1932

Abstract

My interest in membranes was piqued during a lecture series given by one of the founders of molecular biology, Max Delbrück, at Caltech, where I spent a postdoctoral year to learn more about protein chemistry. That general interest was further refined to my ultimate research focal point—the outer membrane of —through the influence of the work of Wolfhard Weidel, who discovered the murein (peptidoglycan) layer and biochemically characterized the first phage receptors of this bacterium. The discovery of lipoprotein bound to murein was completely unexpected and demonstrated that the protein composition of the outer membrane and the structure and function of proteins could be unraveled at a time when nothing was known about outer membrane proteins. The research of my laboratory over the years covered energy-dependent import of proteinaceous toxins and iron chelates across the outer membrane, which does not contain an energy source, and gene regulation by iron, including transmembrane transcriptional regulation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090817-062156
2018-09-08
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/72/1/annurev-micro-090817-062156.html?itemId=/content/journals/10.1146/annurev-micro-090817-062156&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Akiyama Y, Kanehara K, Ito K 2004. RseP (YaeL), an Escherichia coli RIP protease, cleaves transmembrane sequences. EMBO J 23:4434–42
    [Google Scholar]
  2. 2.  Aliprantis AO, Yang R-B, Mark MR, Suggett S, Devaux B et al. 1999. Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285:736–39
    [Google Scholar]
  3. 3.  Angerer A, Braun V 1998. Iron regulates transcription of the Escherichia coli ferric citrate transport genes directly and through the transcription initiation proteins. Arch. Micobiol. 169:483–90
    [Google Scholar]
  4. 4.  Angerer A, Gaisser S, Braun V 1990. Nucleotide sequences of the sfuA, sfuB, and sfuC genes of Serratia marcescens suggest a periplasmic–binding-protein-dependent iron transport mechanism. J. Bacteriol. 172:572–78
    [Google Scholar]
  5. 5.  Armbruster KM, Meredith TC 2017. Identification of the lyso-form N-acyl intramolecular transferase in low-GC Firmicutes. J. Bacteriol 199:e00099–17
    [Google Scholar]
  6. 6.  Arnold T, Zeth K, Linke D 2009. Structure and function of colicin S4, a colicin with a duplicated receptor-binding domain. J. Bol. Chem. 284:6403–13
    [Google Scholar]
  7. 7.  Bindereif A, Braun V, Hantke K 1982. The cloacin receptor of ColV-bearing Escherichia coli is part of the Fe3+-aerobactin transport system. J. Bacteriol. 150:1472–75
    [Google Scholar]
  8. 8.  Bosch V, Braun V 1973. Distribution of murein-lipoprotein between the cytoplasmic and the outer membrane of Escherichia coli. . FEBS Lett 34:307–10
    [Google Scholar]
  9. 9.  Braun M, Endriss F, Killmann H, Braun V 2003. In vivo reconstitution of the FhuA transport protein of Escherichia coli K-12. J. Bacteriol. 185:5508–18
    [Google Scholar]
  10. 10.  Braun V 1975. Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim. Biophys. . Acta 415:355–77
    [Google Scholar]
  11. 11.  Braun V 1981. Escherichia coli cells containing the plasmid ColV produce the iron ionophore aerobactin. FEMS Micobiol. Lett. 11:225–28
    [Google Scholar]
  12. 12.  Braun V 1989. The structurally related exbB and tolQ genes are interchangeable in conferring tonB-dependent colicin, bacteriophage, and albomycin sensitivity. J. Bacteriol. 71:6387–90
    [Google Scholar]
  13. 13.  Braun V 1995. Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbD-dependent receptor proteins. FEMS Microbiol. Rev. 4:295–307
    [Google Scholar]
  14. 14.  Braun V 2009. FhuA (TonA), the career of a protein. J. Bacteriol. 191:3431–36
    [Google Scholar]
  15. 15.  Braun V, Bosch V 1972. Repetitive sequence in the murein-lipoprotein of the cell wall of Escherichia coli. . PNAS 69:970–74
    [Google Scholar]
  16. 16.  Braun V, Bosch V 1972. Sequence of the murein lipoprotein and the attachment site of the lipid. Eur. J. Biochem. 28:51–69
    [Google Scholar]
  17. 17.  Braun V, Burkhardt R 1982. Regulation of the ColV plasmid-determined iron(III)-aerobactin transport system in Escherichia coli. J. . Bacteriol 152:223–31
    [Google Scholar]
  18. 18.  Braun V, Burkhardt R, Schneider R, Zimmermann L 1982. Chromosomal genes for ColV plasmid-determined iron(III) aerobactin transport in Escherichia coli. J. . Bacteriol 151:553–59
    [Google Scholar]
  19. 19.  Braun V, Crichton RR, Braunitzer G 1968. Hemoglobins: XV. On monomeric and dimeric insect hemoglobins (Chironomus thummi). Hoppe Seyler Z. Physiol. Chem. 349:197–210
    [Google Scholar]
  20. 20.  Braun V, Endriß F 2007. Energy-coupled outer membrane transport proteins and regulatory proteins. Biometals 20:219–31
    [Google Scholar]
  21. 21.  Braun V, Formanek H, Braunitzer G 1968. Isolierung und Kristallisation eines Insektenhämoglobins aus Chironomus thummi. Hoppe Seyler Z. Physiol. . Chem 349:45–53
    [Google Scholar]
  22. 22.  Braun V, Frenz S, Hantke K, Schaller K 1980. Penetration of colicin M into cells of Escherichia coli. J. . Bacteriol 142:162–68
    [Google Scholar]
  23. 23.  Braun V, Günther G, Neuß B, Tautz C 1985. Hemolytic activity of Serratia marcescens. Arch. . Microbiol 141:371–76
    [Google Scholar]
  24. 24.  Braun V, Günthner K, Hantke K, Zimmermann L 1983. Intracellular activation of albomycin in Escherichia coli and Salmonella typhimurium. J. . Bacteriol 156:308–15
    [Google Scholar]
  25. 25.  Braun V, Hantke K 1974. Biochemistry of bacterial cell envelopes. Annu. Rev. Biochem. 43:89–121
    [Google Scholar]
  26. 26.  Braun V, Herrmann C 1993. Evolutionary relationship of uptake systems for biopolymers in Escherichia coli: cross-complementation between TonB-ExbB-ExbD and TolA-TolQ-TolR proteins. Mol. Microbiol. 8:262–68
    [Google Scholar]
  27. 27.  Braun V, Hilse K, Best JS, Flamm U, Braunitzer G 1967. Constancy and variability in the primary structure of haemoglobins. Bull. Soc. Chim. Biol. 49:935–48
    [Google Scholar]
  28. 28.  Braun V, Killmann H, Herrmann C 1994. Inactivation of FhuA at the cell surface of Escherichia coli K-12 by a phage T5 lipoprotein at the periplasmic face of the outer membrane. J. Bacteriol. 176:4710–17
    [Google Scholar]
  29. 29.  Braun V, Mahren S 2005. Transmembrane transcription control (surface signaling) of the Escherichia coli Fec type. FEMS Microbol. Rev. 29:673–84
    [Google Scholar]
  30. 30.  Braun V, Mahren S, Ogierman M 2003. Regulation of the FecI type ECF sigma factor by transmembrane signaling. Curr. Opin. Microbiol. 6:173–80
    [Google Scholar]
  31. 31.  Braun V, Mahren S, Sauter A 2006. Gene regulation by transmembrane signaling. Biometals 19:103–6
    [Google Scholar]
  32. 32.  Braun V, Patzer SI, Hantke K 2002. Ton-dependent colicins and microcins: molecular design and evolution. Biochimie 84:365–80
    [Google Scholar]
  33. 33.  Braun V, Rehn K 1969. Chemical characterization, spatial distribution and function of a lipoprotein (murein-lipoprotein) of the E. coli cell wall. The specific effect of trypsin on the membrane structure. Eur. J. Biochem. 10:426–38
    [Google Scholar]
  34. 34.  Braun V, Rotering H, Ohms J-P, Hagenmaier H 1976. Conformational studies on murein-lipoprotein from the outer membrane of Escherichia coli. Eur. J. . Biochem 70:601–10
    [Google Scholar]
  35. 35.  Braun V, Schaller K, Wabl MR 1974. Isolation, characterization, and action of colicin M. Antimicrob. Agents Chemother. 5:520–33
    [Google Scholar]
  36. 36.  Braun V, Schaller K, Wolf H 1975. A common receptor protein for phage T5 and colicin M in the outer membrane of Escherichia coli B. Biochim. Biophys. Acta 323:87–97
    [Google Scholar]
  37. 37.  Braun V, Schmitz G 1980. Excretion of a protease by Serratia marcescens. Arch. . Microbiol 124:55–61
    [Google Scholar]
  38. 38.  Braun V, Schönherr R, Hobbie S 1993. Enterobacterial hemolysins: activation, secretion, and pore formation. Trends Microbiol 1:211–16
    [Google Scholar]
  39. 39.  Braun V, Wu H 1994. Lipoproteins, structure, function, biosynthesis and model for protein export. Bacterial Cell Wall J-M Ghuysen, R Hakenbeck 319–41 Amsterdam: Elsevier
    [Google Scholar]
  40. 40.  Braunitzer G, Braun V 1965. Zur Phylogenie des Hämoglobinmoleküls. Untersuchungen an Insektenhämoglobinen (Chironomus thummi). Hoppe Seylers Z. Physiol. Chem. 340:88–91
    [Google Scholar]
  41. 41.  Braunitzer G, Braun V 1966. Polymorphismus bei Insektenhämoglobinen (Gattung Chironomus). Hoppe Seylers Z. Physiol. Chem. 346:303–5
    [Google Scholar]
  42. 42.  Breidenstein E, Mahren S, Braun V 2006. Residues involved in FecR binding are localized on one side of the FecA signaling domain in Escherichia coli. J. . Bacteriol 188:6440–42
    [Google Scholar]
  43. 43.  Brook BE, Buchanan SK 2007. Signaling mechanisms for activation of extracytoplasmic function (ECF) sigma factors. Biochim. Biophys. Acta 1778:1930–45
    [Google Scholar]
  44. 44.  Burkhardt R, Braun V 1987. Nucleotide sequence of the fhuC and fhuD genes involved in iron(III) hydroxamate transport: domains of FhuC homologous to ATP-binding proteins. Mol. Gen. Genet. 209:49–55
    [Google Scholar]
  45. 45.  Celia H, Noinaj N, Zakharov SD, Bordignon E, Botos I et al. 2016. Structural insight into the role of the Ton complex in energy transduction. Nature 538:60–65
    [Google Scholar]
  46. 46.  Decker K, Krauel V, Meesmann A, Heller K 1994. Lytic conversion of Escherichia coli by bacteriophage T5: blocking of the T5 receptor protein by a lipoprotein expressed early during infection. Mol. Microbiol. 12:321–32
    [Google Scholar]
  47. 47.  Eick-Helmerich K, Braun V 1989. Import of biopolymers into Escherichia coli: Nucleotide sequences of the exbB and exbD genes are homologous to those of the tolQ and tolR genes, respectively. J. Bacteriol. 171:5117–26
    [Google Scholar]
  48. 48.  Eisenbeis S, Lohmiller S, Valdebenito M, Leicht S, Braun V 2008. NagA-dependent uptake of N-acetyl-glucosamine and N-acetyl-chitin oligosaccharides across the outer membrane of Caulobacter crescentus. J. . Bacteriol 190:5230–38
    [Google Scholar]
  49. 49.  El Ghachi M, Bouhss A, Barreteau H, Touzé T, Auger G et al. 2006. Colicin M exerts its bacteriolytic effect via enzymatic degradation of undecaprenyl phosphate–linked peptidoglycan precursors. J. Biol. Chem. 281:22761–72
    [Google Scholar]
  50. 50.  Enz S, Brand H, Orellana C, Mahren S, Braun V 2003. Sites of interaction between the FecA and FecR signaling proteins of ferric citrate transport in Escherichia coli K-12. J. Bacteriol. 185:3745–52
    [Google Scholar]
  51. 51.  Enz S, Braun V, Crosa JH 1995. Transcription of the region encoding the ferric dicitrate-transport system in Escherichia coli: similarity between promoters for fecA and for extracytoplasmic function sigma factors. Gene 163:13–18
    [Google Scholar]
  52. 52.  Enz S, Mahren S, Stroeher UH, Braun V 2000. Surface signaling in ferric citrate transport gene induction: interaction of the FecA, FecR and FecI regulatory proteins. J. Bacteriol. 182:637–46
    [Google Scholar]
  53. 53.  Fecker L, Braun V 1983. Cloning and expression of the fhu genes involved in iron(III) hydroxamate uptake by Escherichia coli. J. . Bacteriol 156:1301–14
    [Google Scholar]
  54. 54.  Ferguson AD, Braun V, Fiedler HP, Coulton JW, Diederichs K, Welte W 2000. Crystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA. Protein Sci 9:956–63
    [Google Scholar]
  55. 55.  Ferguson AD, Chakraborty R, Smith BS, Esser L, van der Helm D, Deisenhofer J 2002. Structural basis for gating by outer membrane transporter FecA. Science 295:1715–19
    [Google Scholar]
  56. 56.  Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W 1998. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282:2215–20
    [Google Scholar]
  57. 57.  Ferguson AD, Ködding J, Walker G, Bös C, Coulton JW et al. 2001. Active transport of an antibiotic rifamycin derivative by the outer membrane protein FhuA. Structure 9:707–16
    [Google Scholar]
  58. 58.  Fischer E, Günter K, Braun V 1989. Involvement of ExbB and TonB in transport across the outer membrane of Escherichia coli: phenotypic complementation of exb mutants by overexpressed tonB and stabilization of TonB by ExbB. J. Bacteriol. 171:5127–34
    [Google Scholar]
  59. 59.  Garcia-Herrero A, Vogel H 2005. Nuclear magnetic resonance solution structure of the periplasmic signaling domain of the TonB-dependent outer membrane transporter FecA from Escherichia coli. Mol. . Microbiol 58:1226–37
    [Google Scholar]
  60. 60.  Goebel W, Hacker J, Knapp S, Then I, Wagner W et al. 1985. Structure, function and regulation of the plasmid-encoded hemolysin determinant of Escherichia coli. . Basic Life Sci 30:791–805
    [Google Scholar]
  61. 61.  Gross P, Braun V 1996. Colicin M is inactivated during import by its immunity protein. Mol. Gen. Genet. 251:388–96
    [Google Scholar]
  62. 62.  Gross R, Engelbrecht F, Braun V 1984. Genetic and biochemical characterization of the aerobactin synthesis operon on pColV. Mol. Gen. Genet. 196:74–80
    [Google Scholar]
  63. 63.  Hancock REW, Braun V 1976. Nature of the energy requirement for the irreversible adsorption of bacteriophages T1 and ϕ80 to Escherichia coli. J. . Bacteriol 125:409–15
    [Google Scholar]
  64. 64.  Hantke K 1980. Phage T6-colicin K receptor and nucleoside transport in Escherichia coli. . FEBS Lett 70:109–12
    [Google Scholar]
  65. 65.  Hantke K 1981. Regulation of ferric iron transport in Escherichia coli: isolation of a constitutive mutant. Mol. Gen. Genet. 182:288–92
    [Google Scholar]
  66. 66.  Hantke K 1984. Cloning of the repressor protein gene of iron regulated systems in Escherichia coli K-12. Mol. Gen. Genet. 197:337–41
    [Google Scholar]
  67. 67.  Hantke K 1987. Ferrous iron transport mutants in Escherichia coli. FEMS Microbiol. . Lett 44:53–57
    [Google Scholar]
  68. 68.  Hantke K 2001. Iron and metal regulation in bacteria. Curr. Opin. Microbiol. 4:172–77
    [Google Scholar]
  69. 69.  Hantke K, Braun V 1973. Covalent binding of lipid to protein: diglyceride and amide-linked fatty acid at the N-terminal end of the murein-lipoprotein of the Escherichia coli outer membrane. Eur. J. Biochem. 34:284–96
    [Google Scholar]
  70. 70.  Hantke K, Braun V 1975. Membrane receptor dependent iron transport in Escherichia coli. . FEBS Lett 49:301–5
    [Google Scholar]
  71. 71.  Hantke K, Braun V 1978. Functional interaction of the tonA/tonB receptor system in Escherichia coli. J. . Bacteriol 135:190–97
    [Google Scholar]
  72. 72.  Harkness RE, Braun V 1989. Colicin M inhibits peptidoglycan biosynthesis by interfering with lipid carrier recycling. J. Biol. Chem. 264:6177–82
    [Google Scholar]
  73. 73.  Harkness RE, Braun V 1990. Colicin M is only bactericidal when provided from outside the cell. Mol. Gen. Genet. 222:37–40
    [Google Scholar]
  74. 74.  Härle C, Kim I, Angerer A, Braun V 1995. Signal transfer through three compartments: transcription initiation of the Escherichia coli ferric citrate transport system from the cell surface. EMBO J 14:1430–38
    [Google Scholar]
  75. 75.  Hartmann A, Braun V 1981. Iron uptake and iron-limited growth of Escherichia coli. Arch. . Microbiol 130:353–56
    [Google Scholar]
  76. 76.  Hartmann A, Fiedler HP, Braun V 1979. Uptake and conversion of the antibiotic albomycin by Escherichia coli K-12. Eur. J. Biochem. 99:517–24
    [Google Scholar]
  77. 77.  Helbig S, Braun V 2011. Mapping functional domains of colicin M. J. Bacteriol. 193:815–21
    [Google Scholar]
  78. 78.  Helbig S, Hantke K, Ammelburg M, Braun V 2012. CbrA is a flavin adenine dinucleotide protein that modifies the Escherichia coli outer membrane and confers specific resistance to colicin M. J. Bacteriol. 194:4894–903
    [Google Scholar]
  79. 79.  Helbig S, Patzer SI, Schiene-Fischer C, Zeth K, Braun V 2011. Activation of colicin M by the FkpA prolyl cis-trans isomerase/chaperone. J. Biol. Chem. 286:6280–90
    [Google Scholar]
  80. 80.  Heller K, Braun V 1982. Polymannose O-antigens of Escherichia coli: the binding sites for the reversible adsorption of bacteriophage T5+ via the L-shaped tail fibers. J. Virol. 41:222–27
    [Google Scholar]
  81. 81.  Hertle R, Brutsche S, Groeger W, Hobbie S, Koch W et al. 1997. Specific phosphatidylamine dependence of Serratia marcescens cytotoxin activity. Mol. Microbiol. 26:853–65
    [Google Scholar]
  82. 82.  Hertle R, Hilger M, Weingardt-Kocher S, Walev I 1999. Cytotoxic action of Serratia marcescens hemolysin on human epithelium cells. Infect. Immun. 67:817–25
    [Google Scholar]
  83. 83.  Huber R, Epp O, Formanek H 1969. Aufklärung der Molekülstruktur des Insektenhämoglobins. Naturwissenschaften 56:362–67
    [Google Scholar]
  84. 84.  Hullmann J, Patzer SI, Römer C, Hantke K, Braun V 2008. Periplasmic chaperone FkpA is essential for imported colicin M toxicity. Mol. Microbol. 69:926–37
    [Google Scholar]
  85. 85.  Hussein S, Hantke K, Braun V 1981. Citrate-dependent iron transport system in Escherichia coli K-12. Eur. J. Biochem. 117:431–37
    [Google Scholar]
  86. 86.  Inouye M, Halegoua S 1980. Secretion and membrane localization of proteins in Escherichia coli. CRC Crit. Rev. . Biochem 7:339–71
    [Google Scholar]
  87. 87.  Inouye M, Shaw J, Shen C 1972. The assembly of a structural lipoprotein in the envelope of Escherichia coli. J. Biol. . Chem 247:8154–59
    [Google Scholar]
  88. 88.  Jacob-Debuisson F, Guérin J, Baelen S, Clantin B 2013. Two-partner secretion: as simple as it sounds?. Res. Microbiol. 164:583–95
    [Google Scholar]
  89. 89.  Junker AS, Willenbrock H, von Heine G, Brunak S, Nielsen H, Krogh A 2003. Prediction of lipoprotein signal sequences in gram-negative bacteria. Protein Sci. 12:1652–62
    [Google Scholar]
  90. 90.  Kadner RJ, Heller K, Coulton JW, Braun V 1980. Genetic control of hydroxamate-mediated iron uptake in Escherichia coli. J. Bacteriol 143:256–64
    [Google Scholar]
  91. 91.  Kampfenkel K, Braun V 1992. Membrane topology of the Escherichia coli ExbD protein. J. Bacteriol. 174:5485–87
    [Google Scholar]
  92. 92.  Kampfenkel K, Braun V 1993. Membrane topologies of the TolQ and TolR proteins of Escherichia coli: inactivation of TolQ by a missense mutation in the proposed first transmembrane segment. J. Bacteriol. 175:4485–91
    [Google Scholar]
  93. 93.  Kampfenkel K, Braun V 1993. Topology of the ExbB protein in the cytoplasmic membrane of Escherichia coli. J. Biol. . Chem 268:6050–57
    [Google Scholar]
  94. 94.  Kim I, Stiefel A, Plantör S, Angerer A, Braun V 1997. Transcription induction of the ferric citrate transport genes via the N-terminus of the FecA outer membrane protein, the Ton system and the electrochemical potential of the cytoplasmic membrane. Mol. Microbiol. 23:333–44
    [Google Scholar]
  95. 95.  König W, Faltin Y, Scheffler J, Schöffler H, Braun V 1987. Cytotoxic action of the Serratia marcescens hemolysin. Infect. Immun. 55:2554–61
    [Google Scholar]
  96. 96.  Köster W, Braun V 1986. Iron hydroxamate transport of Escherichia coli: nucleotide sequence of the fhuB gene and identification of the protein. Mol. Gen. Genet. 204:435–42
    [Google Scholar]
  97. 97.  Köster W, Braun V 1990. Iron hydroxamate transport into Escherichia coli. J. Biol. . Chem 265:21407–10
    [Google Scholar]
  98. 98.  Krieger-Brauer HJ, Braun V 1980. Functions related to the receptor protein specified by the tsx gene of Escherichia coli. Arch. . Microbiol 124:233–42
    [Google Scholar]
  99. 99.  Lin C-S, Horng J-T, Yang C-H, Tsai Y-H, Su L-H et al. 2010. RssAB-FlhDC-ShLAB as a major pathogenesis pathway in Serratia marcescens. Infect. . Immun 78:4870–81
    [Google Scholar]
  100. 100.  Locher KP, Rees B, Koebnik R, Mitschler A, Moulinier L et al. 1998. Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell 95:771–78
    [Google Scholar]
  101. 101.  Lohmiller S, Hantke K, Patzer SI, Braun V 2008. TonB-dependent maltose transport by Caulobacter crescentus. . Microbiology 154:1748–54
    [Google Scholar]
  102. 102.  Lonetto MA, Brown KL, Rudd KE, Buttner MJ 1994. Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions. PNAS 91:7573–77
    [Google Scholar]
  103. 103.  Lupas AN, Bassler J, Dunin-Horkavicz S 2017. The structure and topology of α-helical coiled coils. Subcell. Biochem. 82:95–129
    [Google Scholar]
  104. 104.  Luria S, Delbrück M 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511
    [Google Scholar]
  105. 105.  Mahren S, Braun V 2003. The FecI extracytoplasmic function sigma factor of Escherichia coli interacts with the β′ subunit of the RNA polymerase. J. Bacteriol. 185:1796–802
    [Google Scholar]
  106. 106.  Mahren S, Enz S, Braun V 2002. Functional interaction of region 4 of the extracytoplasmic sigma factor FecI with the cytoplasmic portion of the FecR transmembrane protein of the ferric citrate transport system. J. Bacteriol. 184:3704–11
    [Google Scholar]
  107. 107.  Marre R, Hacker J, Braun V 1989. The cell-bound hemolysin of Serratia marcescens contributes to uropathogenicity. Microb. Pathog. 7:153–56
    [Google Scholar]
  108. 108.  Melchers F, Braun V, Galanos C 1975. The lipoprotein of the outer membrane of Escherichia coli is a B-lymphocyte mitogen. J. Exp. Med. 142:473–82
    [Google Scholar]
  109. 109.  Mende J, Braun V 1990. Import-defective colicin B derivatives mutated in the TonB box. Mol. Microbiol. 4:1523–33
    [Google Scholar]
  110. 110.  Nakayama H, Kurokawa K, Lee BL 2012. Lipoproteins in bacteria: structures and biosynthetic pathways. FEBS J 279:4247–68
    [Google Scholar]
  111. 111.  Narita SI, Tokuda H 2017. Bacterial lipoproteins: biogenesis, sorting and quality control. Biochim. Biophys Acta 1862:1414–23
    [Google Scholar]
  112. 112.  Neugebauer H, Herrmann C, Kammer W, Schwarz G, Nordheim A, Braun V 2005. ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus. J. . Bacteriol 187:8300–11
    [Google Scholar]
  113. 113.  Nguyen MT, Götz F 2016. Lipoproteins of gram-positive bacteria: key players in the immune response and virulence. Microbiol. Mol. Biol. Rev. 80:891–903
    [Google Scholar]
  114. 114.  Ogierman M, Braun V 2003. Interactions between the outer membrane ferric citrate transporter FecA and TonB: studies of the FecA TonB box. J. Bacteriol. 185:1870–85
    [Google Scholar]
  115. 115.  Ölschläger T, Schramm E, Braun V 1984. Cloning and expression of the activity and immunity genes of colicins B and M on pColBM plasmids. Mol. Gen. Genet. 196:482–87
    [Google Scholar]
  116. 116.  Ondraczek R, Hobbie S, Braun V 1992. In vitro activation of the Serratia marcescens hemolysin by modification and complementation. J. Bacteriol. 174:5086–94
    [Google Scholar]
  117. 117.  Patzer SI, Albrecht R, Braun V, Zeth K 2012. Structural and mechanistic studies of pesticin, a bacterial homolog of phage lysozymes. J. Biol. Chem. 287:23381–96
    [Google Scholar]
  118. 118.  Patzer SI, Hantke K 1998. The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol. . Microbiol 28:1199–210
    [Google Scholar]
  119. 119.  Pawelek PD, Croteau N, Ng-Thow-Hing C, Khursigara CM, Moiseeva N et al. 2006. Structure of TonB in complex with FhuA, E. coli outer membrane receptor. Science 312:1399–402
    [Google Scholar]
  120. 120.  Peacock RS, Weljie AM, Howard SP, Price FD, Vogel HJ 2005. The solution structure of the C-terminal domain of TonB and interaction studies with TonB box peptides. J. Mol. Biol. 345:1185–97
    [Google Scholar]
  121. 121.  Perutz MF 1994. Linus Pauling: 1901–1994. Nat. Struct. Biol. 1:667–71
    [Google Scholar]
  122. 122.  Pilsl H, Braun V 1995. Evidence that the immunity protein inactivates colicin 5 immediately prior to the formation of the transmembrane channel. J. Bacteriol. 17:6966–72
    [Google Scholar]
  123. 123.  Pilsl H, Braun V 1995. Novel colicin 10: assignment of four domains to TonB- and TolC-dependent uptake via the Tsx receptor and to pore formation. Mol. Microbiol. 16:57–67
    [Google Scholar]
  124. 124.  Pilsl H, Braun V 1995. Strong function related homology between the pore-forming colicins K and 5. J. Bacteriol. 177:6973–77
    [Google Scholar]
  125. 125.  Pilsl H, Glaser C, Groß P, Killmann H, Ölschläger T, Braun V 1993. Domains of colicin M involved in uptake and activity. Mol. Gen. Genet. 240:103–12
    [Google Scholar]
  126. 126.  Pilsl H, Killmann H, Hantke K, Braun V 1996. Periplasmic location of the pesticin immunity protein suggests inactivation of pesticin in the periplasm. J. Bacteriol. 178:2431–35
    [Google Scholar]
  127. 127.  Pilsl H, Smais D, Braun V 1999. Characterization of colicin S4 and its receptor, OmpW, a minor protein of the Escherichia coli outer membrane. J. Bacteriol. 181:3578–81
    [Google Scholar]
  128. 128.  Poole K, Schiebel E, Braun V 1988. Molecular characterization of the hemolysin determinant of Serratia marcescens. J. . Bacteriol 170:3177–88
    [Google Scholar]
  129. 129.  Pramanik A, Hauf W, Hoffmann J, Cernescu M, Brutschy B, Braun V 2011. Oligomeric structure of ExbB and ExbB-ExbD isolated from Escherichia coli as revealed by LILBID mass spectrometry. Biochemistry 50:8950–56
    [Google Scholar]
  130. 130.  Pramanik A, Könninger U, Selvam A, Braun V 2014. Secretion and activation of the Serratia marcescens hemolysin by structurally defined ShlB mutants. Int. J. Med. Microbiol. 304:351–59
    [Google Scholar]
  131. 131.  Pramanik A, Zhang F, Schwarz H, Schreiber F, Braun V 2010. ExbB protein in the cytoplasmic membrane of Escherichia coli forms stable oligomers. Biochemistry 49:8721–28
    [Google Scholar]
  132. 132.  Pressler U, Braun V, Wittmann-Liebold B, Benz R 1986. Structural and functional properties of colicin B. J. Biol. Chem. 261:654–59
    [Google Scholar]
  133. 133.  Roos U, Harkness RE, Braun V 1989. Assembly of colicin genes from a few DNA fragments. Nucleotide sequence of colicin D. Mol. Microbiol. 3:891–902
    [Google Scholar]
  134. 134.  Schaller K, Dreher R, Braun V 1981. Structural and functional properties of colicin M. J. Bacteriol. 146:54–63
    [Google Scholar]
  135. 135.  Schaller K, Krauel K, Braun V 1981. Temperature-sensitive colicin M tolerant mutant of Escherichia coli. J. . Bacteriol 147:135–39
    [Google Scholar]
  136. 136.  Schiebel E, Braun V 1989. Integration of the Serratia marcescens haemolysin into human erythrocyte membranes. Mol. Microbiol. 3:445–53
    [Google Scholar]
  137. 137.  Schiebel E, Schwarz H, Braun V 1989. Subcellular location and unique secretion of the hemolysin of Serratia marcescens. J. Biol. . Chem 264:16311–20
    [Google Scholar]
  138. 138.  Schmitz G, Braun V 1985. Cell-bound and secreted proteases of Serratia marcescens. J. . Bacteriol 161:1002–9
    [Google Scholar]
  139. 139.  Schönherr R, Tsolis R, Focareta T, Braun V 1993. Amino acid replacements in the Serratia marcescens haemolysin ShlA define sites involved in activation and secretion. Mol. Microbiol. 9:1220–37
    [Google Scholar]
  140. 140.  Schramm E, Mende J, Braun V, Kamp RM 1988. Nucleotide sequence of the colicin B activity gene cba: consensus pentapeptide among TonB-dependent colicins and receptors. J. Bacteriol. 169:3350–57
    [Google Scholar]
  141. 141.  Shu W, Liu J, Lu M 2000. Core structure of the outer membrane lipoprotein from Escherichia coli at 1.3 Å resolution. J. Mol. Biol. 299:1101–12
    [Google Scholar]
  142. 142.  Smais D, Pilsl H, Braun V 1997. Colicin U, a novel colicin produced by Shigella boydii. J. . Bacteriol 179:4919–28
    [Google Scholar]
  143. 143.  Springer W, Goebel W 1980. Synthesis and secretion of hemolysin by Escherichia coli. J. . Bacteriol 144:53–59
    [Google Scholar]
  144. 144.  Van Hove B, Staudenmaier H, Braun V 1990. Novel two-component transmembrane transcription control regulation of iron dicitrate transport in Escherichia coli K-12. J. Bacteriol. 172:6749–58
    [Google Scholar]
  145. 145.  Vollmer W, Pilsl H, Hantke K, Höltje J-V, Braun V 1997. Pesticin displays muramidase activity. J. Bacteriol. 179:1580–83
    [Google Scholar]
  146. 146.  Walker R, Hertle R, Braun V 2004. Activation of the Serratia marcescens hemolysin through a conformational change. Infect. Immun. 72:611–14
    [Google Scholar]
  147. 147.  Wang CC, Newton A 1971. An additional step in the transport of iron defined by the tonB locus of Escherichia coli. J. Biol. . Chem 246:2147–51
    [Google Scholar]
  148. 148.  Weidel W 1958. Bacterial viruses (with particular reference to adsorption/penetration). Annu. Rev. Microbiol. 12:27–48
    [Google Scholar]
  149. 149.  Weidel W, Pelzer H 1964. Bag-shaped macromolecules—a new outlook on bacterial cell walls. Adv. Enzymol. 26:193–232
    [Google Scholar]
  150. 150.  Welz D, Braun V 1998. Ferric citrate transport of Escherichia coli: functional regions of the FecR transmembrane regulatory protein. J. Bacteriol. 180:2387–94
    [Google Scholar]
  151. 151.  Wood D, Darlison MG, Wilde RJ, Guest JR 1984. Nucleotide sequence encoding the flavoprotein and hydrophobic subunits of the succinate dehydrogenase of Escherichia coli. Biochem. J 222:519–34
    [Google Scholar]
  152. 152.  Yang F-L, Braun V 2000. ShlB mutants of Serratia marcescens allow uncoupling of activation and secretion of the ShlA hemolysin. Int. J. Microbiol. 290:529–38
    [Google Scholar]
  153. 153.  Yue WW, Grizot S, Buchanan SK 2003. Structural evidence for iron-free citrate and ferric citrate binding to the TonB-dependent outer membrane transporter FecA. J. Mol. Biol. 332:353–68
    [Google Scholar]
  154. 154.  Zeth K, Römer C, Patzer SI, Braun V 2008. Crystal structure of colicin M, a novel phosphatase specifically imported by Escherichia coli. J. Biol. . Chem 283:25324–31
    [Google Scholar]
  155. 155.  Zimmermann L, Angerer A, Braun V 1989. Mechanistically novel iron(III) transport system in Serratia marcescens. J. . Bacteriol 171:238–43
    [Google Scholar]
  156. 156.  Zimmermann L, Hantke K, Braun V 1984. Exogenous induction of the iron dicitrate transport system of Escherichia coli K-12. J. Bacteriol. 159:271–77
    [Google Scholar]
/content/journals/10.1146/annurev-micro-090817-062156
Loading
/content/journals/10.1146/annurev-micro-090817-062156
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error