1932

Abstract

Human-adapted bacterial pathogens use a mechanism called phase variation to randomly switch the expression of individual genes to generate a phenotypically diverse population to adapt to challenges within and between human hosts. There are increasing reports of restriction-modification systems that exhibit phase-variable expression. The outcome of phase variation of these systems is global changes in DNA methylation. Analysis of phase-variable Type I and Type III restriction-modification systems in multiple human-adapted bacterial pathogens has demonstrated that global changes in methylation regulate the expression of multiple genes. These systems are called phasevarions (phase-variable regulons). Phasevarion switching alters virulence phenotypes and facilitates evasion of host immune responses. This review describes the characteristics of phasevarions and implications for pathogenesis and immune evasion. We present and discuss examples of phasevarion systems in the major human pathogens , , , , , and .

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090817-062346
2020-09-08
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/74/1/annurev-micro-090817-062346.html?itemId=/content/journals/10.1146/annurev-micro-090817-062346&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adamczyk-Poplawska M, Lower M, Piekarowicz A 2009. Characterization of the NgoAXP: phase-variable type III restriction-modification system in Neisseria gonorrhoeae. FEMS Microbiol. Lett 300:25–35
    [Google Scholar]
  2. 2. 
    Adamczyk-Poplawska M, Lower M, Piekarowicz A 2011. Deletion of one nucleotide within the homonucleotide tract present in the hsdS gene alters the DNA sequence specificity of type I restriction-modification system NgoAV. J. Bacteriol. 193:6750–59
    [Google Scholar]
  3. 3. 
    Anjum A, Brathwaite KJ, Aidley J, Connerton PL, Cummings NJ et al. 2016. Phase variation of a Type IIG restriction-modification enzyme alters site-specific methylation patterns and gene expression in Campylobacter jejuni strain NCTC11168. Nucleic Acids Res 44:104581–94
    [Google Scholar]
  4. 3a. 
    Atack JM, Guo C, Litfin T, Yang L, Blackall PJet al 2020. Systematic analysis of REBASE identifies numerous type I restriction-modification systems with duplicated, distinct hsdS specificity genes that can switch system specificity by recombination. mSystems 5:e00497–20
    [Google Scholar]
  5. 4. 
    Atack JM, Guo C, Yang L, Zhou Y, Jennings MP 2020. DNA sequence repeats identify numerous Type I restriction-modification systems that are potential epigenetic regulators controlling phase-variable regulons; phasevarions. FASEB J 34:1038–51
    [Google Scholar]
  6. 5. 
    Atack JM, Srikhanta YN, Fox KL, Jurcisek JA, Brockman KL et al. 2015. A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae. Nat. Commun 6:7828
    [Google Scholar]
  7. 6. 
    Atack JM, Winter LE, Jurcisek JA, Bakaletz LO, Barenkamp SJ, Jennings MP 2015. Selection and counter-selection of Hia expression reveals a key role for phase-variable expression of this adhesin in infection caused by non-typeable Haemophilus influenzae. J. Infect. Dis 212:645–53
    [Google Scholar]
  8. 7. 
    Atack JM, Yang Y, Seib KL, Zhou Y, Jennings MP 2018. A survey of Type III restriction-modification systems reveals numerous, novel epigenetic regulators controlling phase-variable regulons; phasevarions. Nucleic Acids Res 46:3532–42
    [Google Scholar]
  9. 8. 
    Banerjee A, Rao DN. 2011. Functional analysis of an acid adaptive DNA adenine methyltransferase from Helicobacter pylori 26695. PLOS ONE 6:e16810
    [Google Scholar]
  10. 9. 
    Blakeway LV, Power PM, Jen FE, Worboys SR, Boitano M et al. 2014. ModM DNA methyltransferase methylome analysis reveals a potential role for Moraxella catarrhalis phasevarions in otitis media. FASEB J 28:5197–207
    [Google Scholar]
  11. 10. 
    Blakeway LV, Tan A, Jurcisek JA, Bakaletz LO, Atack JM et al. 2019. The Moraxella catarrhalis phase-variable DNA methyltransferase ModM3 is an epigenetic regulator that affects bacterial survival in an in vivo model of otitis media. BMC Microbiol 19:276
    [Google Scholar]
  12. 11. 
    Blakeway LV, Tan A, Lappan R, Ariff A, Pickering JL et al. 2018. Moraxella catarrhalis restriction-modification systems are associated with phylogenetic lineage and disease. Genome Biol. Evol. 10:2932–46
    [Google Scholar]
  13. 12. 
    Blakeway LV, Tan A, Peak IRA, Seib KL 2017. Virulence determinants of Moraxella catarrhalis: distribution and considerations for vaccine development. Microbiology 163:1371–84
    [Google Scholar]
  14. 13. 
    Clark TA, Murray IA, Morgan RD, Kislyuk AO, Spittle KE et al. 2012. Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res 40:e29
    [Google Scholar]
  15. 14. 
    De Ste Croix M, Vacca I, Kwun MJ, Ralph JD, Bentley SD et al. 2017. Phase-variable methylation and epigenetic regulation by type I restriction-modification systems. FEMS Microbiol. Rev. 41:S3–15
    [Google Scholar]
  16. 15. 
    Earl JP, de Vries SP, Ahmed A, Powell E, Schultz MP et al. 2016. Comparative genomic analyses of the Moraxella catarrhalis serosensitive and seroresistant lineages demonstrate their independent evolution. Genome Biol. Evol. 8:955–74
    [Google Scholar]
  17. 16. 
    Eaton KA, Suerbaum S, Josenhans C, Krakowka S 1996. Colonization of gnotobiotic piglets by Helicobacter pylori deficient in two flagellin genes. Infect. Immun. 64:2445–48
    [Google Scholar]
  18. 17. 
    Edwards JL, Jennings MP, Apicella MA, Seib KL 2016. Is gonococcal disease preventable? The importance of understanding immunity and pathogenesis in vaccine development. Crit. Rev. Microbiol. 42:928–41
    [Google Scholar]
  19. 18. 
    Ernst PB, Gold BD. 2000. The disease spectrum of Helicobacter pylori: the immunopathogenesis of gastroduodenal ulcer and gastric cancer. Annu. Rev. Microbiol. 54:615–40
    [Google Scholar]
  20. 19. 
    Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF et al. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512
    [Google Scholar]
  21. 20. 
    Folster JP, Shafer WM. 2005. Regulation of mtrF expression in Neisseria gonorrhoeae and its role in high-level antimicrobial resistance. J. Bacteriol. 187:3713–20
    [Google Scholar]
  22. 21. 
    Furi L, Crawford LA, Rangel-Pineros G, Manso AS, De Ste Croix M et al. 2019. Methylation warfare: interaction of pneumococcal bacteriophages with their host. J. Bacteriol. 201:19e00370–19
    [Google Scholar]
  23. 22. 
    Gawthorne JA, Beatson SA, Srikhanta YN, Fox KL, Jennings MP 2012. Origin of the diversity in DNA recognition domains in phasevarion associated modA genes of pathogenic Neisseria and Haemophilus influenzae. PLOS ONE 7:e32337
    [Google Scholar]
  24. 23. 
    Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP et al. 2015. Pneumococcal capsules and their types: past, present, and future. Clin. Microbiol. Rev. 28:871–99
    [Google Scholar]
  25. 24. 
    Gorrell R, Kwok T. 2017. The Helicobacter pylori methylome: roles in gene regulation and virulence. Molecular Pathogenesis and Signal Transduction by Helicobacter pylori N Tegtmeyer, S Backert 105–27 Cham, Switz.: Springer Int.
    [Google Scholar]
  26. 25. 
    Haagmans W, van der Woude M 2000. Phase variation of Ag43 in Escherichia coli: Dam-dependent methylation abrogates OxyR binding and OxyR-mediated repression of transcription. Mol. Microbiol. 35:877–87
    [Google Scholar]
  27. 26. 
    Hood DW, Deadman ME, Jennings MP, Bisercic M, Fleischmann RD et al. 1996. DNA repeats identify novel virulence genes in Haemophilus influenzae. PNAS 93:11121–25
    [Google Scholar]
  28. 27. 
    Jen FE, Seib KL, Jennings MP 2014. Phasevarions mediate epigenetic regulation of antimicrobial susceptibility in Neisseria meningitidis. Antimicrob. Agents Chemother 58:4219–21
    [Google Scholar]
  29. 28. 
    Johnson RH. 1988. Community-acquired pneumonia: etiology, diagnosis, and treatment. Clin. Ther. 10:568–73
    [Google Scholar]
  30. 29. 
    Kavermann H, Burns BP, Angermuller K, Odenbreit S, Fischer W et al. 2003. Identification and characterization of Helicobacter pylori genes essential for gastric colonization. J. Exp. Med. 197:813–22
    [Google Scholar]
  31. 30. 
    Krebes J, Morgan RD, Bunk B, Sproer C, Luong K et al. 2014. The complex methylome of the human gastric pathogen Helicobacter pylori. Nucleic Acids Res 42:2415–32
    [Google Scholar]
  32. 31. 
    Kwiatek A, Mrozek A, Bacal P, Piekarowicz A, Adamczyk-Poplawska MJ 2015. Type III methyltransferase M.NgoAX from Neisseria gonorrhoeae FA1090 regulates biofilm formation and human cell invasion. Front. Microbiol. 6:1426
    [Google Scholar]
  33. 32. 
    Kwun MJ, Oggioni MR, Bentley SD, Fraser C, Croucher NJ 2019. Synergistic activity of mobile genetic element defences in Streptococcus pneumoniae. Genes 10:9707
    [Google Scholar]
  34. 33. 
    Loenen WAM, Dryden DTF, Raleigh EA, Wilson GG 2014. Type I restriction enzymes and their relatives. Nucleic Acids Res 42:20–44
    [Google Scholar]
  35. 34. 
    Manso AS, Chai MH, Atack JM, Furi L, De Ste Croix M et al. 2014. A random six-phase switch regulates pneumococcal virulence via global epigenetic changes. Nat. Commun. 5:5055
    [Google Scholar]
  36. 35. 
    Moxon R, Bayliss C, Hood D 2006. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. Annu. Rev. Genet. 40:307–33
    [Google Scholar]
  37. 36. 
    Murphy TF, Faden H, Bakaletz LO, Kyd JM, Forsgren A et al. 2009. Nontypeable Haemophilus influenzae as a pathogen in children. Pediatr. Infect. Dis. J. 28:43–48
    [Google Scholar]
  38. 37. 
    Murphy TF, Parameswaran GI. 2009. Moraxella catarrhalis, a human respiratory tract pathogen. Clin. Infect. Dis. 49:124–31
    [Google Scholar]
  39. 38. 
    Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M et al. 2015. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLOS ONE 10:e0143304
    [Google Scholar]
  40. 39. 
    Oliver MB, Basu Roy A, Kumar R, Lefkowitz EJ, Swords WE 2017. Streptococcus pneumoniae TIGR4 phase-locked opacity variants differ in virulence phenotypes. mSphere 2:6e00386–17
    [Google Scholar]
  41. 40. 
    O'Toole PW, Kostrzynska M, Trust TJ 1994. Non-motile mutants of Helicobacter pylori and Helicobacter mustelae defective in flagellar hook production. Mol. Microbiol. 14:691–703
    [Google Scholar]
  42. 41. 
    Phillips ZN, Tram G, Seib KL, Atack JM 2019. Phase-variable bacterial loci: how bacteria gamble to maximise fitness in changing environments. Biochem. Soc. Trans. 47:1131–41
    [Google Scholar]
  43. 42. 
    Rao DN, Dryden DT, Bheemanaik S 2014. Type III restriction-modification enzymes: a historical perspective. Nucleic Acids Res 42:45–55
    [Google Scholar]
  44. 43. 
    Seib KL, Jen FE, Tan A, Scott AL, Kumar R et al. 2015. Specificity of the ModA11, ModA12 and ModD1 epigenetic regulator N6-adenine DNA methyltransferases of Neisseria meningitidis. Nucleic Acids Res 43:4150–62
    [Google Scholar]
  45. 44. 
    Seib KL, Jennings MP. 2016. Epigenetics of infectious diseases. Medical Epigenetics T Tollefsbol 443–58 London: Elsevier
    [Google Scholar]
  46. 45. 
    Seib KL, Peak IR, Jennings MP 2002. Phase variable restriction-modification systems in Moraxella catarrhalis. FEMS Immunol. Med. Microbiol 32:159–65
    [Google Scholar]
  47. 46. 
    Seib KL, Pigozzi E, Muzzi A, Gawthorne JA, Delany I et al. 2011. A novel epigenetic regulator associated with the hypervirulent Neisseria meningitidis clonal complex 41/44. FASEB J 25:3622–33
    [Google Scholar]
  48. 47. 
    Sethi S, Murphy TF. 2008. Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N. Engl. J. Med. 359:2355–65
    [Google Scholar]
  49. 48. 
    Sitaraman R. 2014. Helicobacter pylori DNA methyltransferases and the epigenetic field effect in cancerization. Front. Microbiol. 5:115
    [Google Scholar]
  50. 49. 
    Snyder LA, Butcher SA, Saunders NJ 2001. Comparative whole-genome analyses reveal over 100 putative phase-variable genes in the pathogenic Neisseria spp. Microbiology 147:2321–32
    [Google Scholar]
  51. 50. 
    Srikhanta YN, Dowideit SJ, Edwards JL, Falsetta ML, Wu HJ et al. 2009. Phasevarions mediate random switching of gene expression in pathogenic Neisseria. PLOS Pathog 5:e1000400
    [Google Scholar]
  52. 51. 
    Srikhanta YN, Fox KL, Jennings MP 2010. The phasevarion: Phase variation of type III DNA methyltransferases controls coordinated switching in multiple genes. Nat. Rev. Microbiol. 8:196–206
    [Google Scholar]
  53. 52. 
    Srikhanta YN, Gorrell RJ, Power PM, Tsyganov K, Boitano M et al. 2017. Methylomic and phenotypic analysis of the ModH5 phasevarion of Helicobacter pylori. Sci. Rep 7:16140
    [Google Scholar]
  54. 53. 
    Srikhanta YN, Gorrell RJ, Steen JA, Gawthorne JA, Kwok T et al. 2011. Phasevarion mediated epigenetic gene regulation in Helicobacter pylori. PLOS ONE 6:e27569
    [Google Scholar]
  55. 54. 
    Srikhanta YN, Maguire TL, Stacey KJ, Grimmond SM, Jennings MP 2005. The phasevarion: a genetic system controlling coordinated, random switching of expression of multiple genes. PNAS 102:5547–51
    [Google Scholar]
  56. 55. 
    Stephens DS, Greenwood B, Brandtzaeg P 2007. Epidemic meningitis, meningococcaemia, and Neisseria meningitidis. Lancet 369:2196–210
    [Google Scholar]
  57. 56. 
    Tan A, Atack JM, Jennings MP, Seib KL 2016. The capricious nature of bacterial pathogens: phasevarions and vaccine development. Front. Immunol. 7:586
    [Google Scholar]
  58. 57. 
    Tan A, Blakeway LV, Bakaletz LO, Boitano M, Clark TA et al. 2017. Complete genome sequence of Moraxella catarrhalis strain CCRI-195ME, isolated from the middle ear. Genome Announc 5:21e00384–17
    [Google Scholar]
  59. 58. 
    Tan A, Hill DM, Harrison OB, Srikhanta YN, Jennings MP et al. 2016. Distribution of the type III DNA methyltransferases modA, modB and modD among Neisseria meningitidis genotypes: implications for gene regulation and virulence. Sci. Rep. 6:21015
    [Google Scholar]
  60. 59. 
    Van Bambeke F, Reinert RR, Appelbaum PC, Tulkens PM, Peetermans WE 2007. Multidrug-resistant Streptococcus pneumoniae infections: current and future therapeutic options. Drugs 67:2355–82
    [Google Scholar]
  61. 60. 
    van der Woude MW, Low DA 1994. Leucine-responsive regulatory protein and deoxyadenosine meth-ylase control the phase variation and expression of the sfa and daa pili operons in Escherichia coli. Mol. Microbiol 11:605–18
    [Google Scholar]
  62. 61. 
    Vos T, Allen C, Arora M, Barber RM, Bhutta ZA et al. 2015. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388:1545–602
    [Google Scholar]
  63. 62. 
    Wi T, Lahra MM, Ndowa F, Bala M, Dillon J-AR et al. 2017. Antimicrobial resistance in Neisseria gonorrhoeae: global surveillance and a call for international collaborative action. PLOS Med 14:e1002344
    [Google Scholar]
  64. 63. 
    Wion D, Casadesus J. 2006. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions. Nat. Rev. Microbiol. 4:183–92
    [Google Scholar]
  65. 64. 
    Wirth T, Morelli G, Kusecek B, van Belkum A, van der Schee C et al. 2007. The rise and spread of a new pathogen: seroresistant Moraxella catarrhalis. Genome Res 17:1647–56
    [Google Scholar]
/content/journals/10.1146/annurev-micro-090817-062346
Loading
/content/journals/10.1146/annurev-micro-090817-062346
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error