1932

Abstract

Specialized metabolites are bacterially produced small molecules that have an extraordinary diversity of important biological activities. They are useful as biochemical probes of living systems, and they have been adapted for use as drugs for human afflictions ranging from infectious diseases to cancer. The biosynthetic genes for these molecules are controlled by a dense network of regulatory mechanisms: Cell-cell signaling and nutrient sensing are conspicuous features of this network. While many components of these mechanisms have been identified, important questions about their biological roles remain shrouded in mystery. In addition to identifying new molecules and solving their mechanisms of action (a central preoccupation in this field), we suggest that addressing questions of quorum sensing versus diffusion sensing and identifying the dominant nutritional and environmental cues for specialized metabolism are important directions for research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-022618-042458
2018-09-08
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/72/1/annurev-micro-022618-042458.html?itemId=/content/journals/10.1146/annurev-micro-022618-042458&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Ahmed S, Craney A, Pimentel-Elardo SM, Nodwell JR 2013. A synthetic, species-specific activator of secondary metabolism and sporulation in Streptomyces coelicolor. . ChemBioChem 14:183–91
    [Google Scholar]
  2. 2.  Alikhanian SI, Orlova NV, Mindlin SZ, Zaitzeva ZM 1961. Genetic control of oxytetracycline biosynthesis. Nature 189:4768939–40
    [Google Scholar]
  3. 3.  Allenby NEE, Laing E, Bucca G, Kierzek AM, Smith CP 2012. Diverse control of metabolism and other cellular processes in Streptomyces coelicolor by the PhoP transcription factor: genome-wide identification of in vivo targets. Nucleic Acids Res 40:199543–56
    [Google Scholar]
  4. 4.  Anderson TB, Brian P, Champness WC 2001. Genetic and transcriptional analysis of absA, an antibiotic gene cluster‐linked two‐component system that regulates multiple antibiotics in Streptomyces coelicolor. Mol. . Microbiol 39:3553–66
    [Google Scholar]
  5. 5.  Ando N, Matsumori N, Sakuda S, Beppu T, Horinouchi S 1997. Involvement of afsA in A-factor biosynthesis as a key enzyme. J. Antibiot. 50:10847–52
    [Google Scholar]
  6. 6.  Angell S, Lewis CG, Buttner MJ, Bibb MJ 1994. Glucose repression in Streptomyces coelicolor A3 (2): a likely regulatory role for glucose kinase. Mol. Gen. Genet. 244:2135–43
    [Google Scholar]
  7. 7.  Arakawa K, Tsuda N, Taniguchi A, Kinashi H 2012. The butenolide signaling molecules SRB1 and SRB2 induce lankacidin and lankamycin production in Streptomyces rochei. . ChemBioChem 13:101447–57
    [Google Scholar]
  8. 8.  Asturias JA, Martín JF, Liras P 1994. Biosynthesis and phosphate control of candicidin by Streptomyces acrimycini JI2236: effect of amplification of the pabAB gene. J. Ind. Microbiol. 13:3183–89
    [Google Scholar]
  9. 9.  Baltz RH 2017. Gifted microbes for genome mining and natural product discovery. J. Ind. Microbiol. Biotechnol. 44:573–88
    [Google Scholar]
  10. 10.  Biarnes-Carrera M, Lee C-K, Nihira T, Breitling R, Takano E 2018. Orthogonal regulatory circuits for Escherichia coli based on the γ-butyrolactone system of Streptomyces coelicolor. ACS Synth. . Biol 7:1043–55
    [Google Scholar]
  11. 11.  Blumberg PM, Strominger JL 1972. Five penicillin-binding components occur in Bacillus subtilis membranes. J. Biol. Chem. 247:248107–13
    [Google Scholar]
  12. 12.  Butler MJ, Deutscher J, Postma PW, Wilson TJ, Galinier A, Bibb MJ 1999. Analysis of a ptsH homologue from Streptomyces coelicolor A3(2). FEMS Microbiol. Lett. 177:2279–88
    [Google Scholar]
  13. 13.  Challis GL, Hopwood DA 2003. Synergy and contingency as driving forces for the evolution of multiple secondary metabolite production by Streptomyces species. PNAS 100:Suppl. 214555–61
    [Google Scholar]
  14. 14.  Chang H-M, Chen M-Y, Shieh Y-T, Bibb MJ Chen C-W 1996. The cutRS signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. Mol. Microbiol 21:51075–85
    [Google Scholar]
  15. 15.  Cho JY, Kang JY, Hong YK, Baek HH, Shin HW, Kim MS 2012. Isolation and structural determination of the antifouling diketopiperazines from marine-derived Streptomyces praecox 291–11. Biosci. Biotechnol. Biochem. 76:61116–21
    [Google Scholar]
  16. 16.  Chu J, Vila-Farres X, Inoyama D, Ternei M, Cohen LJ et al. 2016. Discovery of MRSA active antibiotics using primary sequence from the human microbiome. Nat. Chem. Biol. 12:121004–6
    [Google Scholar]
  17. 17.  Colson S, van Wezel GP, Craig M, Noens EEE, Nothaft H et al. 2008. The chitobiose-binding protein, DasA, acts as a link between chitin utilization and morphogenesis in Streptomyces coelicolor. . Microbiology 154:2373–82
    [Google Scholar]
  18. 18.  Cornforth DM, Foster KR 2013. Competition sensing: the social side of bacterial stress responses. Nat. Rev. Microbiol. 11:4285–93
    [Google Scholar]
  19. 19.  Corre C, Song L, O'Rourke S, Chater KF, Challis GL 2008. 2-Alkyl-4-hydroxymethylfuran-3-carboxylic acids, antibiotic production inducers discovered by Streptomyces coelicolor genome mining. PNAS 105:4517510–15
    [Google Scholar]
  20. 20.  Craney A, Ahmed S, Nodwell J 2013. Towards a new science of secondary metabolism. J. Antibiot. 66:7387–400
    [Google Scholar]
  21. 21.  Craney A, Ozimok C, Pimentel-Elardo S, Capretta A, Nodwell JR 2012. Chemical perturbation of secondary metabolism demonstrates important links to primary metabolism. Chem. Biol. 19:81020–27
    [Google Scholar]
  22. 22.  Cundliffe E 1989. How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 43:1207–33
    [Google Scholar]
  23. 23.  Cuthbertson L, Nodwell JR 2013. The TetR family of regulators. Microbiol. Mol. Biol. Rev. 77:3440–75
    [Google Scholar]
  24. 24.  Daniel-Ivad M, Hameed N, Tan S, Dhanjal R, Socko D et al. 2017. An engineered allele of afsQ1 facilitates the discovery and investigation of cryptic natural products. ACS Chem. Biol. 12:3628–34
    [Google Scholar]
  25. 25.  Demirci H, Murphy F, Murphy E, Gregory ST, Dahlberg AE et al. 2013. A structural basis for streptomycin-induced misreading of the genetic code. Nat. Commun. 4:1355
    [Google Scholar]
  26. 26.  Derouaux A, Dehareng D, Lecocq E, Halici S, Nothaft H et al. 2004. Crp of Streptomyces coelicolor is the third transcription factor of the large CRP-FNR superfamily able to bind cAMP. Biochem. Biophys. Res. Commun. 325:3983–90
    [Google Scholar]
  27. 27.  Derouaux A, Halici S, Nothaft H, Neutelings T, Moutzourelis G et al. 2004. Deletion of a cyclic AMP receptor protein homologue diminishes germination and affects morphological development of Streptomyces coelicolor. J. . Bacteriol 186:61893–97
    [Google Scholar]
  28. 28.  Du D, Katsuyama Y, Onaka H, Fujie M, Satoh N et al. 2016. Production of a novel amide‐containing polyene by activating a cryptic biosynthetic gene cluster in Streptomyces sp. MSC090213JE08. ChemBioChem 17:151464–71
    [Google Scholar]
  29. 29.  Fillenberg SB, Friess MD, Körner S, Böckmann RA, Muller YA 2016. Crystal structures of the global regulator DasR from Streptomyces coelicolor: implications for the allosteric regulation of GntR/HutC repressors. PLOS ONE 11:6e0157691
    [Google Scholar]
  30. 30.  Fillenberg SB, Grau FC, Seidel G, Muller YA 2015. Structural insight into operator dre-sites recognition and effector binding in the GntR/HutC transcription regulator NagR. Nucleic Acids Res 43:21283–96
    [Google Scholar]
  31. 31.  Fornerod M, Ohno M, Yoshida M, Mattaj IW 1997. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:61051–60
    [Google Scholar]
  32. 32.  Gao C, Mulder D, Yin C, Elliot MA 2012. Crp is a global regulator of antibiotic production in Streptomyces. mBio 3:6e00407–12
    [Google Scholar]
  33. 33.  Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H et al. 2008. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:58671215–20
    [Google Scholar]
  34. 34.  Gomez-Escribano JP, Bibb MJ 2011. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microb. Biotechnol. 4:2207–15
    [Google Scholar]
  35. 35.  Gomez-Escribano JP, Song L, Fox DJ, Yeo V, Bibb MJ, Challis GL 2012. Structure and biosynthesis of the unusual polyketide alkaloid coelimycin P1, a metabolic product of the cpk gene cluster of Streptomyces coelicolor M145. Chem. Sci. 3:92716–20
    [Google Scholar]
  36. 36.  Görke B, Stülke J 2008. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6:8613–24
    [Google Scholar]
  37. 37.  Gräfe U, Reinhardt G, Schade W, Eritt I, Fleck WF, Radics L 1983. Interspecific inducers of cytodifferentiation and anthracycline biosynthesis from Streptomyces bikinensis and S. cyaneofuscatus. Biotechnol. . Lett 5:9591–96
    [Google Scholar]
  38. 38.  Gräfe U, Schade W, Eritt I, Fleck WF, Radics L 1982. A new inducer of anthracycline biosynthesis from Streptomyces viridochromogenes. J. . Antibiot 35:121722–23
    [Google Scholar]
  39. 39.  Gupta RS 1998. Protein phylogenies and signature sequences: a reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol. Mol. Biol. Rev. 62:41435–91
    [Google Scholar]
  40. 40.  Gupta RS 2011. Origin of diderm (gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek 100:2171–82
    [Google Scholar]
  41. 41.  Gverzdys T, Nodwell JR 2016. Biosynthetic genes for the tetrodecamycin antibiotics. J. Bacteriol. 198:141965–73
    [Google Scholar]
  42. 42.  Hara O, Horinouchi S, Uozumi T, Beppu T 1983. Genetic analysis of A-factor synthesis in Streptomyces coelicolor A3(2) and Streptomyces griseus. J. Gen. . Microbiol 129:92939–44
    [Google Scholar]
  43. 43.  Hashimoto K, Nihira T, Sakuda S, Yamada Y 1992. IM-2, a butyrolactone autoregulator, induces production of several nucleoside antibiotics in Streptomyces sp. FRI-5. J. Ferment. Bioeng. 73:6449–55
    [Google Scholar]
  44. 44.  Hempel AM, Cantlay S, Molle V, Wang S-B, Naldrett MJ et al. 2012. The Ser/Thr protein kinase AfsK regulates polar growth and hyphal branching in the filamentous bacteria Streptomyces. . PNAS 109:35E2371–79
    [Google Scholar]
  45. 45.  Hodgson DA 1982. Glucose repression of carbon source uptake and metabolism in Streptomyces coelicolor A3 (2) and its perturbation in mutants resistant to 2-deoxyglucose. Microbiology 128:102417–30
    [Google Scholar]
  46. 46.  Holden MT, Ram Chhabra S, de Nys R, Stead P, Bainton NJ et al. 1999. Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol. Microbiol. 33:61254–66
    [Google Scholar]
  47. 47.  Hsiao N-H, Nakayama S, Merlo ME, de Vries M, Bunet R et al. 2009. Analysis of two additional signaling molecules in Streptomyces coelicolor and the development of a butyrolactone-specific reporter system. Chem. Biol. 16:9951–60
    [Google Scholar]
  48. 48.  Imai Y, Sato S, Tanaka Y, Ochi K, Hosaka T 2015. Lincomycin at subinhibitory concentrations potentiates secondary metabolite production by Streptomyces spp. Appl. Environ. Microbiol. 81:113869–79
    [Google Scholar]
  49. 49.  Kallifidas D, Kang H-S, Brady SF 2012. Tetarimycin A, an MRSA-active antibiotic identified through induced expression of environmental DNA gene clusters. J. Am. Chem. Soc. 134:4819552–55
    [Google Scholar]
  50. 50.  Kato J, Funa N, Watanabe H, Ohnishi Y, Horinouchi S 2007. Biosynthesis of gamma-butyrolactone autoregulators that switch on secondary metabolism and morphological development in Streptomyces. . PNAS 104:72378–83
    [Google Scholar]
  51. 51.  Khokhlov AS, Tovarova II, Borisova LN, Pliner SA, Shevchenko LN et al. 1967. A-faktor, obespechivaiushchii biosintez streptomitsina mutantnym shtammom Actinomyces streptomycini. Dokl. Akad. Nauk. . SSSR 177:232–35
    [Google Scholar]
  52. 52.  Kitani S, Miyamoto KT, Takamatsu S, Herawati E, Iguchi H et al. 2011. Avenolide, a Streptomyces hormone controlling antibiotic production in Streptomyces avermitilis. . PNAS 108:3916410–15
    [Google Scholar]
  53. 53.  Kitani S, Yamada Y, Nihira T 2001. Gene replacement analysis of the butyrolactone autoregulator receptor (FarA) reveals that FarA acts as a novel regulator in secondary metabolism of Streptomyces lavendulae FRI-5. J. Bacteriol. 183:144357–63
    [Google Scholar]
  54. 54.  Komatsu M, Komatsu K, Koiwai H, Yamada Y, Kozone I et al. 2013. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth. Biol. 2:7384–96
    [Google Scholar]
  55. 55.  Kondo K, Higuchi Y, Sakuda S, Nihira T, Yamada Y 1989. New virginiae butanolides from Streptomyces virginiae. J. . Antibiot 42:121873–76
    [Google Scholar]
  56. 56.  Laureti L, Song L, Huang S, Corre C, Leblond P et al. 2011. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. . PNAS 108:156258–63
    [Google Scholar]
  57. 57.  Lautru S, Gondry M, Genet R, Pernodet JL 2002. The albonoursin gene cluster of S. noursei biosynthesis of diketopiperazine metabolites independent of nonribosomal peptide synthetases. Chem. Biol. 9:121355–64
    [Google Scholar]
  58. 58.  Li L, Jiang W, Lu Y 2017. A novel two-component system, GluR-K, involved in glutamate sensing and uptake in Streptomyces coelicolor. J. Bacteriol 199:e00097–17
    [Google Scholar]
  59. 59.  Lian W, Jayapal KP, Charaniya S, Mehra S, Glod F et al. 2008. Genome-wide transcriptome analysis reveals that a pleiotropic antibiotic regulator, AfsS, modulates nutritional stress response in Streptomyces coelicolor A3 (2). BMC Genom 9:156
    [Google Scholar]
  60. 60.  Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I et al. 2015. A new antibiotic kills pathogens without detectable resistance. Nature 517:7535455–59
    [Google Scholar]
  61. 61.  Liu G, Chater KF, Chandra G, Niu G, Tan H 2013. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol. Mol. Biol. . Rev 77:1112–43
    [Google Scholar]
  62. 62.  Lu Y, He J, Zhu H, Yu Z, Wang R et al. 2011. An orphan histidine kinase, OhkA, regulates both secondary metabolism and morphological differentiation in Streptomyces coelicolor. J. . Bacteriol 193:123020–32
    [Google Scholar]
  63. 63.  Lu Y, Wang W, Shu D, Zhang W, Chen L et al. 2007. Characterization of a novel two-component regulatory system involved in the regulation of both actinorhodin and a type I polyketide in Streptomyces coelicolor. Appl. Microbiol. . Biotechnol 77:3625–35
    [Google Scholar]
  64. 64.  Mak S, Nodwell JR 2017. Actinorhodin is a redox-active antibiotic with a complex mode of action against gram-positive cells. Mol. Microbiol. 106:4597–613
    [Google Scholar]
  65. 65.  Mak S, Xu Y, Nodwell JR 2014. The expression of antibiotic resistance genes in antibiotic-producing bacteria. Mol. Microbiol. 93:3391–402
    [Google Scholar]
  66. 66.  Makitrynskyy R, Ostash B, Tsypik O, Rebets Y, Doud E et al. 2013. Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin. Open Biol 3:10130121
    [Google Scholar]
  67. 67.  Martín JF, Sola‐Landa A, Santos‐Beneit F, Fernández‐Martínez LT, Prieto C, Rodríguez‐García A 2011. Cross‐talk of global nutritional regulators in the control of primary and secondary metabolism in Streptomyces. Microb. . Biotechnol 4:2165–74
    [Google Scholar]
  68. 68.  Mast Y, Weber T, Gölz M, Ort-Winklbauer R, Gondran A et al. 2011. Characterization of the “pristinamycin supercluster” of Streptomyces pristinaespiralis. Microb. . Biotechnol 4:2192–206
    [Google Scholar]
  69. 69.  Matselyukh B, Mohammadipanah F, Laatsch H, Rohr J, Efremenkova O, Khilya V 2015. N-methylphenylalanyl-dehydrobutyrine diketopiperazine, an A-factor mimic that restores antibiotic biosynthesis and morphogenesis in Streptomyces globisporus 1912-B2 and Streptomyces griseus 1439. J. Antibiot. 68:19–14
    [Google Scholar]
  70. 70.  McDowall KJ, Thamchaipenet A, Hunter IS 1999. Phosphate control of oxytetracycline production by Streptomyces rimosus is at the level of transcription from promoters overlapped by tandem repeats similar to those of the DNA-binding sites of the OmpR family. J. Bacteriol. 181:103025–32
    [Google Scholar]
  71. 71.  McKenzie NL, Nodwell JR 2007. Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J. Bacteriol. 189:145284–92
    [Google Scholar]
  72. 72.  McKenzie NL, Nodwell JR 2009. Transmembrane topology of the AbsA1 sensor kinase of Streptomyces coelicolor. . Microbiology 155:61812–18
    [Google Scholar]
  73. 73.  McKenzie NL, Thaker M, Koteva K, Hughes DW, Wright GD, Nodwell JR 2010. Induction of antimicrobial activities in heterologous streptomycetes using alleles of the Streptomyces coelicolor gene absA1. J. . Antibiot 63:4177–82
    [Google Scholar]
  74. 74.  Mendes MV, Tunca S, Antón N, Recio E, Sola-Landa A et al. 2007. The two-component phoR-phoP system of Streptomyces natalensis: inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis. Metab. Eng. 9:2217–27
    [Google Scholar]
  75. 75.  Newman DJ, Cragg GM 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75:3311–35
    [Google Scholar]
  76. 76.  Nishida E, Fukuda M, Asano S, Nakamura T, Adachi M et al. 1997. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390:6657308–11
    [Google Scholar]
  77. 77.  Niu G, Chater KF, Tian Y, Zhang J, Tan H 2016. Specialised metabolites regulating antibiotic biosynthesis in Streptomyces spp. FEMS Microbiol. Rev. 40:4554–73
    [Google Scholar]
  78. 78.  Nodwell JR 2014. Are you talking to me? A possible role for γ-butyrolactones in interspecies signalling. Mol. Microbiol. 94:3483–85
    [Google Scholar]
  79. 79.  Nodwell JR, Cuthbertson L 2011. Better chemistry through regulation. Chem. Biol. 18:121515–16
    [Google Scholar]
  80. 80.  Nothaft H, Parche S, Kamionka A, Titgemeyer F 2003. In vivo analysis of HPr reveals a fructose-specific phosphotransferase system that confers high-affinity uptake in Streptomyces coelicolor. J. . Bacteriol 185:3929–37
    [Google Scholar]
  81. 81.  Nothaft H, Rigali S, Boomsma B, Swiatek M, McDowall KJ et al. 2010. The permease gene nagE2 is the key to N‐acetylglucosamine sensing and utilization in Streptomyces coelicolor and is subject to multi‐level control. Mol. Microbiol. 75:51133–44
    [Google Scholar]
  82. 82.  Ohnishi Y, Kameyama S, Onaka H, Horinouchi S 1999. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: identification of a target gene of the A-factor receptor. Mol. Microbiol. 34:1102–11
    [Google Scholar]
  83. 83.  Onaka H, Ando N, Nihira T, Yamada Y, Beppu T, Horinouchi S 1995. Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. J. . Bacteriol 177:216083–92
    [Google Scholar]
  84. 84.  Ossareh-Nazari B, Bachelerie F, Dargemont C 1997. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278:5335141–44
    [Google Scholar]
  85. 85.  Otten SL, Olano C, Hutchinson CR 2000. The dnrO gene encodes a DNA-binding protein that regulates daunorubicin production in Streptomyces peucetius by controlling expression of the dnrN pseudo response regulator gene. Microbiology 146:61457–68
    [Google Scholar]
  86. 86.  Parker JL, Jones AME, Serazetdinova L, Saalbach G, Bibb MJ, Naldrett MJ 2010. Analysis of the phosphoproteome of the multicellular bacterium Streptomyces coelicolor A3 (2) by protein/peptide fractionation, phosphopeptide enrichment and high‐accuracy mass spectrometry. Proteomics 10:132486–97
    [Google Scholar]
  87. 87.  Patin NV, Schorn M, Aguinaldo K, Lincecum T, Moore BS, Jensen PR 2017. Effects of actinomycete secondary metabolites on sediment microbial communities. Appl. Environ. Microbiol. 83:4e02676–16
    [Google Scholar]
  88. 88.  Piette A, Derouaux A, Gerkens P, Noens EEE, Mazzucchelli G et al. 2005. From dormant to germinating spores of Streptomyces coelicolor A3 (2): new perspectives from the crp null mutant. J. Proteome Res. 4:51699–708
    [Google Scholar]
  89. 89.  Pimentel-Elardo S, Sørensen D, Ho L, Ziko M, Bueler SA et al. 2015. Activity-independent discovery of secondary metabolites using chemical elicitation and cheminformatic inference. ACS Chem. Biol. 10:2616–23
    [Google Scholar]
  90. 90.  Recio E, Colinas A, Rumbero A, Aparicio JF, Martín JF 2004. PI factor, a novel type quorum-sensing inducer elicits pimaricin production in Streptomyces natalensis. J. Biol. . Chem 279:4041586–93
    [Google Scholar]
  91. 91.  Redfield RJ 2002. Is quorum sensing a side effect of diffusion sensing?. Trends Microbiol 10:8365–70
    [Google Scholar]
  92. 92.  Retzlaff L, Distler J 1995. The regulator of streptomycin gene expression, StrR, of Streptomyces griseus is a DNA binding activator protein with multiple recognition sites. Mol. Microbiol. 18:1151–62
    [Google Scholar]
  93. 93.  Rigali S, Nothaft H, Noens EEE, Schlicht M, Colson S et al. 2006. The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol. Microbiol. 61:51237–51
    [Google Scholar]
  94. 94.  Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae AW et al. 2008. Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. . EMBO Rep 9:7670–75
    [Google Scholar]
  95. 95.  Rodríguez H, Rico S, Díaz M, Santamaría RI 2013. Two-component systems in Streptomyces: key regulators of antibiotic complex pathways. Microb. Cell Fact. 12:127
    [Google Scholar]
  96. 96.  Romero-Rodríguez A, Robledo-Casados I, Sánchez S 2015. An overview on transcriptional regulators in Streptomyces. Biochim. Biophys. Acta Gene Regul. . Mech 1849:81017–39
    [Google Scholar]
  97. 97.  Ryan RP, Dow JM 2008. Diffusible signals and interspecies communication in bacteria. Microbiology 154:71845–58
    [Google Scholar]
  98. 98.  Ryding NJ, Anderson TB, Champness WC 2002. Regulation of the Streptomyces coelicolor calcium-dependent antibiotic by absA, encoding a cluster-linked two-component system. J. Bacteriol. 184:3794–805
    [Google Scholar]
  99. 99.  Saha R, Saha N, Donofrio RS, Bestervelt LL 2013. Microbial siderophores: a mini review. J. Basic Microbiol. 53:4303–17
    [Google Scholar]
  100. 100.  Saito A, Shinya T, Miyamoto K, Yokoyama T, Kaku H et al. 2007. The dasABC gene cluster, adjacent to dasR, encodes a novel ABC transporter for the uptake of N,N′-diacetylchitobiose in Streptomyces coelicolor A3 (2). Appl. Environ. Microbiol. 73:93000–3008
    [Google Scholar]
  101. 101.  Santos‐Beneit F, Rodríguez‐García A, Sola‐Landa A, Martín JF 2009. Cross‐talk between two global regulators in Streptomyces: PhoP and AfsR interact in the control of afsS, pstS and phoRP transcription. Mol. Microbiol. 72:153–68
    [Google Scholar]
  102. 102.  Sato K, Nihira T, Sakuda S, Yanagimoto M, Yamada Y 1989. Isolation and structure of a new butyrolactone autoregulator from Streptomyces sp. FRI-5. J. Ferment. Bioeng. 68:3170–73
    [Google Scholar]
  103. 103.  Sawai R, Suzuki A, Takano Y, Lee P-C, Horinouchi S 2004. Phosphorylation of AfsR by multiple serine/threonine kinases in Streptomyces coelicolor A3 (2). Gene 334:53–61
    [Google Scholar]
  104. 104.  Shikura N, Yamamura J, Nihira T 2002. barS1, a gene for biosynthesis of a γ-butyrolactone autoregulator, a microbial signaling molecule eliciting antibiotic production in Streptomyces species. J. Bacteriol. 184:185151–57
    [Google Scholar]
  105. 105.  Shu D, Chen L, Wang W, Yu Z, Ren C et al. 2009. afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor. . Appl. Microbiol. Biotechnol 81:61149–60
    [Google Scholar]
  106. 106.  Sidda JD, Corre C 2012. Gamma-butyrolactone and furan signaling systems in Streptomyces. . Methods Enzymol 517:71–87
    [Google Scholar]
  107. 107.  Sidda JD, Poon V, Song L, Wang W, Yang K, Corre C 2016. Overproduction and identification of butyrolactones SCB1–8 in the antibiotic production superhost Streptomyces M1152. Org. Biomol. Chem. 14:276390–93
    [Google Scholar]
  108. 108.  Smanski MJ, Peterson RM, Rajski SR, Shen B 2009. Engineered Streptomyces platensis strains that overproduce antibiotics platensimycin and platencin. Antimicrob. Agents Chemother. 53:41299–304
    [Google Scholar]
  109. 109.  Sola-Landa A, Moura RS, Martin JF 2003. The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. . PNAS 100:106133–38
    [Google Scholar]
  110. 110.  Sola‐Landa A, Rodríguez‐García A, Franco‐Domínguez E, Martín JF 2005. Binding of PhoP to promoters of phosphate‐regulated genes in Streptomyces coelicolor: identification of PHO boxes. Mol. Microbiol. 56:51373–85
    [Google Scholar]
  111. 111.  Som NF, Heine D, Holmes N, Knowles F, Chandra G et al. 2017. The MtrAB two-component system controls antibiotic production in Streptomyces coelicolor A3 (2). Microbiology 163:101415–19
    [Google Scholar]
  112. 112.  Som NF, Heine D, Holmes NA, Munnoch JT, Chandra G et al. 2017. The conserved actinobacterial two-component system MtrAB coordinates chloramphenicol production with sporulation in Streptomyces venezuelae NRRL B-65442. Front. Microbiol. 8:1145
    [Google Scholar]
  113. 113.  Suginaka H, Blumberg PM, Strominger JL 1972. Multiple penicillin-binding components in Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Escherichia coli. . J. Biol. Chem 247:175279–88
    [Google Scholar]
  114. 114.  Świątek MA, Tenconi E, Rigali S, van Wezel GP 2012. Functional analysis of the N-acetylglucosamine metabolic genes of Streptomyces coelicolor and role in control of development and antibiotic production. J. Bacteriol. 194:51136–44
    [Google Scholar]
  115. 115.  Świątek-Połatyńska MA, Bucca G, Laing E, Gubbens J, Titgemeyer F et al. 2015. Genome-wide analysis of in vivo binding of the master regulator DasR in Streptomyces coelicolor identifies novel non-canonical targets. PLOS ONE 10:4e0122479
    [Google Scholar]
  116. 116.  Takano E 2006. γ-Butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr. Opin. Microbiol. 9:3287–94
    [Google Scholar]
  117. 117.  Takano E, Kinoshita H, Mersinias V, Bucca G, Hotchkiss G et al. 2005. A bacterial hormone (the SCB1) directly controls the expression of a pathway-specific regulatory gene in the cryptic type I polyketide biosynthetic gene cluster of Streptomyces coelicolor. Mol. Microbiol 56:2465–79
    [Google Scholar]
  118. 118.  Takano E, Nihira T, Hara Y, Jones JJ, Gershater CJL et al. 2000. Purification and structural determination of SCB1, a γ-butyrolactone that elicits antibiotic production in Streptomyces coelicolor A3 (2). J. Biol. Chem. 275:1511010–16
    [Google Scholar]
  119. 119.  Tanaka A, Takano Y, Ohnishi Y, Horinouchi S 2007. AfsR recruits RNA polymerase to the afsS promoter: a model for transcriptional activation by SARPs. J. Mol. Biol. 369:2322–33
    [Google Scholar]
  120. 120.  Titgemeyer F, Walkenhorst J, Reizer J, Stuiver MH, Cui X, Saier MH Jr 1995. Identification and characterization of phosphoenolpyruvate: fructose phosphotransferase systems in three Streptomyces species. Microbiology 141:151–58
    [Google Scholar]
  121. 121.  Traxler MF, Seyedsayamdost MR, Clardy J, Kolter R 2012. Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol. Microbiol. 86:3628–44
    [Google Scholar]
  122. 122.  Urem M, Świątek‐Połatyńska MA, Rigali S, van Wezel GP 2016. Intertwining nutrient‐sensory networks and the control of antibiotic production in Streptomyces. Mol. . Microbiol 102:2183–95
    [Google Scholar]
  123. 123.  van Wezel GP, König M, Mahr K, Nothaft H, Thomae AW et al. 2007. A new piece of an old jigsaw: Glucose kinase is activated posttranslationally in a glucose transport-dependent manner in Streptomyces coelicolor A3 (2). J. Mol. Microbiol. Biotechnol. 12:1–267–74
    [Google Scholar]
  124. 124.  van Wezel GP, McDowall KJ 2011. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances. Nat. Prod. Rep. 28:71311–33
    [Google Scholar]
  125. 125.  Vetsigian K, Jajoo R, Kishony R 2011. Structure and evolution of Streptomyces interaction networks in soil and in silico. PLOS Biol 9:10e1001184
    [Google Scholar]
  126. 126.  Vögtil M, Chang P, Cohen SN 1994. afsR2: a previously undetected gene encoding a 63‐amino‐acid protein that stimulates antibiotic production in Streptomyces lividans. . Mol. Microbiol 14:4643–53
    [Google Scholar]
  127. 127.  Waksman SA, Woodruff HB 1940. The soil as a source of microorganisms antagonistic to disease-producing bacteria. J. Bacteriol. 40:4581–600
    [Google Scholar]
  128. 128.  Wang J, Wang W, Wang L, Zhang G, Fan K et al. 2011. A novel role of ‘pseudo'γ‐butyrolactone receptors in controlling γ‐butyrolactone biosynthesis in Streptomyces. Mol. . Microbiol 82:1236–50
    [Google Scholar]
  129. 129.  Wang R, Mast Y, Wang J, Zhang W, Zhao G et al. 2013. Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor. Mol. . Microbiol 87:130–48
    [Google Scholar]
  130. 130.  Wang W, Ji J, Li X, Wang J, Li S et al. 2014. Angucyclines as signals modulate the behaviors of Streptomyces coelicolor. . PNAS 111:155688–93
    [Google Scholar]
  131. 131.  Waters CM, Bassler BL 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21:319–46
    [Google Scholar]
  132. 132.  Wietzorrek A, Bibb M 1997. A novel family of proteins that regulates antibiotic production in streptomycetes appears to contain an OmpR-like DNA-binding fold. Mol. Microbiol. 25:61181–84
    [Google Scholar]
  133. 133.  Willey JM, Gaskell AA 2011. Morphogenetic signaling molecules of the streptomycetes. Chem. Rev. 111:1174–87
    [Google Scholar]
  134. 134.  Xu G, Wang J, Wang L, Tian X, Yang H et al. 2010. “Pseudo” γ-butyrolactone receptors respond to antibiotic signals to coordinate antibiotic biosynthesis. J. Biol. Chem. 285:3527440–48
    [Google Scholar]
  135. 135.  Yamada Y, Sugamura K, Kondo K, Yanagimoto M, Okada H 1987. The structure of inducing factors for virginiamycin production in Streptomyces virginiae. J. . Antibiot 40:4496–504
    [Google Scholar]
  136. 136.  Yamanaka K, Reynolds KA, Kersten RD, Ryan KS, Gonzalez DJ et al. 2014. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. PNAS 111:51957–62
    [Google Scholar]
  137. 137.  Yu Z, Zhu H, Dang F, Zhang W, Qin Z et al. 2012. Differential regulation of antibiotic biosynthesis by DraR‐K, a novel two‐component system in Streptomyces coelicolor. Mol. . Microbiol 85:3535–56
    [Google Scholar]
  138. 138.  Zou Z, Du D, Zhang Y, Zhang J, Niu G, Tan H 2014. A γ-butyrolactone-sensing activator/repressor, JadR3, controls a regulatory mini-network for jadomycin biosynthesis. Mol. Microbiol. 94:3490–505
    [Google Scholar]
/content/journals/10.1146/annurev-micro-022618-042458
Loading
/content/journals/10.1146/annurev-micro-022618-042458
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error