1932

Abstract

Advances in understanding mechanisms of nucleic acids have revolutionized molecular biology and medicine, but understanding of nontraditional nucleic acid conformations is less developed. The guanine quadruplex (G4) alternative DNA structure was first described in the 1960s, but the existence of G4 structures (G4-S) and their participation in myriads of biological functions are still underappreciated. Despite many tools to study G4s and many examples of roles for G4s in eukaryotic molecular processes and issues with uncontrolled G4-S formation, there is relatively little knowledge about the roles of G4-S in viral or prokaryotic systems. This review summarizes the state of the art with regard to G4-S in eukaryotes and their potential roles in human disease before discussing the evidence that G4-S have equivalent importance in affecting viral and bacterial life.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090817-062629
2018-09-08
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/72/1/annurev-micro-090817-062629.html?itemId=/content/journals/10.1146/annurev-micro-090817-062629&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Agarwala P, Pandey S, Maiti S 2015. The tale of RNA G-quadruplex. Org. Biomol. Chem. 13:5570–85
    [Google Scholar]
  2. 2.  Amrane S, Kerkour A, Bedrat A, Vialet B, Andreola ML, Mergny JL 2014. Topology of a DNA G-quadruplex structure formed in the HIV-1 promoter: a potential target for anti-HIV drug development. J. Am. Chem. Soc. 136:5249–52
    [Google Scholar]
  3. 3.  Andorf CM, Kopylov M, Dobbs D, Koch KE, Stroupe ME et al. 2014. G-quadruplex (G4) motifs in the maize (Zea mays L.) genome are enriched at specific locations in thousands of genes coupled to energy status, hypoxia, low sugar, and nutrient deprivation. J. Genet. Genom. 41:627–47
    [Google Scholar]
  4. 4.  Arora A, Dutkiewicz M, Scaria V, Hariharan M, Maiti S, Kurreck J 2008. Inhibition of translation in living eukaryotic cells by an RNA G-quadruplex motif. RNA 14:1290–96
    [Google Scholar]
  5. 5.  Artusi S, Nadai M, Perrone R, Biasolo MA, Palu G et al. 2015. The Herpes Simplex Virus-1 genome contains multiple clusters of repeated G-quadruplex: implications for the antiviral activity of a G-quadruplex ligand. Antivir. Res. 118:123–31
    [Google Scholar]
  6. 6.  Artusi S, Perrone R, Lago S, Raffa P, Di Iorio E et al. 2016. Visualization of DNA G-quadruplexes in herpes simplex virus 1-infected cells. Nucleic Acids Res 44:10343–53Reports the existance of G4-S in HSV-infected cells.
    [Google Scholar]
  7. 7.  Bakhoum SF, Ngo B, Laughney AM, Cavallo J-A, Murphy CJ et al. 2018. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature 553:467–72
    [Google Scholar]
  8. 8.  Bao HL, Ishizuka T, Sakamoto T, Fujimoto K, Uechi T et al. 2017. Characterization of human telomere RNA G-quadruplex structures in vitro and in living cells using 19F NMR spectroscopy. Nucleic Acids Res 45:5501–11
    [Google Scholar]
  9. 9.  Baran N, Pucshansky L, Marco Y, Benjamin S, Manor H 1997. The SV40 large T-antigen helicase can unwind four stranded DNA structures linked by G-quartets. Nucleic Acids Res 25:297–303
    [Google Scholar]
  10. 10.  Beaume N, Pathak R, Yadav VK, Kota S, Misra HS et al. 2013. Genome-wide study predicts promoter-G4 DNA motifs regulate selective functions in bacteria: radioresistance of D. radiodurans involves G4 DNA-mediated regulation. Nucleic Acids Res 41:76–89Mapping of G4-FS in the Deinococcus genome shows correlation with promoters of DNA repair function genes and an effect of a G4-S ligand on radioresistance.
    [Google Scholar]
  11. 11.  Besnard E, Babled A, Lapasset L, Milhavet O, Parrinello H et al. 2012. Unraveling cell type-specific and reprogrammable human replication origin signatures associated with G-quadruplex consensus motifs. Nat. Struct. Mol. Biol. 19:837–44
    [Google Scholar]
  12. 12.  Bharti SK, Sommers JA, George F, Kuper J, Hamon F et al. 2013. Specialization among iron-sulfur cluster helicases to resolve G-quadruplex DNA structures that threaten genomic stability. J. Biol. Chem. 288:28217–29
    [Google Scholar]
  13. 13.  Bhattacharyya D, Mirihana Arachchilage G, Basu S 2016. Metal cations in G-quadruplex folding and stability. Front. Chem. 4:38
    [Google Scholar]
  14. 14.  Biffi G, Tannahill D, McCafferty J, Balasubramanian S 2013. Quantitative visualization of DNA G-quadruplex structures in human cells. Nat. Chem. 5:182–86
    [Google Scholar]
  15. 15.  Biswas B, Kandpal M, Jauhari UK, Vivekanandan P 2016. Genome-wide analysis of G-quadruplexes in herpesvirus genomes. BMC Genomics 17:949
    [Google Scholar]
  16. 16.  Biswas B, Kandpal M, Vivekanandan P 2017. A G-quadruplex motif in an envelope gene promoter regulates transcription and virion secretion in HBV genotype B. Nucleic Acids Res 45:11268–80
    [Google Scholar]
  17. 17.  Blackburn EH 1992. Telomerases. Annu. Rev. Biochem. 61:113–29
    [Google Scholar]
  18. 18.  Brooks TA, Hurley LH 2009. The role of supercoiling in transcriptional control of MYC and its importance in molecular therapeutics. Nat. Rev. Cancer 9:849–61
    [Google Scholar]
  19. 19.  Brooks TA, Hurley LH 2010. Targeting MYC expression through G-quadruplexes. Genes Cancer 1:641–49
    [Google Scholar]
  20. 20.  Brooks TA, Kendrick S, Hurley L 2010. Making sense of G-quadruplex and i-motif functions in oncogene promoters. FEBS J 277:3459–69
    [Google Scholar]
  21. 21.  Cahoon LA, Manthei KA, Rotman E, Keck JL, Seifert HS 2013. Neisseria gonorrhoeae RecQ helicase HRDC domains are essential for efficient binding and unwinding of the pilE guanine quartet structure required for pilin antigenic variation. J. Bacteriol. 195:2255–61
    [Google Scholar]
  22. 22.  Cahoon LA, Seifert HS 2009. An alternative DNA structure is necessary for pilin antigenic variation in Neisseria gonorrhoeae. . Science 325:764–67Identifies a G4-S necessary but not sufficient for pilin antigenic variation.
    [Google Scholar]
  23. 23.  Cahoon LA, Seifert HS 2013. Transcription of a cis-acting, noncoding, small RNA is required for pilin antigenic variation in Neisseria gonorrhoeae. . PLOS Pathog 9:e1003074
    [Google Scholar]
  24. 24.  Callegaro S, Perrone R, Scalabrin M, Doria F, Palu G, Richter SN 2017. A core extended naphtalene diimide G-quadruplex ligand potently inhibits herpes simplex virus 1 replication. Sci. Rep. 7:2341
    [Google Scholar]
  25. 25.  Cammas A, Millevoi S 2017. RNA G-quadruplexes: emerging mechanisms in disease. Nucleic Acids Res 45:1584–95
    [Google Scholar]
  26. 26.  Capra JA, Paeschke K, Singh M, Zakian VA 2010. G-quadruplex DNA sequences are evolutionarily conserved and associated with distinct genomic features in Saccharomyces cerevisiae. PLOS Comput. . Biol 6:e1000861
    [Google Scholar]
  27. 27.  Cayrou C, Coulombe P, Puy A, Rialle S, Kaplan N et al. 2012. New insights into replication origin characteristics in metazoans. Cell Cycle 11:658–67
    [Google Scholar]
  28. 28.  Cheok CF, Bachrati CZ, Chan KL, Ralf C, Wu L, Hickson ID 2005. Roles of the Bloom's syndrome helicase in the maintenance of genome stability. Biochem. Soc. Trans. 33:1456–59
    [Google Scholar]
  29. 29.  Clark DW, Phang T, Edwards MG, Geraci MW, Gillespie MN 2012. Promoter G-quadruplex sequences are targets for base oxidation and strand cleavage during hypoxia-induced transcription. Free Radic. Biol. Med. 53:51–59
    [Google Scholar]
  30. 30.  Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB 2001. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107:489–99
    [Google Scholar]
  31. 31.  Day HA, Pavlou P, Waller ZA 2014. i-Motif DNA: structure, stability and targeting with ligands. Bioorg. Med. Chem. 22:4407–18
    [Google Scholar]
  32. 32.  De Nicola B, Lech CJ, Heddi B, Regmi S, Frasson I et al. 2016. Structure and possible function of a G-quadruplex in the long terminal repeat of the proviral HIV-1 genome. Nucleic Acids Res 44:6442–51Identifies a G4-FS in the long terminal repeat of HIV-1.
    [Google Scholar]
  33. 33.  Dhapola P, Chowdhury S 2016. QuadBase2: web server for multiplexed guanine quadruplex mining and visualization. Nucleic Acids Res 44:W277–83
    [Google Scholar]
  34. 34.  Dixon DA, Kowalczykowski SC 1995. Role of the Escherichia coli recombination hotspot, χ, in RecABCD-dependent homologous pairing. J. Biol. Chem. 270:16360–70
    [Google Scholar]
  35. 35.  Dong DW, Pereira F, Barrett SP, Kolesar JE, Cao K et al. 2014. Association of G-quadruplex forming sequences with human mtDNA deletion breakpoints. BMC Genom 15:677
    [Google Scholar]
  36. 36.  Du Z, Zhao Y, Li N 2008. Genome-wide analysis reveals regulatory role of G4 DNA in gene transcription. Genome Res 18:233–41
    [Google Scholar]
  37. 37.  Duquette ML, Handa P, Vincent JA, Taylor AF, Maizels N 2004. Intracellular transcription of G-rich DNAs induces formation of G-loops, novel structures containing G4 DNA. Genes Dev 18:1618–29
    [Google Scholar]
  38. 38.  Eddy J, Vallur AC, Varma S, Liu H, Reinhold WC et al. 2011. G4 motifs correlate with promoter-proximal transcriptional pausing in human genes. Nucleic Acids Res 39:4975–83
    [Google Scholar]
  39. 39.  Ehrat EA, Johnson BR, Williams JD, Borchert GM, Larson ED 2012. G-quadruplex recognition activities of E. coli MutS. BMC Mol. Biol. 13:23
    [Google Scholar]
  40. 40.  Fay MM, Lyons SM, Ivanov P 2017. RNA G-Quadruplexes in biology: principles and molecular mechanisms. J. Mol. Biol. 429:2127–47
    [Google Scholar]
  41. 41.  Fleming AM, Zhu J, Ding Y, Visser JA, Zhu J, Burrows CJ 2018. Human DNA repair genes possess potential G-quadruplex sequences in their promoters and 5′-untranslated regions. Biochemistry 57:991–1002
    [Google Scholar]
  42. 42.  Francois M, Leifert W, Tellam R, Fenech M 2015. G-quadruplexes: a possible epigenetic target for nutrition. Mutat. Res. Rev. Mutat. Res. 764:101–7
    [Google Scholar]
  43. 43.  Francois M, Leifert WR, Tellam R, Fenech MF 2016. Folate deficiency and DNA-methyltransferase inhibition modulate G-quadruplex frequency. Mutagenesis 31:409–16
    [Google Scholar]
  44. 44.  Fry M 2007. Tetraplex DNA and its interacting proteins. Front. Biosci. 12:4336–51
    [Google Scholar]
  45. 45.  Gellert M, Lipsett MN, Davies DR 1962. Helix formation by guanylic acid. PNAS 48:2013–18
    [Google Scholar]
  46. 46.  Giacani L, Brandt SL, Puray-Chavez M, Reid TB, Godornes C et al. 2012. Comparative investigation of the genomic regions involved in antigenic variation of the TprK antigen among treponemal species, subspecies, and strains. J. Bacteriol. 194:4208–25
    [Google Scholar]
  47. 47.  Gilbert-Girard S, Gravel A, Artusi S, Richter SN, Wallaschek N et al. 2017. Stabilization of telomere G-quadruplexes interferes with human herpesvirus 6A chromosomal integration. J. Virol. 91:e00402–17Interference of telomerase by G4-S ligands reduces HH6A integration at telomeres.
    [Google Scholar]
  48. 48.  Giraldo R, Suzuki M, Chapman L, Rhodes D 1994. Promotion of parallel DNA quadruplexes by a yeast telomere binding protein: a circular dichroism study. PNAS 91:7658–62
    [Google Scholar]
  49. 49.  Glover L, Alsford S, Horn D 2013. DNA break site at fragile subtelomeres determines probability and mechanism of antigenic variation in African trypanosomes. PLOS Pathog 9:e1003260
    [Google Scholar]
  50. 50.  Gomez D, Guedin A, Mergny JL, Salles B, Riou JF et al. 2010. A G-quadruplex structure within the 5′-UTR of TRF2 mRNA represses translation in human cells. Nucleic Acids Res 38:7187–98
    [Google Scholar]
  51. 51.  Gonzalez V, Guo K, Hurley L, Sun D 2009. Identification and characterization of nucleolin as a c-myc G-quadruplex-binding protein. J. Biol. Chem. 284:23622–35
    [Google Scholar]
  52. 52.  Guedin A, Gros J, Alberti P, Mergny JL 2010. How long is too long? Effects of loop size on G-quadruplex stability. Nucleic Acids Res 38:7858–68
    [Google Scholar]
  53. 53.  Guo JU, Bartel DP 2016. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science 353:aaf5371
    [Google Scholar]
  54. 54.  Hardin CC, Watson T, Corregan M, Bailey C 1992. Cation-dependent transition between the quadruplex and Watson-Crick hairpin forms of d(CGCG3GCG). Biochemistry 31:833–41
    [Google Scholar]
  55. 55.  Harris LM, Merrick CJ 2015. G-quadruplexes in pathogens: a common route to virulence control?. PLOS Pathog 11:e1004562
    [Google Scholar]
  56. 56.  Hellman LM, Spear TJ, Koontz CJ, Melikishvili M, Fried MG 2014. Repair of O6-methylguanine adducts in human telomeric G-quadruplex DNA by O6-alkylguanine-DNA alkyltransferase. Nucleic Acids Res 42:9781–91
    [Google Scholar]
  57. 57.  Henderson A, Wu Y, Huang YC, Chavez EA, Platt J et al. 2014. Detection of G-quadruplex DNA in mammalian cells. Nucleic Acids Res 42:860–69
    [Google Scholar]
  58. 58.  Henderson E, Hardin CC, Walk SK, Tinoco I Jr, Blackburn EH 1987. Telomeric DNA oligonucleotides form novel intramolecular structures containing guanine-guanine base pairs. Cell 51:899–908
    [Google Scholar]
  59. 59.  Holder IT, Hartig JS 2014. A matter of location: influence of G-quadruplexes on Escherichia coli gene expression. Chem. Biol. 21:1511–21Global study of the effect of G4-FS in E. coli.
    [Google Scholar]
  60. 60.  Huppert JL 2008. Hunting G-quadruplexes. Biochimie 90:1140–48
    [Google Scholar]
  61. 61.  Ivanov P, O'Day E, Emara MM, Wagner G, Lieberman J, Anderson P 2014. G-quadruplex structures contribute to the neuroprotective effects of angiogenin-induced tRNA fragments. PNAS 111:18201–6
    [Google Scholar]
  62. 62.  Iyer RR, Pluciennik A, Napierala M, Wells RD 2015. DNA triplet repeat expansion and mismatch repair. Annu. Rev. Biochem. 84:199–226
    [Google Scholar]
  63. 63.  Johnson JE, Cao K, Ryvkin P, Wang LS, Johnson FB 2010. Altered gene expression in the Werner and Bloom syndromes is associated with sequences having G-quadruplex forming potential. Nucleic Acids Res 38:1114–22
    [Google Scholar]
  64. 64.  Johnson JE, Smith JS, Kozak ML, Johnson FB 2008. In vivo veritas: using yeast to probe the biological functions of G-quadruplexes. Biochimie 90:1250–63
    [Google Scholar]
  65. 65.  Kaplan OI, Berber B, Hekim N, Doluca O 2016. G-quadruplex prediction in E. coli genome reveals a conserved putative G-quadruplex-hairpin-duplex switch. Nucleic Acids Res 44:9083–95
    [Google Scholar]
  66. 66.  Kazemier HG, Paeschke K, Lansdorp PM 2017. Guanine quadruplex monoclonal antibody 1H6 cross-reacts with restrained thymidine-rich single stranded DNA. Nucleic Acids Res 45:5913–19
    [Google Scholar]
  67. 67.  Kim N, Jinks-Robertson S 2011. Guanine repeat-containing sequences confer transcription-dependent instability in an orientation-specific manner in yeast. DNA Repair 10:953–60
    [Google Scholar]
  68. 68.  Kouzine F, Sanford S, Elisha-Feil Z, Levens D 2008. The functional response of upstream DNA to dynamic supercoiling in vivo. Nat. Struct. Mol. Biol. 15:146–54
    [Google Scholar]
  69. 69.  Kshirsagar R, Khan K, Joshi MV, Hosur RV, Muniyappa K 2017. Probing the potential role of non-B DNA structures at yeast meiosis-specific DNA double-strand breaks. Biophys. J. 112:2056–74
    [Google Scholar]
  70. 70.  Kuryavyi V, Cahoon LA, Seifert HS, Patel DJ 2012. RecA-binding pilE G4 sequence essential for pilin antigenic variation forms monomeric and 5′ end-stacked dimeric parallel G-quadruplexes. Structure 20:2090–102
    [Google Scholar]
  71. 71.  Kusov Y, Tan J, Alvarez E, Enjuanes L, Hilgenfeld R 2015. A G-quadruplex-binding macrodomain within the “SARS-unique domain” is essential for the activity of the SARS-coronavirus replication-transcription complex. Virology 484:313–22
    [Google Scholar]
  72. 72.  Kwok CK, Ding Y, Shahid S, Assmann SM, Bevilacqua PC 2015. A stable RNA G-quadruplex within the 5′-UTR of Arabidopsis thaliana ATR mRNA inhibits translation. Biochem. J. 467:91–102
    [Google Scholar]
  73. 73.  Kwok CK, Merrick CJ 2017. G-quadruplexes: prediction, characterization, and biological application. Trends Biotechnol 35:997–1013
    [Google Scholar]
  74. 74.  Levens D 2010. You don't muck with MYC. Genes Cancer 1:547–54
    [Google Scholar]
  75. 75.  Li MJ, Maizels N 1999. Activation and targeting of immunoglobulin switch recombination by activities induced by EBV infection. J. Immunol. 163:6659–64
    [Google Scholar]
  76. 76.  Limongelli V, De Tito S, Cerofolini L, Fragai M, Pagano B et al. 2013. The G-triplex DNA. Angew. Chem. Int. Ed. Engl. 52:2269–73
    [Google Scholar]
  77. 77.  Longnecker R, Kieff E, Cohen J 2013. Epstein-Barr virus. Fields Virology DHP Knipe 1898–959 Philadelphia, PA: Wolters Kluwer Health/Lippincott Williams & Wilkins
    [Google Scholar]
  78. 78.  Lopes J, Piazza A, Bermejo R, Kriegsman B, Colosio A et al. 2011. G-quadruplex-induced instability during leading-strand replication. EMBO J 30:4033–46
    [Google Scholar]
  79. 79.  Lyonnais S, Hounsou C, Teulade-Fichou MP, Jeusset J, Le Cam E, Mirambeau G 2002. G-quartets assembly within a G-rich DNA flap: a possible event at the center of the HIV-1 genome. Nucleic Acids Res 30:5276–78
    [Google Scholar]
  80. 80.  Lyons SM, Gudanis D, Coyne SM, Gdaniec Z, Ivanov P 2017. Identification of functional tetramolecular RNA G-quadruplexes derived from transfer RNAs. Nat. Commun. 8:1127
    [Google Scholar]
  81. 81.  Madireddy A, Purushothaman P, Loosbroock CP, Robertson ES, Schildkraut CL, Verma SC 2016. G-quadruplex-interacting compounds alter latent DNA replication and episomal persistence of KSHV. Nucleic Acids Res 44:3675–94
    [Google Scholar]
  82. 82.  Maizels N 2005. Immunoglobulin gene diversification. Annu. Rev. Genet. 39:23–46
    [Google Scholar]
  83. 83.  Maizels N 2015. G4-associated human diseases. EMBO Rep 16:910–22
    [Google Scholar]
  84. 84.  Mani P, Yadav VK, Das SK, Chowdhury S 2009. Genome-wide analyses of recombination prone regions predict role of DNA structural motif in recombination. PLOS ONE 4:e4399
    [Google Scholar]
  85. 85.  Martadinata H, Phan AT 2013. Structure of human telomeric RNA (TERRA): stacking of two G-quadruplex blocks in K+ solution. Biochemistry 52:2176–83
    [Google Scholar]
  86. 86.  Marusic M, Hosnjak L, Krafcikova P, Poljak M, Viglasky V, Plavec J 2017. The effect of single nucleotide polymorphisms in G-rich regions of high-risk human papillomaviruses on structural diversity of DNA. Biochim. Biophys. Acta 1861:1229–36
    [Google Scholar]
  87. 87.  McManus SA, Li Y 2013. Assessing the amount of quadruplex structures present within G2-tract synthetic random-sequence DNA libraries. PLOS ONE 8:e64131
    [Google Scholar]
  88. 88.  Mendoza O, Bourdoncle A, Boule JB, Brosh RM Jr, Mergny JL 2016. G-quadruplexes and helicases. Nucleic Acids Res 44:1989–2006
    [Google Scholar]
  89. 89.  Métifiot M, Amrane S, Litvak S Andreola M-L 2014. G-quadruplexes in viruses: function and potential therapeutic applications. Nucleic Acids Res 42:12352–66
    [Google Scholar]
  90. 90.  Mirihana Arachchilage G, Dassanayake AC, Basu S 2015. A potassium ion-dependent RNA structural switch regulates human pre-miRNA 92b maturation. Chem. Biol. 22:262–72
    [Google Scholar]
  91. 91.  Murat P, Balasubramanian S 2014. Existence and consequences of G-quadruplex structures in DNA. Curr. Opin. Genet. Dev. 25:22–29
    [Google Scholar]
  92. 92.  Murat P, Zhong J, Lekieffre L, Cowieson NP, Clancy JL et al. 2014. G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation. Nat. Chem. Biol. 10:358–64Effect of a G4-S on EBV EBNA-1 expression.
    [Google Scholar]
  93. 93.  Nelson DL, Orr HT, Warren ST 2013. The unstable repeats—three evolving faces of neurological disease. Neuron 77:825–43
    [Google Scholar]
  94. 94.  Norseen J, Johnson FB, Lieberman PM 2009. Role for G-quadruplex RNA binding by Epstein-Barr virus nuclear antigen 1 in DNA replication and metaphase chromosome attachment. J. Virol. 83:10336–46
    [Google Scholar]
  95. 95.  O'Day E, Le MT, Imai S, Tan SM, Kirchner R et al. 2015. An RNA-binding protein, Lin28, recognizes and remodels G-quartets in the microRNAs (miRNAs) and mRNAs it regulates. J. Biol. Chem. 290:17909–22
    [Google Scholar]
  96. 96.  Oganesian L, Moon IK, Bryan TM, Jarstfer MB 2006. Extension of G-quadruplex DNA by ciliate telomerase. EMBO J 25:1148–59
    [Google Scholar]
  97. 97.  Paeschke K, Capra JA, Zakian VA 2011. DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145:678–91
    [Google Scholar]
  98. 98.  Perrone R, Doria F, Butovskaya E, Frasson I, Botti S et al. 2015. Synthesis, binding and antiviral properties of potent core-extended naphthalene diimides targeting the HIV-1 long terminal repeat promoter G-quadruplexes. J. Med. Chem. 58:9639–52
    [Google Scholar]
  99. 99.  Perrone R, Lavezzo E, Riello E, Manganelli R, Palu G et al. 2017. Mapping and characterization of G-quadruplexes in Mycobacterium tuberculosis gene promoter regions. Sci. Rep. 7:5743Global analysis of G4-FS in the Mycobacterium genome and transcription units.
    [Google Scholar]
  100. 100.  Perrone R, Nadai M, Frasson I, Poe JA, Butovskaya E et al. 2013. A dynamic G-quadruplex region regulates the HIV-1 long terminal repeat promoter. J. Med. Chem. 56:6521–30
    [Google Scholar]
  101. 101.  Perrone R, Nadai M, Poe JA, Frasson I, Palumbo M et al. 2013. Formation of a unique cluster of G-quadruplex structures in the HIV-1 Nef coding region: implications for antiviral activity. PLOS ONE 8:e73121
    [Google Scholar]
  102. 102.  Piazza A, Adrian M, Samazan F, Heddi B, Hamon F et al. 2015. Short loop length and high thermal stability determine genomic instability induced by G-quadruplex-forming minisatellites. EMBO J 34:1718–34
    [Google Scholar]
  103. 103.  Rawal P, Kummarasetti VB, Ravindran J, Kumar N, Halder K et al. 2006. Genome-wide prediction of G4 DNA as regulatory motifs: role in Escherichia coli global regulation. Genome Res 16:644–55Global analysis of G4-FS in the E. coli genome and transcription units.
    [Google Scholar]
  104. 104.  Rehm C, Wurmthaler LA, Li Y, Frickey T, Hartig JS 2015. Investigation of a quadruplex-forming repeat sequence highly enriched in Xanthomonas and Nostoc sp. PLOS ONE 10:e0144275
    [Google Scholar]
  105. 105.  Risitano A, Fox KR 2003. The stability of intramolecular DNA quadruplexes with extended loops forming inter- and intra-loop duplexes. Org. Biomol. Chem. 1:1852–55
    [Google Scholar]
  106. 106.  Rodriguez R, Miller KM, Forment JV, Bradshaw CR, Nikan M et al. 2012. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol. 8:301–10
    [Google Scholar]
  107. 107.  Rotman E, Seifert HS 2014. The genetics of Neisseria species. Annu. Rev. Genet. 48:405–31
    [Google Scholar]
  108. 108.  Ruggiero E, Richter SN 2018. G-quadruplexes and G-quadruplex ligands: targets and tools in antiviral therapy. Nucleic Acids Res 46:3270–83
    [Google Scholar]
  109. 109.  Scalabrin M, Frasson I, Ruggiero E, Perrone R, Tosoni E et al. 2017. The cellular protein hnRNP A2/B1 enhances HIV-1 transcription by unfolding LTR promoter G-quadruplexes. Sci. Rep. 7:45244
    [Google Scholar]
  110. 110.  Schaffitzel C, Postberg J, Paeschke K, Lipps HJ 2010. Probing telomeric G-quadruplex DNA structures in cells with in vitro generated single-chain antibody fragments. Methods Mol. Biol. 608:159–81
    [Google Scholar]
  111. 111.  Schwindt E, Paeschke K 2018. Mms1 is an assistant for regulating G-quadruplex DNA structures. Curr. Genet. 64:535–40
    [Google Scholar]
  112. 112.  Sechman EV, Rohrer MS, Seifert HS 2005. A genetic screen identifies genes and sites involved in pilin antigenic variation in Neisseria gonorrhoeae. Mol. . Microbiol 57:468–83
    [Google Scholar]
  113. 113.  Sekibo DAT, Fox KR 2017. The effects of DNA supercoiling on G-quadruplex formation. Nucleic Acids Res 45:12069–79
    [Google Scholar]
  114. 114.  Shen W, Gorelick RJ, Bambara RA 2011. HIV-1 nucleocapsid protein increases strand transfer recombination by promoting dimeric G-quartet formation. J. Biol. Chem. 286:29838–47
    [Google Scholar]
  115. 115.  Simone R, Fratta P, Neidle S, Parkinson GN, Isaacs AM 2015. G-quadruplexes: emerging roles in neurodegenerative diseases and the non-coding transcriptome. FEBS Lett 589:1653–68
    [Google Scholar]
  116. 116.  Smargiasso N, Gabelica V, Damblon C, Rosu F, De Pauw E et al. 2009. Putative DNA G-quadruplex formation within the promoters of Plasmodium falciparum var genes. BMC Genom 10:362
    [Google Scholar]
  117. 117.  Smirnov I, Shafer RH 2000. Effect of loop sequence and size on DNA aptamer stability. Biochemistry 39:1462–68
    [Google Scholar]
  118. 118.  Sollier J, Cimprich KA Breaking bad: R-loops and genome integrity. Trends Cell Biol 25:514–22
    [Google Scholar]
  119. 119.  Sundquist WI, Heaphy S 1993. Evidence for interstrand quadruplex formation in the dimerization of human immunodeficiency virus 1 genomic RNA. PNAS 90:3393–97
    [Google Scholar]
  120. 120.  Takahashi S, Brazier JA, Sugimoto N 2017. Topological impact of noncanonical DNA structures on Klenow fragment of DNA polymerase. PNAS 114:9605–10
    [Google Scholar]
  121. 121.  Tan J, Vonrhein C, Smart OS, Bricogne G, Bollati M et al. 2009. The SARS-unique domain (SUD) of SARS coronavirus contains two macrodomains that bind G-quadruplexes. PLOS Pathog 5:e1000428
    [Google Scholar]
  122. 122.  Tang W, Robles AI, Beyer RP, Gray LT, Nguyen GH et al. 2016. The Werner syndrome RECQ helicase targets G4 DNA in human cells to modulate transcription. Hum. Mol. Genet. 25:2060–69
    [Google Scholar]
  123. 123.  Tarsounas M, Tijsterman M 2013. Genomes and G-quadruplexes: for better or for worse. J. Mol. Biol. 425:4782–89
    [Google Scholar]
  124. 124.  Tluckova K, Marusic M, Tothova P, Bauer L, Sket P et al. 2013. Human papillomavirus G-quadruplexes. Biochemistry 52:7207–16
    [Google Scholar]
  125. 125.  Tobiason DM, Seifert HS 2006. The obligate human pathogen, Neisseria gonorrhoeae, is polyploid. PLOS Biol 4:1069–78
    [Google Scholar]
  126. 126.  Tobiason DM, Seifert HS 2010. Genomic content of Neisseria species. J. Bacteriol. 192:2160–68
    [Google Scholar]
  127. 127.  Todd AK, Neidle S 2008. The relationship of potential G-quadruplex sequences in cis-upstream regions of the human genome to SP1-binding elements. Nucleic Acids Res 36:2700–4
    [Google Scholar]
  128. 128.  Todd AK, Neidle S 2011. Mapping the sequences of potential guanine quadruplex motifs. Nucleic Acids Res 39:4917–27
    [Google Scholar]
  129. 129.  Tornaletti S, Park-Snyder S, Hanawalt PC 2008. G4-forming sequences in the non-transcribed DNA strand pose blocks to T7 RNA polymerase and mammalian RNA polymerase II. J. Biol. Chem. 283:12756–62
    [Google Scholar]
  130. 130.  Tosoni E, Frasson I, Scalabrin M, Perrone R, Butovskaya E et al. 2015. Nucleolin stabilizes G-quadruplex structures folded by the LTR promoter and silences HIV-1 viral transcription. Nucleic Acids Res 43:8884–97
    [Google Scholar]
  131. 131.  Valton AL, Prioleau MN 2016. G-quadruplexes in DNA replication: a problem or a necessity?. Trends Genet 32:697–706
    [Google Scholar]
  132. 132.  Venczel EA, Sen D 1993. Parallel and antiparallel G-DNA structures from a complex telomeric sequence. Biochemistry 32:6220–28
    [Google Scholar]
  133. 133.  Verma A, Halder K, Halder R, Yadav VK, Rawal P et al. 2008. Genome-wide computational and expression analyses reveal G-quadruplex DNA motifs as conserved cis-regulatory elements in human and related species. J. Med. Chem. 51:5641–49
    [Google Scholar]
  134. 134.  Virgilio A, Esposito V, Mayol L, Giancola C, Petraccone L, Galeone A 2015. The oxidative damage to the human telomere: effects of 5-hydroxymethyl-2′-deoxyuridine on telomeric G-quadruplex structures. Org. Biomol. Chem. 13:7421–29
    [Google Scholar]
  135. 135.  Voineagu I, Freudenreich CH, Mirkin SM 2009. Checkpoint responses to unusual structures formed by DNA repeats. Mol. Carcinog. 48:309–18
    [Google Scholar]
  136. 136.  Walia R, Chaconas G 2013. Suggested role for G4 DNA in recombinational switching at the antigenic variation locus of the Lyme disease spirochete. PLOS ONE 8:e57792
    [Google Scholar]
  137. 137.  Wang SR, Min YQ, Wang JQ, Liu CX, Fu BS et al. 2016. A highly conserved G-rich consensus sequence in hepatitis C virus core gene represents a new anti-hepatitis C target. Sci. Adv. 2:e1501535
    [Google Scholar]
  138. 138.  Wang SR, Zhang QY, Wang JQ, Ge XY, Song YY et al. 2016. Chemical targeting of a G-quadruplex RNA in the Ebola virus L gene. Cell Chem. Biol. 23:1113–22
    [Google Scholar]
  139. 139.  Wang Z, Chen R, Hou L, Li J Liu J-P 2015. Molecular dynamics and principal components of potassium binding with human telomeric intra-molecular G-quadruplex. Protein Cell 6:423–33
    [Google Scholar]
  140. 140.  Watson JD, Crick FH 1953. The structure of DNA. Cold Spring Harb. Symp. Quant. Biol. 18:123–31
    [Google Scholar]
  141. 141.  Wu RY, Zheng KW, Zhang JY, Hao YH, Tan Z 2015. Formation of DNA:RNA hybrid G-quadruplex in bacterial cells and its dominance over the intramolecular DNA G-quadruplex in mediating transcription termination. Angew. Chem. Int. Ed. Engl. 54:2447–51
    [Google Scholar]
  142. 142.  Yadav V, Hemansi Kim N, Tuteja N, Yadav P 2017. G quadruplex in plants: a ubiquitous regulatory element and its biological relevance. Front. Plant Sci. 8:1163
    [Google Scholar]
  143. 143.  Yadav VK, Abraham JK, Mani P, Kulshrestha R, Chowdhury S 2008. QuadBase: genome-wide database of G4 DNA—occurrence and conservation in human, chimpanzee, mouse and rat promoters and 146 microbes. Nucleic Acids Res 36:D381–85The first global analysis of G4-FS in bacteria.
    [Google Scholar]
  144. 144.  Yu K, Roy D, Bayramyan M, Haworth IS, Lieber MR 2005. Fine-structure analysis of activation-induced deaminase accessibility to class switch region R-loops. Mol. Cell Biol. 25:1730–36
    [Google Scholar]
  145. 145.  Zhang ML, Tong XJ, Fu XH, Zhou BO, Wang J et al. 2010. Yeast telomerase subunit Est1p has guanine quadruplex-promoting activity that is required for telomere elongation. Nat. Struct. Mol. Biol. 17:202–9
    [Google Scholar]
  146. 146.  Zheng KW, He YD, Liu HH, Li XM, Hao YH, Tan Z 2017. Superhelicity constrains a localized and R-loop-dependent formation of G-quadruplexes at the upstream region of transcription. ACS Chem. Biol. 12:2609–18
    [Google Scholar]
  147. 147.  Zheng KW, Wu RY, He YD, Xiao S, Zhang JY et al. 2014. A competitive formation of DNA:RNA hybrid G-quadruplex is responsible to the mitochondrial transcription termination at the DNA replication priming site. Nucleic Acids Res 42:10832–44
    [Google Scholar]
/content/journals/10.1146/annurev-micro-090817-062629
Loading
/content/journals/10.1146/annurev-micro-090817-062629
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error