1932

Abstract

The intracellular signaling molecule cyclic di-GMP (c-di-GMP) regulates the lifestyle of bacteria and controls many key functions and mechanisms. In the case of bacterial pathogens, a wide variety of virulence lifestyle factors have been shown to be regulated by c-di-GMP. Evidence of the importance of this molecule for bacterial pathogenesis has become so great that new antimicrobial agents are tested for their capacity of targeting c-di-GMP signaling. This review summarizes the current knowledge on this topic and reveals its application for the development of new antivirulence intervention strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-115555
2019-09-08
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/1/annurev-micro-020518-115555.html?itemId=/content/journals/10.1146/annurev-micro-020518-115555&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ahmad I, Lamprokostopoulou A, Le Guyon S, Streck E, Barthel M et al. 2011. Complex c-di-GMP signaling networks mediate transition between virulence properties and biofilm formation in Salmonella enterica serovar Typhimurium. PLOS ONE 6:e28351
    [Google Scholar]
  2. 2. 
    Allombert J, Lazzaroni JC, Bailo N, Gilbert C, Charpentier X et al. 2014. Three antagonistic cyclic di-GMP-catabolizing enzymes promote differential Dot/Icm effector delivery and intracellular survival at the early steps of Legionella pneumophila infection. Infect. Immun. 82:1222–33
    [Google Scholar]
  3. 3. 
    Alving CR, Peachman KK, Rao M, Reed SG 2012. Adjuvants for human vaccines. Curr. Opin. Immunol. 24:310–15
    [Google Scholar]
  4. 4. 
    An SQ, Caly DL, McCarthy Y, Murdoch SL, Ward J et al. 2014. Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence. PLOS Pathog 10:e1004429
    [Google Scholar]
  5. 5. 
    Antoniani D, Rossi E, Rinaldo S, Bocci P, Lolicato M et al. 2013. The immunosuppressive drug azathioprine inhibits biosynthesis of the bacterial signal molecule cyclic-di-GMP by interfering with intracellular nucleotide pool availability. Appl. Microbiol. Biotechnol. 97:7325–36
    [Google Scholar]
  6. 6. 
    Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ et al. 2009. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J. Bacteriol. 191:7333–42
    [Google Scholar]
  7. 7. 
    Basu Roy A, Sauer K 2014. Diguanylate cyclase NicD-based signalling mechanism of nutrient-induced dispersion by Pseudomonas aeruginosa. Mol. Microbiol 94:771–93
    [Google Scholar]
  8. 8. 
    Benach J, Swaminathan SS, Tamayo R, Handelman SK, Folta-Stogniew E et al. 2007. The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J 26:5153–66
    [Google Scholar]
  9. 9. 
    Bordeleau E, Brouillette E, Robichaud N, Burrus V 2010. Beyond antibiotic resistance: integrating conjugative elements of the SXT/R391 family that encode novel diguanylate cyclases participate to c-di-GMP signalling in Vibrio cholerae. Environ. Microbiol 12:510–23
    [Google Scholar]
  10. 10. 
    Bordeleau E, Purcell EB, Lafontaine DA, Fortier LC, Tamayo R, Burrus V 2015. Cyclic di-GMP riboswitch-regulated type IV pili contribute to aggregation of Clostridium difficile. J. Bacteriol 197:819–32
    [Google Scholar]
  11. 11. 
    Casadevall A, Pirofski LA. 2009. Virulence factors and their mechanisms of action: the view from a damage-response framework. J. Water Health 7:Suppl. 1S2–18
    [Google Scholar]
  12. 12. 
    Chen LH, Koseoglu VK, Guvener ZT, Myers-Morales T, Reed JM et al. 2014. Cyclic di-GMP-dependent signaling pathways in the pathogenic firmicute Listeria monocytogenes. PLOS Pathog 10:e1004301
    [Google Scholar]
  13. 13. 
    Chou SH, Galperin MY. 2016. Diversity of cyclic di-GMP-binding proteins and mechanisms. J. Bacteriol. 198:32–46Systematic overview of c-di-GMP effectors.
    [Google Scholar]
  14. 14. 
    Conner JG, Zamorano-Sanchez D, Park JH, Sondermann H, Yildiz FH 2017. The ins and outs of cyclic di-GMP signaling in Vibrio cholerae. Curr. Opin. Microbiol 36:20–29
    [Google Scholar]
  15. 15. 
    Cooley RB, Smith TJ, Leung W, Tierney V, Borlee BR et al. 2016. Cyclic di-GMP-regulated periplasmic proteolysis of a Pseudomonas aeruginosa type Vb secretion system substrate. J. Bacteriol. 198:66
    [Google Scholar]
  16. 16. 
    Cotter PA, Stibitz S. 2007. c-di-GMP-mediated regulation of virulence and biofilm formation. Curr. Opin. Microbiol. 10:17–23
    [Google Scholar]
  17. 17. 
    Dahlstrom KM, O'Toole GA. 2017. A symphony of cyclases: specificity in diguanylate cyclase signaling. Annu. Rev. Microbiol. 71:179–95
    [Google Scholar]
  18. 18. 
    Damkiaer S, Yang L, Molin S, Jelsbak L 2013. Evolutionary remodeling of global regulatory networks during long-term bacterial adaptation to human hosts. PNAS 110:7766–71
    [Google Scholar]
  19. 19. 
    Dey B, Dey RJ, Cheung LS, Pokkali S, Guo H et al. 2015. A bacterial cyclic dinucleotide activates the cytosolic surveillance pathway and mediates innate resistance to tuberculosis. Nat. Med. 21:401
    [Google Scholar]
  20. 20. 
    Dickey SW, Cheung GYC, Otto M 2017. Different drugs for bad bugs: antivirulence strategies in the age of antibiotic resistance. Nat. Rev. Drug Discov. 16:457–71
    [Google Scholar]
  21. 21. 
    Elbakush AM, Miller KW, Gomelsky M 2018. CodY-mediated c-di-GMP-dependent inhibition of mammalian cell invasion in Listeria monocytogenes. J. Bacteriol 200:e00457–17
    [Google Scholar]
  22. 22. 
    Espinosa-Valdes MP, Borbolla-Alvarez S, Delgado-Espinosa AE, Sanchez-Tejeda JF, Ceron-Nava A et al. 2019. Synthesis, in silico, and in vitro evaluation of long chain alkyl amides from 2-amino-4-quinolone derivatives as biofilm inhibitors. Molecules 24:E327
    [Google Scholar]
  23. 23. 
    Falkow S. 1988. Molecular Koch's postulates applied to microbial pathogenicity. Rev. Infect. Dis. 10:Suppl. 2S274–76Essay on the criteria to define the genetic and molecular bases of pathogenicity—Part 1.
    [Google Scholar]
  24. 24. 
    Falkow S. 2004. Molecular Koch's postulates applied to bacterial pathogenicity—a personal recollection 15 years later. Nat. Rev. Microbiol. 2:67–72Essay on the criteria to define the genetic and molecular bases of pathogenicity—Part 2.
    [Google Scholar]
  25. 25. 
    Fang X, Ahmad I, Blanka A, Schottkowski M, Cimdins A et al. 2014. GIL, a new c-di-GMP-binding protein domain involved in regulation of cellulose synthesis in enterobacteria. Mol. Microbiol. 93:439–52
    [Google Scholar]
  26. 26. 
    Fazli M, O'Connell A, Nilsson M, Niehaus K, Dow JM et al. 2011. The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Mol. Microbiol 82:327–41
    [Google Scholar]
  27. 27. 
    Fernicola S, Paiardini A, Giardina G, Rampioni G, Leoni L et al. 2016. In silico discovery and in vitro validation of catechol-containing sulfonohydrazide compounds as potent inhibitors of the diguanylate cyclase PleD. J. Bacteriol. 198:147–56
    [Google Scholar]
  28. 28. 
    Finlay BB, Falkow S. 1997. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61:2136–69
    [Google Scholar]
  29. 29. 
    Foletti C, Kramer RA, Mauser H, Jenal U, Bleicher KH, Wennemers H 2018. Functionalized proline-rich peptides bind the bacterial second messenger c-di-GMP. Angew. Chem. Int. Ed. Engl. 57:7729–33
    [Google Scholar]
  30. 30. 
    Fong J, Mortensen KT, Norskov A, Qvortrup K, Yang L et al. 2018. Itaconimides as novel quorum sensing inhibitors of Pseudomonas aeruginosa. Front. Cell Infect. Microbiol 8:443
    [Google Scholar]
  31. 31. 
    Frangipani E, Visaggio D, Heeb S, Kaever V, Camara M et al. 2014. The Gac/Rsm and cyclic-di-GMP signalling networks coordinately regulate iron uptake in Pseudomonas aeruginosa. Environ. Microbiol 16:676–88
    [Google Scholar]
  32. 32. 
    Freedman JC, Rogers EA, Kostick JL, Zhang H, Iyer R et al. 2010. Identification and molecular characterization of a cyclic-di-GMP effector protein, PlzA (BB0733): additional evidence for the existence of a functional cyclic-di-GMP regulatory network in the Lyme disease spirochete, Borrelia burgdorferi. FEMS Immunol. Med. Microbiol 58:285–94
    [Google Scholar]
  33. 33. 
    Galperin MY. 2004. Bacterial signal transduction network in a genomic perspective. Environ. Microbiol. 6:552–67
    [Google Scholar]
  34. 34. 
    Gupta K, Liao J, Petrova OE, Cherny KE, Sauer K 2014. Elevated levels of the second messenger c-di-GMP contribute to antimicrobial resistance of Pseudomonas aeruginosa. Mol. Microbiol 92:488–506
    [Google Scholar]
  35. 35. 
    Guzzo CR, Salinas RK, Andrade MO, Farah CS 2009. PILZ protein structure and interactions with PILB and the FIMX EAL domain: implications for control of type IV pilus biogenesis. J. Mol. Biol. 393:848–66
    [Google Scholar]
  36. 36. 
    Hayat S, Muzammil S, Shabana Aslam B, Siddique MH et al. 2019. Quorum quenching: role of nanoparticles as signal jammers in Gram-negative bacteria. Future Microbiol 14:61–72
    [Google Scholar]
  37. 37. 
    Hendrick WA, Orr MW, Murray SR, Lee VT, Melville SB 2017. Cyclic di-GMP binding by an assembly ATPase (PilB2) and control of type IV pilin polymerization in the Gram-positive pathogen Clostridium perfringens. J. Bacteriol 199:e00034–17
    [Google Scholar]
  38. 38. 
    Hengge R. 2016. Trigger phosphodiesterases as a novel class of c-di-GMP effector proteins. Phil. Trans. R. Soc. B 371:20150498
    [Google Scholar]
  39. 39. 
    Hengge R. 2009. Principles of c-di-GMP signalling in bacteria. Nat. Rev. Microbiol. 7:263–73
    [Google Scholar]
  40. 40. 
    Hindre T, Knibbe C, Beslon G, Schneider D 2012. New insights into bacterial adaptation through in vivo and in silico experimental evolution. Nat. Rev. Microbiol. 10:352–65
    [Google Scholar]
  41. 41. 
    Huang CJ, Wang ZC, Huang HY, Huang HD, Peng HL 2013. YjcC, a c-di-GMP phosphodiesterase protein, regulates the oxidative stress response and virulence of Klebsiella pneumoniae CG43. PLOS ONE 8:e66740
    [Google Scholar]
  42. 42. 
    Jain R, Kazmierczak BI. 2019. Should I stay or should I go? Pseudomonas just can't decide. Cell Host Microbe 25:5–7
    [Google Scholar]
  43. 43. 
    Jain R, Sliusarenko O, Kazmierczak BI 2017. Interaction of the cyclic-di-GMP binding protein FimX and the Type 4 pilus assembly ATPase promotes pilus assembly. PLOS Pathog 13:e1006594
    [Google Scholar]
  44. 44. 
    Jenal U, Malone J. 2006. Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet. 40:385–407
    [Google Scholar]
  45. 45. 
    Jenal U, Reinders A, Lori C 2017. Cyclic di-GMP: second messenger extraordinaire. Nat. Rev. Microbiol. 15:271–84
    [Google Scholar]
  46. 46. 
    Kader A, Simm R, Gerstel U, Morr M, Romling U 2006. Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol. Microbiol. 60:602–16
    [Google Scholar]
  47. 47. 
    Karaolis DK, Means TK, Yang D, Takahashi M, Yoshimura T et al. 2007. Bacterial c-di-GMP is an immunostimulatory molecule. J. Immunol. 178:2171–81
    [Google Scholar]
  48. 48. 
    Karaolis DK, Newstead MW, Zeng X, Hyodo M, Hayakawa Y et al. 2007. Cyclic di-GMP stimulates protective innate immunity in bacterial pneumonia. Infect. Immun. 75:4942–50
    [Google Scholar]
  49. 49. 
    Kim B, Park JS, Choi HY, Yoon SS, Kim WG 2018. Terrein is an inhibitor of quorum sensing and c-di-GMP in Pseudomonas aeruginosa: a connection between quorum sensing and c-di-GMP. Sci. Rep. 8:8617
    [Google Scholar]
  50. 50. 
    Kirillina O, Fetherston JD, Bobrov AG, Abney J, Perry RD 2004. HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol. Microbiol 54:75–88
    [Google Scholar]
  51. 51. 
    Kobayashi H, Kobayashi CI, Nakamura-Ishizu A, Karigane D, Haeno H et al. 2015. Bacterial c-di-GMP affects hematopoietic stem/progenitors and their niches through STING. Cell Rep 11:71–84c-di-GMP as crucial regulator of hematopoietic stem and progenitor cells.
    [Google Scholar]
  52. 52. 
    Krasteva PV, Fong JC, Shikuma NJ, Beyhan S, Navarro MV et al. 2010. Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327:866–68
    [Google Scholar]
  53. 53. 
    Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J et al. 2006. Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. PNAS 103:2839–44
    [Google Scholar]
  54. 54. 
    Kumagai Y, Matsuo J, Hayakawa Y, Rikihisa Y 2010. Cyclic di-GMP signaling regulates invasion by Ehrlichia chaffeensis of human monocytes. J. Bacteriol. 192:4122
    [Google Scholar]
  55. 55. 
    Lamprokostopoulou A, Monteiro C, Rhen M, Romling U 2010. Cyclic di-GMP signalling controls virulence properties of Salmonella enterica serovar Typhimurium at the mucosal lining. Environ. Microbiol. 12:40–53
    [Google Scholar]
  56. 56. 
    Laventie BJ, Sangermani M, Estermann F, Manfredi P, Planes R et al. 2019. A surface-induced asymmetric program promotes tissue colonization by Pseudomonas aeruginosa. Cell Host Microbe 25:140–52.e6
    [Google Scholar]
  57. 57. 
    Lee ER, Baker JL, Weinberg Z, Sudarsan N, Breaker RR 2010. An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 329:845–48
    [Google Scholar]
  58. 58. 
    Lee VT, Matewish JM, Kessler JL, Hyodo M, Hayakawa Y, Lory S 2007. A cyclic-di-GMP receptor required for bacterial exopolysaccharide production. Mol. Microbiol. 65:1474–84
    [Google Scholar]
  59. 59. 
    Levin BR, Bull JJ. 1994. Short-sighted evolution and the virulence of pathogenic microorganisms. Trends Microbiol 2:76–81
    [Google Scholar]
  60. 60. 
    Li W, Cui T, Hu L, Wang Z, Li Z, He Z-G 2015. Cyclic diguanylate monophosphate directly binds to human siderocalin and inhibits its antibacterial activity. Nat. Commun. 6:8330
    [Google Scholar]
  61. 61. 
    Li W, He ZG. 2012. LtmA, a novel cyclic di-GMP-responsive activator, broadly regulates the expression of lipid transport and metabolism genes in Mycobacterium smegmatis. Nucleic Acids Res 40:11292–307
    [Google Scholar]
  62. 62. 
    Li W, Li M, Hu L, Zhu J, Xie Z et al. 2018. HpoR, a novel c-di-GMP effective transcription factor, links the second messenger's regulatory function to the mycobacterial antioxidant defense. Nucleic Acids Res 46:3595–611
    [Google Scholar]
  63. 63. 
    Liao J, Sauer K. 2012. The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance. J. Bacteriol. 194:4823–36
    [Google Scholar]
  64. 64. 
    Lieberman OJ, Orr MW, Wang Y, Lee VT 2014. High-throughput screening using the differential radial capillary action of ligand assay identifies ebselen as an inhibitor of diguanylate cyclases. ACS Chem. Biol. 9:183–92
    [Google Scholar]
  65. 65. 
    Lindenberg S, Klauck G, Pesavento C, Klauck E, Hengge R 2013. The EAL domain protein YciR acts as a trigger enzyme in a c-di-GMP signalling cascade in E. coli biofilm control. EMBO J 32:2001–14
    [Google Scholar]
  66. 66. 
    Lorenz A, Pawar V, Haussler S, Weiss S 2016. Insights into host-pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections. FEBS Lett 590:3941–59
    [Google Scholar]
  67. 67. 
    Luo Y, Zhao K, Baker AE, Kuchma SL, Coggan KA et al. 2015. A hierarchical cascade of second messengers regulates Pseudomonas aeruginosa surface behaviors. mBio 6:e02456–14
    [Google Scholar]
  68. 68. 
    Ma H, Katzenmeyer KN, Bryers JD 2013. Non-invasive in situ monitoring and quantification of TOL plasmid segregational loss within Pseudomonas putida biofilms. Biotechnol. Bioeng. 110:2949–58
    [Google Scholar]
  69. 69. 
    Madsen JS, Hylling O, Jacquiod S, Pecastaings S, Hansen LH et al. 2018. An intriguing relationship between the cyclic diguanylate signaling system and horizontal gene transfer. ISME J 12:2330–34
    [Google Scholar]
  70. 70. 
    Maldonado RF, Sa-Correia I, Valvano MA 2016. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol. Rev. 40:480–93
    [Google Scholar]
  71. 71. 
    McCarthy RR, Mazon-Moya MJ, Moscoso JA, Hao Y, Lam JS et al. 2017. Cyclic-di-GMP regulates lipopolysaccharide modification and contributes to Pseudomonas aeruginosa immune evasion. Nat. Microbiol. 2:17027
    [Google Scholar]
  72. 72. 
    McKee RW, Mangalea MR, Purcell EB, Borchardt EK, Tamayo R 2013. The second messenger cyclic Di-GMP regulates Clostridium difficile toxin production by controlling expression of sigD. J. Bacteriol. 195:5174–85
    [Google Scholar]
  73. 73. 
    Merighi M, Lee VT, Hyodo M, Hayakawa Y, Lory S 2007. The second messenger bis-(3′-5′)-cyclic-GMP and its PilZ domain-containing receptor Alg44 are required for alginate biosynthesis in Pseudomonas aeruginosa. Mol. Microbiol 65:876–95
    [Google Scholar]
  74. 74. 
    Metzger LC, Stutzmann S, Scrignari T, Van der Henst C, Matthey N, Blokesch M 2016. Independent regulation of type VI secretion in Vibrio cholerae by TfoX and TfoY. Cell Rep 15:951–58
    [Google Scholar]
  75. 75. 
    Migliore F, Macchi R, Landini P, Paroni M 2018. Phagocytosis and epithelial cell invasion by Crohn's disease-associated adherent-invasive Escherichia coli are inhibited by the anti-inflammatory drug 6-mercaptopurine. Front. Microbiol. 9:964
    [Google Scholar]
  76. 76. 
    Morgan JL, McNamara JT, Zimmer J 2014. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat. Struct. Mol. Biol. 21:489–96
    [Google Scholar]
  77. 77. 
    Moscoso JA, Mikkelsen H, Heeb S, Williams P, Filloux A 2011. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ. Microbiol. 13:3128–38
    [Google Scholar]
  78. 78. 
    Ogunniyi AD, Paton JC, Kirby AC, McCullers JA, Cook J et al. 2008. c-di-GMP is an effective immunomodulator and vaccine adjuvant against pneumococcal infection. Vaccine 26:4676–85
    [Google Scholar]
  79. 79. 
    Orr MW, Lee VT. 2016. A PilZ domain protein for chemotaxis adds another layer to c-di-GMP-mediated regulation of flagellar motility. Sci. Signal. 9:fs16
    [Google Scholar]
  80. 80. 
    Osbourne DO, Soo VWC, Konieczny I, Wood TK 2014. Polyphosphate, cyclic AMP, guanosine tetraphosphate, and c-di-GMP reduce in vitro Lon activity. Bioengineered 5:264–68
    [Google Scholar]
  81. 81. 
    Partridge SR, Kwong SM, Firth N, Jensen SO 2018. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31:e00088–17
    [Google Scholar]
  82. 82. 
    Parvatiyar K, Zhang Z, Teles RM, Ouyang S, Jiang Y et al. 2012. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat. Immunol. 13:1155–61
    [Google Scholar]
  83. 83. 
    Pizarro-Cerda J, Cossart P. 2006. Bacterial adhesion and entry into host cells. Cell 124:715–27
    [Google Scholar]
  84. 84. 
    Povolotsky TL, Hengge R. 2016. Genome-based comparison of cyclic Di-GMP signaling in pathogenic and commensal Escherichia coli strains. J. Bacteriol. 198:111–26
    [Google Scholar]
  85. 85. 
    Pratt JT, Tamayo R, Tischler AD, Camilli A 2007. PilZ domain proteins bind cyclic diguanylate and regulate diverse processes in Vibrio cholerae. J. Biol. Chem 282:12860–70
    [Google Scholar]
  86. 86. 
    Purcell EB, McKee RW, Courson DS, Garrett EM, McBride SM et al. 2017. A nutrient-regulated cyclic diguanylate phosphodiesterase controls Clostridium difficile biofilm and toxin production during stationary phase. Infect. Immun. 85:e00347–17
    [Google Scholar]
  87. 87. 
    Ribeiro VB, Mujahid S, Orsi RH, Bergholz TM, Wiedmann M et al. 2014. Contributions of σB and PrfA to Listeria monocytogenes salt stress under food relevant conditions. Int. J. Food Microbiol. 177:98–108
    [Google Scholar]
  88. 88. 
    Richter AM, Povolotsky TL, Wieler LH, Hengge R 2014. Cyclic-di-GMP signalling and biofilm-related properties of the Shiga toxin-producing 2011 German outbreak Escherichia coli O104:H4. EMBO Mol. Med. 6:1622–37
    [Google Scholar]
  89. 89. 
    Roelofs KG, Jones CJ, Helman SR, Shang X, Orr MW et al. 2015. Systematic identification of cyclic-di-GMP binding proteins in Vibrio cholerae reveals a novel class of cyclic-di-GMP-binding ATPases associated with type II secretion systems. PLOS Pathog 11:e1005232
    [Google Scholar]
  90. 90. 
    Romling U, Galperin MY, Gomelsky M 2013. Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiol. Mol. Biol. Rev. 77:1–52
    [Google Scholar]
  91. 91. 
    Romling U, Gomelsky M, Galperin MY 2005. c-di-GMP: the dawning of a novel bacterial signalling system. Mol. Microbiol. 57:629–39
    [Google Scholar]
  92. 92. 
    Romling U, Simm R. 2009. Prevailing concepts of c-di-GMP signaling. Contrib. Microbiol. 16:161–81
    [Google Scholar]
  93. 93. 
    Ryjenkov DA, Simm R, Romling U, Gomelsky M 2006. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J. Biol. Chem. 281:30310–14
    [Google Scholar]
  94. 94. 
    Ryjenkov DA, Tarutina M, Moskvin OV, Gomelsky M 2005. Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: insights into biochemistry of the GGDEF protein domain. J. Bacteriol. 187:1792–98
    [Google Scholar]
  95. 95. 
    Sambanthamoorthy K, Luo C, Pattabiraman N, Feng X, Koestler B et al. 2014. Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development. Biofouling 30:17–28
    [Google Scholar]
  96. 96. 
    Sambanthamoorthy K, Sloup RE, Parashar V, Smith JM, Kim EE et al. 2012. Identification of small molecules that antagonize diguanylate cyclase enzymes to inhibit biofilm formation. Antimicrob. Agents Chemother. 56:5202–11
    [Google Scholar]
  97. 97. 
    Sarenko O, Klauck G, Wilke FM, Pfiffer V, Richter AM et al. 2017. More than enzymes that make or break cyclic di-GMP-local signaling in the interactome of GGDEF/EAL domain proteins of Escherichia coli. mBio 8:e01639–17
    [Google Scholar]
  98. 98. 
    Schirmer T, Jenal U. 2009. Structural and mechanistic determinants of c-di-GMP signalling. Nat. Rev. Microbiol. 7:724–35
    [Google Scholar]
  99. 99. 
    Singh AK, Gupta UD. 2018. Animal models of tuberculosis: lesson learnt. Indian J. Med. Res. 147:456–63
    [Google Scholar]
  100. 100. 
    Siryaporn A, Kuchma SL, O'Toole GA, Gitai Z 2014. Surface attachment induces Pseudomonas aeruginosa virulence. PNAS 111:16860–65
    [Google Scholar]
  101. 101. 
    Soutourina O. 2017. RNA-based control mechanisms of Clostridium difficile. Curr. Opin. Microbiol 36:62–68
    [Google Scholar]
  102. 102. 
    Srivastava D, Harris RC, Waters CM 2011. Integration of cyclic di-GMP and quorum sensing in the control of vpsT and aphA in Vibrio cholerae. J. Bacteriol 193:6331–41
    [Google Scholar]
  103. 103. 
    Srivastava D, Hsieh ML, Khataokar A, Neiditch MB, Waters CM 2013. Cyclic di-GMP inhibits Vibrio cholerae motility by repressing induction of transcription and inducing extracellular polysaccharide production. Mol. Microbiol. 90:1262–76
    [Google Scholar]
  104. 104. 
    Steiner S, Lori C, Boehm A, Jenal U 2013. Allosteric activation of exopolysaccharide synthesis through cyclic di-GMP-stimulated protein-protein interaction. EMBO J 32:354–68
    [Google Scholar]
  105. 105. 
    Sudarsan N, Lee ER, Weinberg Z, Moy RH, Kim JN et al. 2008. Riboswitches in Eubacteria sense the second messenger cyclic di-GMP. Science 321:411–3
    [Google Scholar]
  106. 106. 
    Swanson KV, Junkins RD, Kurkjian CJ, Holley-Guthrie E, Pendse AA et al. 2017. A noncanonical function of cGAMP in inflammasome priming and activation. J. Exp. Med. 214:123611–26
    [Google Scholar]
  107. 107. 
    Tang Q, Yin K, Qian H, Zhao Y, Wang W et al. 2016. Cyclic di-GMP contributes to adaption and virulence of Bacillus thuringiensis through a riboswitch-regulated collagen adhesion protein. Sci. Rep. 6:28807
    [Google Scholar]
  108. 108. 
    Tao F, He YW, Wu DH, Swarup S, Zhang LH 2010. The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. J. Bacteriol. 192:1020–29
    [Google Scholar]
  109. 109. 
    Tischler AD, Camilli A. 2005. Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect. Immun. 73:5873–82
    [Google Scholar]
  110. 110. 
    Trampari E, Stevenson CE, Little RH, Wilhelm T, Lawson DM, Malone JG 2015. Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP. J. Biol. Chem. 290:24470–83
    [Google Scholar]
  111. 111. 
    Valentini M, Filloux A. 2016. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J. Biol. Chem. 291:12547–55
    [Google Scholar]
  112. 112. 
    Valentini M, Gonzalez D, Mavridou DA, Filloux A 2018. Lifestyle transitions and adaptive pathogenesis of Pseudomonas aeruginosa. Curr. Opin. Microbiol 41:15–20
    [Google Scholar]
  113. 113. 
    Wang YC, Chin KH, Tu ZL, He J, Jones CJ et al. 2016. Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain. Nat. Commun. 7:12481
    [Google Scholar]
  114. 114. 
    Wassenaar TM, Gaastra W. 2001. Bacterial virulence: Can we draw the line?. FEMS Microbiol. Lett. 201:1–7Interesting division between true virulence factors and virulence lifestyle factors.
    [Google Scholar]
  115. 115. 
    Wilksch JJ, Yang J, Clements A, Gabbe JL, Short KR et al. 2011. MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression. PLOS Pathog 7:e1002204
    [Google Scholar]
  116. 116. 
    Xu L, Venkataramani P, Ding Y, Liu Y, Deng Y et al. 2016. A cyclic di-GMP-binding adaptor protein interacts with histidine kinase to regulate two-component signaling. J. Biol. Chem. 291:16112–23
    [Google Scholar]
  117. 117. 
    Yi X, Yamazaki A, Biddle E, Zeng Q, Yang CH 2010. Genetic analysis of two phosphodiesterases reveals cyclic diguanylate regulation of virulence factors in Dickeya dadantii. Mol. Microbiol 77:787–800
    [Google Scholar]
  118. 118. 
    Zheng Y, Tsuji G, Opoku-Temeng C, Sintim HO 2016. Inhibition of P. aeruginosa c-di-GMP phosphodiesterase RocR and swarming motility by a benzoisothiazolinone derivative. Chem. Sci. 7:6238–44
    [Google Scholar]
  119. 119. 
    Zhou J, Watt S, Wang J, Nakayama S, Sayre DA et al. 2013. Potent suppression of c-di-GMP synthesis via I-site allosteric inhibition of diguanylate cyclases with 2′-F-c-di-GMP. Bioorg. Med. Chem. 21:4396–404
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-115555
Loading
/content/journals/10.1146/annurev-micro-020518-115555
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error