1932

Abstract

Cardiac pacing to treat bradyarrhythmias has evolved in recent decades. Recognition that a substantial proportion of pacemaker-dependent patients can develop heart failure due to electrical and mechanical dyssynchrony from traditional right ventricular apical pacing has led to development of more physiologic pacing methods that better mimic normal cardiac conduction and provide synchronized ventricular contraction. Conventional biventricular pacing has been shown to benefit patients with heart failure and conduction system disease but can be limited by scarring and fibrosis. His bundle pacing and left bundle branch area pacing are novel techniques that can provide more physiologic ventricular activation as an alternative to conventional or biventricular pacing. Leadless pacing has emerged as another alternative pacing technique to overcome limitations in conventional transvenous pacemaker systems. Our objective is to review the evolution of cardiac pacing and explore these new advances in pacing strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-051022-042616
2024-01-29
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/med/75/1/annurev-med-051022-042616.html?itemId=/content/journals/10.1146/annurev-med-051022-042616&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Chung MK, Patton KK, Lau C-P et al. 2023. 2023 HRS/APHRS/LAHRS guideline on cardiac physiologic pacing for the avoidance and mitigation of heart failure. Heart Rhythm 20:9E1791
    [Google Scholar]
  2. 2.
    Sweeney MO, Hellkamp AS, Ellenbogen KA et al. 2003. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation 107:23293237
    [Google Scholar]
  3. 3.
    Wilkoff BL, Cook JR, Epstein AE et al. 2002. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA 288:24311523
    [Google Scholar]
  4. 4.
    Mower M. 1990. Method and apparatus for treating hemodynamic dysfunction by simultaneous pacing of both ventricles US Patent US4928688A
    [Google Scholar]
  5. 5.
    Hochleitner M, Hörtnagl H, Ng CK et al. 1990. Usefulness of physiologic dual-chamber pacing in drug-resistant idiopathic dilated cardiomyopathy. Am. J. Cardiol. 66:2198202
    [Google Scholar]
  6. 6.
    Leclercq C, Cazeau S, Ritter P et al. 2000. A pilot experience with permanent biventricular pacing to treat advanced heart failure. Am. Heart J. 140:686270
    [Google Scholar]
  7. 7.
    Cazeau S, Leclercq C, Lavergne T et al. 2001. Effects of multisite biventricular pacing in patients with heart failure and intraventricular conduction delay. N. Engl. J. Med. 344:1287380
    [Google Scholar]
  8. 8.
    Abraham WT, Fisher WG, Smith AL et al. 2002. Cardiac resynchronization in chronic heart failure. N. Engl. J. Med. 346:24184553
    [Google Scholar]
  9. 9.
    Cleland JG, Daubert J-C, Erdmann E et al. 2005. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N. Engl. J. Med. 352:15153949
    [Google Scholar]
  10. 10.
    Bristow MR, Saxon LA, Boehmer J et al. 2004. Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 350:21214050
    [Google Scholar]
  11. 11.
    Brignole M, Auricchio A, Baron-Esquivias G et al. 2013. 2013 ESC guidelines on cardiac pacing and cardiac resynchronization therapy: the task force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Europace 15:81070118
    [Google Scholar]
  12. 12.
    Epstein AE, DiMarco JP, Ellenbogen KA et al. 2013. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. Circulation 127:3e28352
    [Google Scholar]
  13. 13.
    Herweg B, Ilercil A, Madramootoo C et al. 2006. Latency during left ventricular pacing from the lateral cardiac veins: a cause of ineffectual biventricular pacing. Pacing Clin. Electrophysiol. 29:657481
    [Google Scholar]
  14. 14.
    Lustgarten DL, Crespo EM, Arkhipova-Jenkins I et al. 2015. His-bundle pacing versus biventricular pacing in cardiac resynchronization therapy patients: a crossover design comparison. Heart Rhythm 12:7154857
    [Google Scholar]
  15. 15.
    Vijayaraman P, Dandamudi G. 2016. Anatomical approach to permanent His bundle pacing: optimizing His bundle capture. J. Electrocardiol. 49:564957
    [Google Scholar]
  16. 16.
    Scherlag BJ, Kosowsky BD, Damato AN. 1967. A technique for ventricular pacing from the His bundle of the intact heart. J. Appl. Physiol. 22:358487
    [Google Scholar]
  17. 17.
    Karpawich PP, Gates J, Stokes KB. 1992. Septal His-Purkinje ventricular pacing in canines: a new endocardial electrode approach. Pacing Clin. Electrophysiol. 15:11 Pt. 2201115
    [Google Scholar]
  18. 18.
    Deshmukh P, Casavant DA, Romanyshyn M, Anderson K. 2000. Permanent, direct His-bundle pacing: a novel approach to cardiac pacing in patients with normal His-Purkinje activation. Circulation 101:886977
    [Google Scholar]
  19. 19.
    Vijayaraman P, Dandamudi G, Zanon F et al. 2018. Permanent His bundle pacing: recommendations from a multicenter His bundle pacing collaborative working group for standardization of definitions, implant measurements, and follow-up. Heart Rhythm 15:346068
    [Google Scholar]
  20. 20.
    Vijayaraman P, Chung MK, Dandamudi G et al. 2018. His bundle pacing. J. Am. Coll. Cardiol. 72:892747
    [Google Scholar]
  21. 21.
    Upadhyay GA, Tung R. 2017. Selective versus non-selective his bundle pacing for cardiac resynchronization therapy. J. Electrocardiol. 50:219194
    [Google Scholar]
  22. 22.
    Sharma PS, Vijayaraman P, Ellenbogen KA. 2020. Permanent His bundle pacing: shaping the future of physiological ventricular pacing. Nat. Rev. Cardiol. 17:12236
    [Google Scholar]
  23. 23.
    Pastore G, Aggio S, Baracca E et al. 2014. Hisian area and right ventricular apical pacing differently affect left atrial function: an intra-patients evaluation. Europace 16:7103339
    [Google Scholar]
  24. 24.
    Abdelrahman M, Subzposh FA, Beer D et al. 2018. Clinical outcomes of His bundle pacing compared to right ventricular pacing. J. Am. Coll. Cardiol. 71:20231930
    [Google Scholar]
  25. 25.
    Zanon F, Abdelrahman M, Marcantoni L et al. 2019. Long term performance and safety of His bundle pacing: a multicenter experience. J. Cardiovasc. Electrophysiol. 30:91594601
    [Google Scholar]
  26. 26.
    Barba-Pichardo R, Sánchez AM, Fernández-Gómez JM et al. 2013. Ventricular resynchronization therapy by direct His-bundle pacing using an internal cardioverter defibrillator. Europace 15:18388
    [Google Scholar]
  27. 27.
    Sharma PS, Dandamudi G, Herweg B et al. 2018. Permanent His-bundle pacing as an alternative to biventricular pacing for cardiac resynchronization therapy: a multicenter experience. Heart Rhythm 15:341320
    [Google Scholar]
  28. 28.
    Vinther M, Risum N, Svendsen JH et al. 2021. A randomized trial of His pacing versus biventricular pacing in symptomatic HF patients with left bundle branch block (His-alternative). JACC Clin. Electrophysiol. 7:11142232
    [Google Scholar]
  29. 29.
    Upadhyay GA, Vijayaraman P, Nayak HM et al. 2019. His corrective pacing or biventricular pacing for cardiac resynchronization in heart failure. J. Am. Coll. Cardiol. 74:115759
    [Google Scholar]
  30. 30.
    Whinnett ZI, Shun-Shin MJ, Tanner M et al. 2023. Effects of haemodynamically atrio-ventricular optimized His bundle pacing on heart failure symptoms and exercise capacity: the His Optimized Pacing Evaluated for Heart Failure (HOPE-HF) randomized, double-blind, cross-over trial. Eur. J. Heart Fail. 25:227483
    [Google Scholar]
  31. 31.
    Vijayaraman P, Herweg B, Ellenbogen KA, Gajek J. 2019. His-optimized cardiac resynchronization therapy to maximize electrical resynchronization. Circ. Arrhythm. Electrophysiol. 12:2e006934
    [Google Scholar]
  32. 32.
    Upadhyay GA, Cherian T, Shatz DY et al. 2019. Intracardiac delineation of septal conduction in left bundle-branch block patterns. Circulation 139:16187688
    [Google Scholar]
  33. 33.
    Burri H, Jastrzębski M, Cano O et al. 2023. EHRA clinical consensus statement on conduction system pacing implantation: endorsed by the Asia Pacific Heart Rhythm Society (APHRS), Canadian Heart Rhythm Society (CHRS), and Latin American Heart Rhythm Society (LAHRS). Europace 25:4120836
    [Google Scholar]
  34. 34.
    Huang W, Su L, Wu S et al. 2017. A novel pacing strategy with low and stable output: pacing the left bundle branch immediately beyond the conduction block. Can. J. Cardiol. 33:121736.e13
    [Google Scholar]
  35. 35.
    Jastrzębski M, Kiełbasa G, Moskal P et al. 2021. Fixation beats: a novel marker for reaching the left bundle branch area during deep septal lead implantation. Heart Rhythm 18:456269
    [Google Scholar]
  36. 36.
    Liu P, Wang Q, Sun H et al. 2021. Left bundle branch pacing: current knowledge and future prospects. Front. Cardiovasc. Med. 8:630399
    [Google Scholar]
  37. 37.
    Muthumala A, Vijayaraman P. 2021. Clinical outcomes of His-Purkinje conduction system pacing. Pacing Clin. Electrophysiol. 44:1514
    [Google Scholar]
  38. 38.
    Su L, Wang S, Wu S et al. 2021. Long-term safety and feasibility of left bundle branch pacing in a large single-center study. Circ. Arrhythm. Electrophysiol. 14:2e009261
    [Google Scholar]
  39. 39.
    Sharma PS, Patel NR, Ravi V et al. 2022. Clinical outcomes of left bundle branch area pacing compared to right ventricular pacing: results from the Geisinger-Rush Conduction System Pacing Registry. Heart Rhythm 19:1311
    [Google Scholar]
  40. 40.
    Wang S, Wu S, Xu L et al. 2019. Feasibility and efficacy of His bundle pacing or left bundle pacing combined with atrioventricular node ablation in patients with persistent atrial fibrillation and implantable cardioverter-defibrillator therapy. J. Am. Heart Assoc. 8:24e014253
    [Google Scholar]
  41. 41.
    Vijayaraman P, Ponnusamy SS, Cano O et al. 2021. Left bundle branch area pacing for cardiac resynchronization therapy: results from the International LBBAP Collaborative Study Group. JACC Clin. Electrophysiol. 7:213547
    [Google Scholar]
  42. 42.
    Vijayaraman P, Subzposh FA, Naperkowski A et al. 2019. Prospective evaluation of feasibility and electrophysiologic and echocardiographic characteristics of left bundle branch area pacing. Heart Rhythm 16:12177482
    [Google Scholar]
  43. 43.
    Zhang W, Huang J, Qi Y et al. 2019. Cardiac resynchronization therapy by left bundle branch area pacing in patients with heart failure and left bundle branch block. Heart Rhythm 16:12178390
    [Google Scholar]
  44. 44.
    Wu S, Su L, Vijayaraman P et al. 2021. Left bundle branch pacing for cardiac resynchronization therapy: nonrandomized on-treatment comparison with His bundle pacing and biventricular pacing. Can. J. Cardiol. 37:231928
    [Google Scholar]
  45. 45.
    Wang Y, Zhu H, Hou X et al. 2022. Randomized trial of left bundle branch versus biventricular pacing for cardiac resynchronization therapy. J. Am. Coll. Cardiol. 80:13120516
    [Google Scholar]
  46. 46.
    Vijayaraman P, Herweg B, Verma A et al. 2022. Rescue left bundle branch area pacing in coronary venous lead failure or nonresponse to biventricular pacing: results from International LBBAP Collaborative Study Group. Heart Rhythm 19:8127280
    [Google Scholar]
  47. 47.
    Vijayaraman P, Zalavadia D, Haseeb A et al. 2022. Clinical outcomes of conduction system pacing compared to biventricular pacing in patients requiring cardiac resynchronization therapy. Heart Rhythm 19:8126371
    [Google Scholar]
  48. 48.
    Jastrzębski M, Moskal P, Huybrechts W et al. 2022. Left bundle branch-optimized cardiac resynchronization therapy (LOT-CRT): results from an international LBBAP collaborative study group. Heart Rhythm 19:11321
    [Google Scholar]
  49. 49.
    Jastrzębski M, Kiełbasa G, Cano O et al. 2022. Left bundle branch area pacing outcomes: the multicentre European MELOS study. Eur. Heart J. 43:40416173
    [Google Scholar]
  50. 50.
    Brunner MP, Cronin EM, Wazni O et al. 2014. Outcomes of patients requiring emergent surgical or endovascular intervention for catastrophic complications during transvenous lead extraction. Heart Rhythm 11:341925
    [Google Scholar]
  51. 51.
    Tarakji KG, Wazni OM, Harb S et al. 2014. Risk factors for 1-year mortality among patients with cardiac implantable electronic device infection undergoing transvenous lead extraction: the impact of the infection type and the presence of vegetation on survival. Europace 16:10149095
    [Google Scholar]
  52. 52.
    Harcombe AA, Newell SA, Ludman PF et al. 1998. Late complications following permanent pacemaker implantation or elective unit replacement. Heart 80:324044
    [Google Scholar]
  53. 53.
    Klug D, Balde M, Pavin D et al. 2007. Risk factors related to infections of implanted pacemakers and cardioverter-defibrillators: results of a large prospective study. Circulation 116:12134955
    [Google Scholar]
  54. 54.
    Essebag V, Verma A, Healey JS et al. 2016. Clinically significant pocket hematoma increases long-term risk of device infection: BRUISE CONTROL INFECTION Study. J. Am. Coll. Cardiol. 67:1113008
    [Google Scholar]
  55. 55.
    Spickler JW, Rasor NS, Kezdi P et al. 1970. Totally self-contained intracardiac pacemaker. J. Electrocardiol. 3:3–432531
    [Google Scholar]
  56. 56.
    Reddy VY, Knops RE, Sperzel J et al. 2014. Permanent leadless cardiac pacing: results of the LEADLESS trial. Circulation 129:14146671
    [Google Scholar]
  57. 57.
    Knops RE, Tjong FVY, Neuzil P et al. 2015. Chronic performance of a leadless cardiac pacemaker: 1-year follow-up of the LEADLESS trial. J. Am. Coll. Cardiol. 65:151497504
    [Google Scholar]
  58. 58.
    Reddy VY, Exner DV, Cantillon DJ et al. 2015. Percutaneous implantation of an entirely intracardiac leadless pacemaker. N. Engl. J. Med. 373:12112535
    [Google Scholar]
  59. 59.
    Cantillon DJ, Dukkipati SR, Ip JH et al. 2018. Comparative study of acute and mid-term complications with leadless and transvenous cardiac pacemakers. Heart Rhythm 15:7102330
    [Google Scholar]
  60. 60.
    Reynolds DW, Ritter P. 2016. A leadless intracardiac transcatheter pacing system. N. Engl. J. Med. 374:2626045
    [Google Scholar]
  61. 61.
    Tjong FV, Reddy VY. 2017. Permanent leadless cardiac pacemaker therapy: a comprehensive review. Circulation 135:15145870
    [Google Scholar]
  62. 62.
    Duray GZ, Ritter P, El-Chami M et al. 2017. Long-term performance of a transcatheter pacing system: 12-month results from the Micra Transcatheter Pacing Study. Heart Rhythm 14:57029
    [Google Scholar]
  63. 63.
    Ritter P, Duray GZ, Steinwender C et al. 2015. Early performance of a miniaturized leadless cardiac pacemaker: the Micra Transcatheter Pacing Study. Eur. Heart J. 36:37251019
    [Google Scholar]
  64. 64.
    Auricchio A, Stellbrink C, Sack S et al. 2002. Long-term clinical effect of hemodynamically optimized cardiac resynchronization therapy in patients with heart failure and ventricular conduction delay. J. Am. Coll. Cardiol. 39:12202633
    [Google Scholar]
  65. 65.
    Auricchio A, Delnoy P-P, Butter C et al. 2014. Feasibility, safety, and short-term outcome of leadless ultrasound-based endocardial left ventricular resynchronization in heart failure patients: results of the Wireless Stimulation Endocardially for CRT (WiSE-CRT) study. Europace 16:568188
    [Google Scholar]
  66. 66.
    Reddy VY, Miller MA, Neuzil P et al. 2017. Cardiac resynchronization therapy with wireless left ventricular endocardial pacing: the SELECT-LV study. J. Am. Coll. Cardiol. 69:17211929
    [Google Scholar]
  67. 67.
    Gamble JHP, Herring N, Ginks M et al. 2018. Endocardial left ventricular pacing for cardiac resynchronization: systematic review and meta-analysis. Europace 20:17381
    [Google Scholar]
  68. 68.
    Gamble JHP, Herring N, Ginks MR et al. 2018. Endocardial left ventricular pacing across the interventricular septum for cardiac resynchronization therapy: clinical results of a pilot study. Heart Rhythm 15:7101722
    [Google Scholar]
  69. 69.
    Biffi M, Defaye P, Jaïs P et al. 2018. Benefits of left ventricular endocardial pacing comparing failed implants and prior non-responders to conventional cardiac resynchronization therapy: a subanalysis from the ALSYNC study. Int. J. Cardiol. 259:8893
    [Google Scholar]
  70. 70.
    Graham AJ, Providenica R, Honarbakhsh S et al. 2018. Systematic review and meta-analysis of left ventricular endocardial pacing in advanced heart failure: clinically efficacious but at what cost?. Pacing Clin. Electrophysiol. 41:435361
    [Google Scholar]
  71. 71.
    Linde C, Leclercq C, Rex S et al. 2002. Long-term benefits of biventricular pacing in congestive heart failure: results from the MUltisite STimulation in cardiomyopathy (MUSTIC) study. J. Am. Coll. Cardiol. 40:111118
    [Google Scholar]
  72. 72.
    Young JB, Abraham WT, Smith AL et al. 2003. Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: the MIRACLE ICD Trial. JAMA 289:20268594
    [Google Scholar]
  73. 73.
    Abraham WT, Young JB, León AR et al. 2004. Effects of cardiac resynchronization on disease progression in patients with left ventricular systolic dysfunction, an indication for an implantable cardioverter-defibrillator, and mildly symptomatic chronic heart failure. Circulation 110:18286468
    [Google Scholar]
  74. 74.
    Linde C, Abraham WT, Gold MR et al. 2008. Randomized trial of cardiac resynchronization in mildly symptomatic heart failure patients and in asymptomatic patients with left ventricular dysfunction and previous heart failure symptoms. J. Am. Coll. Cardiol. 52:23183443
    [Google Scholar]
  75. 75.
    Zareba W, Klein H, Cygankiewicz I et al. 2011. Effectiveness of cardiac resynchronization therapy by QRS morphology in the Multicenter Automatic Defibrillator Implantation Trial–Cardiac Resynchronization Therapy (MADIT-CRT). Circulation 123:10106172
    [Google Scholar]
  76. 76.
    Tang ASL, Wells GA, Talajic M et al. 2010. Cardiac-resynchronization therapy for mild-to-moderate heart failure. N. Engl. J. Med. 363:25238595
    [Google Scholar]
  77. 77.
    Occhetta E, Bortnik M, Magnani A et al. 2006. Prevention of ventricular desynchronization by permanent para-Hisian pacing after atrioventricular node ablation in chronic atrial fibrillation: a crossover, blinded, randomized study versus apical right ventricular pacing. J. Am. Coll. Cardiol. 47:10193845
    [Google Scholar]
  78. 78.
    Barba-Pichardo R, Moriña-Vázquez P, Fernández-Gómez JM et al. 2010. Permanent His-bundle pacing: seeking physiological ventricular pacing. Europace 12:452733
    [Google Scholar]
  79. 79.
    Kronborg MB, Mortensen PT, Poulsen SH et al. 2014. His or para-His pacing preserves left ventricular function in atrioventricular block: a double-blind, randomized, crossover study. Europace 16:8118996
    [Google Scholar]
  80. 80.
    Su L, Xu L, Wu S-J, Huang W-J. 2015. Pacing and sensing optimization of permanent His-bundle pacing in cardiac resynchronization therapy/implantable cardioverter defibrillators patients: value of integrated bipolar configuration. Europace 18:91399405
    [Google Scholar]
  81. 81.
    Sharma PS, Dandamudi G, Naperkowski A et al. 2015. Permanent His-bundle pacing is feasible, safe, and superior to right ventricular pacing in routine clinical practice. Heart Rhythm 12:230512
    [Google Scholar]
  82. 82.
    Huang W, Su L, Wu S et al. 2019. Long-term outcomes of His bundle pacing in patients with heart failure with left bundle branch block. Heart 105:213743
    [Google Scholar]
  83. 83.
    Vijayaraman P, Herweg B, Dandamudi G et al. 2019. Outcomes of His-bundle pacing upgrade after long-term right ventricular pacing and/or pacing-induced cardiomyopathy: insights into disease progression. Heart Rhythm 16:10155461
    [Google Scholar]
  84. 84.
    Hou X, Qian Z, Wang Y et al. 2019. Feasibility and cardiac synchrony of permanent left bundle branch pacing through the interventricular septum. Europace 21:111694702
    [Google Scholar]
  85. 85.
    Li X, Li H, Ma W et al. 2019. Permanent left bundle branch area pacing for atrioventricular block: feasibility, safety, and acute effect. Heart Rhythm 16:12176673
    [Google Scholar]
  86. 86.
    Huang W, Wu S, Vijayaraman P et al. 2020. Cardiac resynchronization therapy in patients with nonischemic cardiomyopathy using left bundle branch pacing. JACC Clin. Electrophysiol. 6:784958
    [Google Scholar]
  87. 87.
    Wang Y, Zhu H, Hou X et al. 2022. Randomized trial of left bundle branch versus biventricular pacing for cardiac resynchronization therapy. J. Am. Coll. Cardiol. 80:13120516
    [Google Scholar]
/content/journals/10.1146/annurev-med-051022-042616
Loading
/content/journals/10.1146/annurev-med-051022-042616
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error