2017. Comparative effectiveness of fourth-line anti-hypertensive agents in resistant hypertension: a systematic review and meta-analysis. Eur. J. Prev. Cardiol. 24:22838
    [Google Scholar]
  63. 63.
    Tsujimoto T, Kajio H. 2020. Spironolactone use and improved outcomes in patients with heart failure with preserved ejection fraction with resistant hypertension. J. Am. Heart Assoc. 9:e018827
    [Google Scholar]
  64. 64.
    Takahashi S, Katada J, Daida H et al. 2016. Effects of mineralocorticoid receptor antagonists in patients with hypertension and diabetes mellitus: a systematic review and meta-analysis. J. Hum. Hypertens. 30:53442
    [Google Scholar]
  65. 65.
    Parthasarathy HK, Menard J, White WB et al. 2011. A double-blind, randomized study comparing the antihypertensive effect of eplerenone and spironolactone in patients with hypertension and evidence of primary aldosteronism. J. Hypertens. 29:98090
    [Google Scholar]
  66. 66.
    Bolignano D, Palmer SC, Navaneethan SD, Strippoli GF. 2014. Aldosterone antagonists for preventing the progression of chronic kidney disease. Cochrane Database Syst. Rev. 2014:CD007004
    [Google Scholar]
  67. 67.
    Egan BM, Li J. 2014. Role of aldosterone blockade in resistant hypertension. Semin. Nephrol. 34:27384
    [Google Scholar]
  68. 68.
    Bazoukis G, Thomopoulos C, Tse G, Tsioufis C. 2018. Is there a blood pressure lowering effect of MRAs in heart failure? An overview and meta-analysis. Heart Fail. Rev. 23:54753
    [Google Scholar]
  69. 69.
    Pitt B, Reichek N, Willenbrock R et al. 2003. Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation 108:183138
    [Google Scholar]
  70. 70.
    Bakris G, Pergola PE, Delgado B et al. 2021. Effect of KBP-5074 on blood pressure in advanced chronic kidney disease: results of the BLOCK-CKD study. Hypertension 78:7481
    [Google Scholar]
  71. 71.
    Wada T, Inagaki M, Yoshinari T et al. 2021. Apararenone in patients with diabetic nephropathy: results of a randomized, double-blind, placebo-controlled phase 2 dose-response study and open-label extension study. Clin. Exp. Nephrol. 25:12030
    [Google Scholar]
  72. 72.
    Ito S, Itoh H, Rakugi H et al. 2020. Double-blind randomized phase 3 study comparing esaxerenone (CS-3150) and eplerenone in patients with essential hypertension (ESAX-HTN Study). Hypertension 75:5158
    [Google Scholar]
  73. 73.
    Bakris GL, Agarwal R, Anker SD et al. 2020. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N. Engl. J. Med. 383:221929
    [Google Scholar]
  74. 74.
    Pitt B, Filippatos G, Agarwal R et al. 2021. Cardiovascular events with finerenone in kidney disease and type 2 diabetes. N. Engl. J. Med. 385:225263
    [Google Scholar]
  75. 75.
    Thomopoulos C, Bazoukis G, Tsioufis C, Mancia G. 2020. Beta-blockers in hypertension: overview and meta-analysis of randomized outcome trials. J. Hypertens. 38:166981
    [Google Scholar]
  76. 76.
    Tsujimoto T, Sugiyama T, Shapiro MF et al. 2017. Risk of cardiovascular events in patients with diabetes mellitus on beta-blockers. Hypertension 70:10310
    [Google Scholar]
  77. 77.
    Esler M, Kjeldsen SE, Pathak A et al. 2022. Diverse pharmacological properties, trial results, comorbidity prescribing and neural pathophysiology suggest European hypertension guideline downgrading of beta-blockers is not justified. Blood Press. 31:21024
    [Google Scholar]
  78. 78.
    McDonagh TA, Metra M, Adamo M et al. 2021. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42:3599726
    [Google Scholar]
  79. 79.
    Desai R, Park H, Brown JD et al. 2022. Comparative safety and effectiveness of aldosterone antagonists versus beta-blockers as fourth agents in patients with apparent resistant hypertension. Hypertension 79:230515
    [Google Scholar]
  80. 80.
    Julius S, Palatini P, Kjeldsen SE et al. 2012. Usefulness of heart rate to predict cardiac events in treated patients with high-risk systemic hypertension. Am. J. Cardiol. 109:68592
    [Google Scholar]
  81. 81.
    Ruilope LM, Dukat A, Böhm M et al. 2010. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet 375:125566
    [Google Scholar]
  82. 82.
    Wang TD, Tan RS, Lee HY et al. 2017. Effects of sacubitril/valsartan (LCZ696) on natriuresis, diuresis, blood pressures, and NT-proBNP in salt-sensitive hypertension. Hypertension 69:3241
    [Google Scholar]
  83. 83.
    Kario K, Sun N, Chiang FT et al. 2014. Efficacy and safety of LCZ696, a first-in-class angiotensin receptor neprilysin inhibitor, in Asian patients with hypertension: a randomized, double-blind, placebo-controlled study. Hypertension 63:698705
    [Google Scholar]
  84. 84.
    Zhang Y, Zhao X, Huang H, Li M. 2022. Network meta-analysis of sacubitril/valsartan for the treatment of essential hypertension. Clin. Res. Cardiol. 112:85567
    [Google Scholar]
  85. 85.
    Williams B, Cockcroft JR, Kario K et al. 2017. Effects of sacubitril/valsartan versus olmesartan on central hemodynamics in the elderly with systolic hypertension: the PARAMETER study. Hypertension 69:41120
    [Google Scholar]
  86. 86.
    McMurray JJ, Packer M, Desai AS et al. 2014. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371:9931004
    [Google Scholar]
  87. 87.
    Lyu TJ, Liu Y, Zhang H et al. 2022. Clinical observation of sacubitril valsartan sodium in the treatment of resistant hypertension: a randomized clinical trial. Front. Cardiovasc. Med. 9:1099043
    [Google Scholar]
  88. 88.
    Jackson AM, Jhund PS, Anand IS et al. 2021. Sacubitril-valsartan as a treatment for apparent resistant hypertension in patients with heart failure and preserved ejection fraction. Eur. Heart J. 42:374152
    [Google Scholar]
  89. 89.
    Zuo C, Li X, Fan L et al. 2022. Effectiveness and safety of sacubitril/valsartan for patients with hypertension and heart failure in the real-world setting: a retrospective study in China. J. Clin. Pharm. Ther. 47:153947
    [Google Scholar]
  90. 90.
    Ohishi M. 2022. Sacubitril/valsartan—a new weapon for fighting the hypertension paradox. Hypertens. Res. 45:91516
    [Google Scholar]
  91. 91.
    Salvador VD, Bakris GL. 2022. Novel antihypertensive agents for resistant hypertension: What does the future hold?. Hypertens. Res. 45:191828
    [Google Scholar]
  92. 92.
    Schlaich MP, Bellet M, Weber MA et al. 2022. Dual endothelin antagonist aprocitentan for resistant hypertension (PRECISION): a multicentre, blinded, randomised, parallel-group, phase 3 trial. Lancet 400:192737
    [Google Scholar]
  93. 93.
    Sidharta PN, Fischer H, Dingemanse J. 2021. Absorption, distribution, metabolism, and excretion of aprocitentan, a dual endothelin receptor antagonist, in humans. Curr. Drug Metab. 22:399410
    [Google Scholar]
  94. 94.
    Freeman MW, Halvorsen YD, Marshall W et al. 2023. Phase 2 trial of baxdrostat for treatment-resistant hypertension. N. Engl. J. Med. 388:395405
    [Google Scholar]
  95. 95.
    Lauder L, Azizi M, Kirtane AJ et al. 2020. Device-based therapies for arterial hypertension. Nat. Rev. Cardiol. 17:61428
    [Google Scholar]
  96. 96.
    DiBona GF, Esler M. 2010. Translational medicine: the antihypertensive effect of renal denervation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R24553
    [Google Scholar]
  97. 97.
    Bhatt DL, Kandzari DE, O'Neill WW et al. 2014. A controlled trial of renal denervation for resistant hypertension. N. Engl. J. Med. 370:1393401
    [Google Scholar]
  98. 98.
    Desch S, Okon T, Heinemann D et al. 2015. Randomized sham-controlled trial of renal sympathetic denervation in mild resistant hypertension. Hypertension 65:12028
    [Google Scholar]
  99. 99.
    Mathiassen ON, Vase H, Bech JN et al. 2016. Renal denervation in treatment-resistant essential hypertension. A randomized, SHAM-controlled, double-blinded 24-h blood pressure-based trial. J. Hypertens. 34:163947
    [Google Scholar]
  100. 100.
    Kandzari DE, Bhatt DL, Brar S et al. 2015. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur. Heart J. 36:21927
    [Google Scholar]
  101. 101.
    Azizi M, Sapoval M, Gosse P et al. 2015. Optimum and stepped care standardised antihypertensive treatment with or without renal denervation for resistant hypertension (DENERHTN): a multicentre, open-label, randomised controlled trial. Lancet 385:195765
    [Google Scholar]
  102. 102.
    Barbato E, Azizi M, Schmieder RE et al. 2023. Renal denervation in the management of hypertension in adults. A clinical consensus statement of the ESC Council on Hypertension and the European Association of Percutaneous Cardiovascular Interventions (EAPCI). EuroIntervention 18:122743
    [Google Scholar]
  103. 103.
    Azizi M, Sanghvi K, Saxena M et al. 2021. Ultrasound renal denervation for hypertension resistant to a triple medication pill (RADIANCE-HTN TRIO): a randomised, multicentre, single-blind, sham-controlled trial. Lancet 397:247686
    [Google Scholar]
  104. 104.
    Azizi M, Mahfoud F, Weber MA et al. 2022. Effects of renal denervation versus sham in resistant hypertension after medication escalation: prespecified analysis at 6 months of the RADIANCE-HTN TRIO randomized clinical trial. JAMA Cardiol. 7:124452
    [Google Scholar]
  105. 105.
    Marin F, Fezzi S, Gambaro A et al. 2021. Insights on safety and efficacy of renal artery denervation for uncontrolled-resistant hypertension in a high risk population with chronic kidney disease: first Italian real-world experience. J. Nephrol. 34:144555
    [Google Scholar]
  106. 106.
    Scalise F, Sole A, Singh G et al. 2020. Renal denervation in patients with end-stage renal disease and resistant hypertension on long-term haemodialysis. J. Hypertens. 38:93642
    [Google Scholar]
  107. 107.
    Townsend RR, Walton A, Hettrick DA et al. 2020. Review and meta-analysis of renal artery damage following percutaneous renal denervation with radiofrequency renal artery ablation. EuroIntervention 16:8996
    [Google Scholar]
  108. 108.
    Bhatt DL, Vaduganathan M, Kandzari DE et al. 2022. Long-term outcomes after catheter-based renal artery denervation for resistant hypertension: final follow-up of the randomised SYMPLICITY HTN-3 Trial. Lancet 400:140516
    [Google Scholar]
  109. 109.
    Mahfoud F, Kandzari DE, Kario K et al. 2022. Long-term efficacy and safety of renal denervation in the presence of antihypertensive drugs (SPYRAL HTN-ON MED): a randomised, sham-controlled trial. Lancet 399:140110
    [Google Scholar]
  110. 110.
    Rader F, Kirtane AJ, Wang Y et al. 2022. Durability of blood pressure reduction after ultrasound renal denervation: three-year follow-up of the treatment arm of the randomised RADIANCE-HTN SOLO trial. EuroIntervention 18:e67785
    [Google Scholar]
  111. 111.
    Al Ghorani H, Kulenthiran S, Recktenwald MJM et al. 2023. 10-Year outcomes of catheter-based renal denervation in patients with resistant hypertension. J. Am. Coll. Cardiol. 81:51719
    [Google Scholar]
  112. 112.
    Sesa-Ashton G, Nolde JM, Muente I et al. 2023. Catheter-based renal denervation: 9-year follow-up data on safety and blood pressure reduction in patients with resistant hypertension. Hypertension 80:81119
    [Google Scholar]
  113. 113.
    Mahfoud F, Mancia G, Schmieder RE et al. 2022. Cardiovascular risk reduction after renal denervation according to time in therapeutic systolic blood pressure range. J. Am. Coll. Cardiol. 80:187180
    [Google Scholar]
/content/journals/10.1146/annurev-med-050922-052605
Loading
/content/journals/10.1146/annurev-med-050922-052605
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error