1932

Abstract

Bacterial secretion systems are responsible for releasing macromolecules to the extracellular milieu or directly into other cells. These membrane complexes are associated with pathogenicity and bacterial fitness. Understanding of these large assemblies has exponentially increased in the last few years thanks to electron microscopy. In fact, a revolution in this field has led to breakthroughs in characterizing the structures of secretion systems and other macromolecular machineries so as to obtain high-resolution images of complexes that could not be crystallized. In this review, we give a brief overview of structural advancements in the understanding of secretion systems, focusing in particular on cryo–electron microscopy, whether tomography or single-particle analysis. We describe how such techniques have contributed to knowledge of the mechanism of macromolecule secretion in bacteria and the impact they will have in the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090817-062702
2018-09-08
2024-05-11
Loading full text...

Full text loading...

/deliver/fulltext/micro/72/1/annurev-micro-090817-062702.html?itemId=/content/journals/10.1146/annurev-micro-090817-062702&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Abby SS, Cury J, Guglielmini J, Néron B, Touchon M, Rocha EPC 2016. Identification of protein secretion systems in bacterial genomes. Sci. Rep. 6:23080
    [Google Scholar]
  2. 2.  Abdallah AM, Bestebroer J, Savage NDL, de Punder K, van Zon M et al. 2011. Mycobacterial secretion systems ESX-1 and ESX-5 play distinct roles in host cell death and inflammasome activation. J. Immunol. 187:94744–53
    [Google Scholar]
  3. 3.  Alvarez-Martinez CE, Christie PJ 2009. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73:4775–808
    [Google Scholar]
  4. 4.  Arutyunov D, Frost LS 2013. F conjugation: back to the beginning. Plasmid 70:18–32
    [Google Scholar]
  5. 5.  Ates LS, Houben ENG, Bitter W 2016. Type VII secretion: a highly versatile secretion system. Virulence Mechanisms of Bacterial Pathogens IT Kudva, NA Cornick, PJ Plummer, Q Zhang, TL Nicholson et al.357–84 Washington, DC: Am. Soc. Microb. , 5th ed..
    [Google Scholar]
  6. 6.  Ates LS, van der Woude AD, Bestebroer J, van Stempvoort G, Musters RJP et al. 2016. The ESX-5 system of pathogenic mycobacteria is involved in capsule integrity and virulence through its substrate PPE10. PLOS Pathog 12:6e1005696
    [Google Scholar]
  7. 7.  Backert S, Tegtmeyer N, Fischer W 2015. Composition, structure and function of the Helicobacter pylori cag pathogenicity island encoded type IV secretion system. Future Microbiol 10:6955–65
    [Google Scholar]
  8. 8.  Baron C, O'Callaghan D, Lanka E 2002. Bacterial secrets of secretion: EuroConference on the biology of type IV secretion processes. Mol. Microbiol. 43:1359–65
    [Google Scholar]
  9. 9.  Basler M, Pilhofer M, Henderson GP, Jensen GJ, Mekalanos JJ 2012. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483:7388182–86
    [Google Scholar]
  10. 10.  Bayliss R, Harris R, Coutte L, Monier A, Fronzes R et al. 2007. NMR structure of a complex between the VirB9/VirB7 interaction domains of the pKM101 type IV secretion system. PNAS 104:51673–78
    [Google Scholar]
  11. 11.  Beckham KS, Ciccarelli L, Bunduc CM, Mertens HD, Ummels R et al. 2017. Structure of the mycobacterial ESX-5 type VII secretion system membrane complex by single-particle analysis. Nat. Microbiol. 2:17047 https://doi.org/10.1038/nmicrobiol.2017.47
    [Crossref] [Google Scholar]
  12. 12.  Behr MA, Wilson MA, Gill WP, Salamon H, Schoolnik GK et al. 1999. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science 284:54191520–23
    [Google Scholar]
  13. 13.  Böck D, Medeiros JM, Tsao H, Penz T, Weiss GL et al. 2017. In situ architecture, function, and evolution of a contractile injection system. Science 357:6352713–17
    [Google Scholar]
  14. 14.  Brunet YR, Henin J, Celia H, Cascales E 2014. Type VI secretion and bacteriophage tail tubes share a common assembly pathway. EMBO Rep 15:3315–21
    [Google Scholar]
  15. 15.  Brunet YR, Zoued A, Boyer F, Douzi B, Cascales E 2015. The type VI secretion TssEFGK-VgrG phage-like baseplate is recruited to the TssJLM membrane complex via multiple contacts and serves as assembly platform for tail tube/sheath polymerization. PLOS Genet 11:10e1005545
    [Google Scholar]
  16. 16.  Burghout P, Van Boxtel R Van Gelder P, Ringler P, Müller SA et al. 2004. Structure and electrophysiological properties of the YscC secretin from the type III secretion system of Yersinia enterocolitica. J. . Bacteriol 186:144645–54
    [Google Scholar]
  17. 17.  Cascales E, Atmakuri K, Sarkar MK, Christie PJ 2013. DNA substrate-induced activation of the Agrobacterium VirB/VirD4 type IV secretion system. J. Bacteriol. 195:112691–704
    [Google Scholar]
  18. 18.  Cascales E, Cambillau C 2012. Structural biology of type VI secretion systems. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367:15921102–11
    [Google Scholar]
  19. 19.  Cascales E, Christie PJ 2004. Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304:56741170–73
    [Google Scholar]
  20. 20.  Chami M, Guilvout I, Gregorini M, Rémigy HW, Müller SA et al. 2005. Structural insights into the secretin PulD and its trypsin-resistant core. J. Biol. Chem. 280:4537732–41
    [Google Scholar]
  21. 21.  Chandran V, Fronzes R, Duquerroy S, Cronin N, Navaza J, Waksman G 2009. Structure of the outer membrane complex of a type IV secretion system. Nature 462:72761011–15
    [Google Scholar]
  22. 22.  Chang Y, Rettberg LA, Ortega DR, Jensen GJ 2017. In vivo structures of an intact type VI secretion system revealed by electron cryotomography. EMBO Rep 18:71090–99
    [Google Scholar]
  23. 23.  Chang Y-W, Rettberg LA, Treuner-Lange A, Iwasa J, Søgaard-Andersen L, Jensen GJ 2016. Architecture of the type IVa pilus machine. Science 351:6278aad2001
    [Google Scholar]
  24. 24.  Chang Y-W, Shaffer CL, Rettberg LA, Ghosal D, Jensen GJ 2018. In vivo structures of the Helicobacter pylori cag type IV secretion system. Cell Rep 23:3673–81 https://doi.org/10.1016/j.celrep.2018.03.085
    [Crossref] [Google Scholar]
  25. 25.  Christie PJ 2016. The mosaic type IV secretion systems. EcoSal Plus 7:1395–401
    [Google Scholar]
  26. 26.  Clemens DL, Ge P, Lee B-Y, Horwitz MA, Zhou ZH 2015. Atomic structure of T6SS reveals interlaced array essential to function. Cell 160:5940–51
    [Google Scholar]
  27. 27.  Collins RF, Davidsen L, Derrick JP, Ford RC, Tønjum T 2001. Analysis of the PilQ secretin from Neisseria meningitidis by transmission electron microscopy reveals a dodecameric quaternary structure. J. Bacteriol. 183:133825–32
    [Google Scholar]
  28. 28.  Costa TRD, Ilangovan A, Ukleja M, Redzej A, Santini JM et al. 2016. Structure of the bacterial sex F pilus reveals an assembly of a stoichiometric protein-phospholipid complex. Cell 166:61436–44.e10
    [Google Scholar]
  29. 29.  d'Enfert C, Ryter A, Pugsley AP 1987. Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for production, surface localization and secretion of the lipoprotein pullulanase. EMBO J 6:113531–38
    [Google Scholar]
  30. 30.  Douzi B, Filloux A, Voulhoux R 2012. On the path to uncover the bacterial type II secretion system. Philos. Trans. R. Soc. B Biol. Sci. 367:15921059–72
    [Google Scholar]
  31. 31.  Dubochet J, McDowall AW 1981. Vitrification of pure water for electron microscopy. J. Microsc. 124:33–4
    [Google Scholar]
  32. 32.  Dunstan RA, Heinz E, Wijeyewickrema LC, Pike RN, Purcell AW et al. 2013. Assembly of the type II secretion system such as found in Vibrio cholerae depends on the novel Pilotin AspS. PLOS Pathog 9:1e1003117 https://doi.org/10.1371/journal.ppat.1003117
    [Crossref] [Google Scholar]
  33. 33.  Durand E, Nguyen VS, Zoued A, Logger L, Pehau-Arnaudet G et al. 2015. Biogenesis and structure of a type VI secretion membrane core complex. Nature 523:7562555–60
    [Google Scholar]
  34. 34.  Durand E, Zoued A, Spinelli S, Watson PJH, Aschtgen M-S et al. 2012. Structural characterization and oligomerization of the TssL protein, a component shared by bacterial type VI and type IVb secretion systems. J. Biol. Chem. 287:1714157–68
    [Google Scholar]
  35. 35.  East A, Mechaly AE, Huysmans GHM, Bernarde C, Tello-Manigne D et al. 2016. Structural basis of pullulanase membrane binding and secretion revealed by X-ray crystallography, molecular dynamics and biochemical analysis. Structure 24:192–104
    [Google Scholar]
  36. 36.  Fan E, Chauhan N, Udatha DBRKG, Leo JC, Linke D 2016. Type V secretion systems in bacteria. Microbiol. Spectr. 4:1305–35
    [Google Scholar]
  37. 37.  Fischer W, Haas R, Odenbreit S 2002. Type IV secretion systems in pathogenic bacteria. Int. J. Med. Microbiol. 292:3–4159–68
    [Google Scholar]
  38. 38.  Frank J 1975. Averaging of low exposure electron micrographs of non-periodic objects. Ultramicroscopy 1:2159–62
    [Google Scholar]
  39. 39.  Frick-Cheng AE, Pyburn TM, Voss BJ, McDonald WH, Ohi MD, Cover TL 2016. Molecular and structural analysis of the Helicobacter pylori type IV secretion system core complex. mBio 7:1e02001–15
    [Google Scholar]
  40. 40.  Fronzes R 2009. Structure of a type IV secretion system core complex. Science 323:266–68
    [Google Scholar]
  41. 41.  Fronzes R, Christie PJ, Waksman G 2009. The structural biology of type IV secretion systems. Nat. Rev. Microbiol. 7:10703–14
    [Google Scholar]
  42. 42.  Fronzes R, Schafer E, Wang L, Saibil HR, Orlova EV, Waksman G 2009. Structure of a type IV secretion system core complex. Science 323:5911266–68
    [Google Scholar]
  43. 43.  Galán JE, Lara-Tejero M, Marlovits TC, Wagner S 2014. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu. Rev. Microbiol. 68:415–38
    [Google Scholar]
  44. 44.  Gelvin SB 2003. Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev. 67:116–37
    [Google Scholar]
  45. 45.  Ghosal D, Chang Y, Jeong KC, Vogel JP, Jensen GJ 2017. In situ structure of the Legionella Dot/Icm type IV secretion system by electron cryotomography. EMBO Rep 18:5726–32
    [Google Scholar]
  46. 46.  Goyal P, Krasteva PV, Van Gerven N, Gubellini F, Van den Broeck I et al. 2014. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516:7530250–53
    [Google Scholar]
  47. 47.  Hay ID, Belousoff MJ, Dunstan RA, Bamert RS, Lithgow T 2018. Structure and membrane topography of the Vibrio-type secretin complex from the type 2 secretion system of enteropathogenic Escherichia coli. J. . Bacteriol 200:e00521–17
    [Google Scholar]
  48. 48.  Hay ID, Belousoff MJ, Lithgow T 2017. Structural basis of type 2 secretion system engagement between the inner and outer bacterial membranes. mBio 8:5e01344–17
    [Google Scholar]
  49. 49.  Henderson R 1995. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28:2171–93
    [Google Scholar]
  50. 50.  Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH 1990. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213:4899–929
    [Google Scholar]
  51. 51.  Hobbs M, Mattick JS 1993. Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein‐secretion apparatus: a general system for the formation of surface‐associated protein complexes. Mol. Microbiol. 10:2233–43
    [Google Scholar]
  52. 52.  Hu B, Lara-Tejero M, Kong Q, Galán JE, Liu J 2017. In situ molecular architecture of the Salmonella type III secretion machine. Cell 168:61065–74.e10
    [Google Scholar]
  53. 53.  Hu B, Morado DR, Margolin W, Rohde JR, Arizmendi O et al. 2015. Visualization of the type III secretion sorting platform of Shigella flexneri. . PNAS 112:41047–52
    [Google Scholar]
  54. 54.  Hueck CJ 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62:2379–433
    [Google Scholar]
  55. 55.  Ilangovan A, Kay CWM, Roier S, El Mkami H, Salvadori E et al. 2017. Cryo-EM structure of a relaxase reveals the molecular basis of DNA unwinding during bacterial conjugation. Cell 169:4708–21.e12
    [Google Scholar]
  56. 56.  Journet L, Agrain C, Broz P, Cornelis GR 2003. The needle length of bacterial injectisomes is determined by a molecular ruler. Science 302:1757–60
    [Google Scholar]
  57. 57.  Koo J, Burrows LL, Lynne Howell P 2012. Decoding the roles of pilotins and accessory proteins in secretin escort services. FEMS Microbiol. Lett. 328:1–12
    [Google Scholar]
  58. 58.  Koster M, Bitter W, de Cock H, Allaoui A, Cornelis GR, Tommassen J 1997. The outer membrane component, YscC, of the Yop secretion machinery of Yersinia enterocolitica forms a ring-shaped multimeric complex. Mol. Microbiol. 26:789–97
    [Google Scholar]
  59. 59.  Kube S, Kapitein N, Zimniak T, Herzog F, Mogk A, Wendler P 2014. Structure of the VipA/B type VI secretion complex suggests a contraction-state-specific recycling mechanism. Cell Rep 8:120–30
    [Google Scholar]
  60. 60.  Kubori T, Koike M, Bui XT, Higaki S, Aizawa S-I, Nagai H 2014. Native structure of a type IV secretion system core complex essential for Legionella pathogenesis. PNAS 111:11804–9
    [Google Scholar]
  61. 61.  Kudryashev M, Stenta M, Schmelz S, Amstutz M, Wiesand U et al. 2013. In situ structural analysis of the Yersinia enterocolitica injectisome. eLife 2:e00792 https://doi.org/10.7554/eLife.00792
    [Crossref] [Google Scholar]
  62. 62.  Kudryashev M, Wang RY-R, Brackmann M, Scherer S, Maier T et al. 2015. Structure of the type VI secretion system contractile sheath. Cell 160:5952–62
    [Google Scholar]
  63. 63.  Kuhlbrandt W 2014. The Resolution Revolution. Science 343:61781443–44
    [Google Scholar]
  64. 64.  Kuhlen L, Abrusci P, Johnson S, Gault J, Deme J et al. 2018. Structure of the core of the type three secretion system export apparatus. bioRxiv 249128. https://doi.org/10.1101/249128
    [Crossref]
  65. 65.  Lasica AM, Ksiazek M, Madej M, Potempa J 2017. The type IX secretion system (T9SS): highlights and recent insights into its structure and function. Front. Cell. Infect. Microbiol. 7:215
    [Google Scholar]
  66. 66.  Lawley TD, Klimke WA, Gubbins MJ, Frost LS 2003. F factor conjugation is a true type IV secretion system. FEMS Microbiol. Lett. 224:1–15
    [Google Scholar]
  67. 67.  Li X, Mooney P, Zheng S, Booth CR, Braunfeld MB et al. 2013. Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods. 10:6584–90
    [Google Scholar]
  68. 68.  Lindeberg M, Salmond G, Collmer A 1996. Complementation of deletion mutations in a cloned functional cluster of Erwinia chrysanthemi out genes with Erwinia carotovora out homologues reveals OutC and OutD as candidate gatekeepers of species-specific secretion of proteins via the type II pathway. Mol. Microbiol. 20:175–90
    [Google Scholar]
  69. 69.  Linderoth NA 2008. Scanning transmission electron microscopy the filamentous phage pIV Multimer visualized by scanning transmission electron microscopy. Science 16351997:1635–38
    [Google Scholar]
  70. 70.  López-Castilla A, Thomassin J-L, Bardiaux B, Zheng W, Nivaskumar M et al. 2017. Structure of the calcium-dependent type 2 secretion pseudopilus. Nat. Microbiol. 2:121686–95
    [Google Scholar]
  71. 71.  Lou Y, Rybniker J, Sala C, Cole ST 2017. EspC forms a filamentous structure in the cell envelope of Mycobacterium tuberculosis and impacts ESX-1 secretion. Mol. Microbiol. 103:126–38 https://doi.org/10.1111/mmi.13575
    [Crossref] [Google Scholar]
  72. 72.  Low HH, Gubellini F, Rivera-Calzada A, Braun N, Connery S et al. 2014. Structure of a type IV secretion system. Nature 508:7497550–53
    [Google Scholar]
  73. 73.  Majewski DD, Worrall LJ, Strynadka NC 2018. Secretins revealed: structural insights into the giant gated outer membrane portals of bacteria. Curr. Opin. Struct. Biol. 51:61–72 https://doi.org/10.1016/j.sbi.2018.02.008
    [Crossref] [Google Scholar]
  74. 74.  Makino F, Shen D, Kajimura N, Kawamoto A, Pissaridou P et al. 2016. The architecture of the cytoplasmic region of type III secretion systems. Sci. Rep. 6:33341
    [Google Scholar]
  75. 75.  Marlovits TC, Kubori T, Lara-Tejero M, Thomas D, Unger VM, Galán JE 2006. Assembly of the inner rod determines needle length in the type III secretion injectisome. Nature 441:7093637–40
    [Google Scholar]
  76. 76.  Marlovits TC, Kubori T, Sukhan A, Thomas DR, Galán JE, Unger VM 2004. Structural insights into the assembly of the type III secretion needle complex. Science 306:56981040–42
    [Google Scholar]
  77. 77.  Morgan JLW, Acheson JF, Zimmer J 2017. Structure of a type-1 secretion system ABC transporter. Structure 25:3522–29
    [Google Scholar]
  78. 78.  Nans A, Kudryashev M, Saibil HR, Hayward RD 2015. Structure of a bacterial type III secretion system in contact with a host membrane in situ. Nat. Commun. 6:10114 https://doi.org/10.1038/ncomms10114
    [Crossref] [Google Scholar]
  79. 79.  Nazarov S, Schneider JP, Brackmann M, Goldie KN, Stahlberg H, Basler M 2017. Cryo-EM reconstruction of type VI secretion system baseplate and sheath distal end. EMBO J 37:e97103
    [Google Scholar]
  80. 80.  Ninio S, Roy CR 2007. Effector proteins translocated by Legionella pneumophila: strength in numbers. Trends Microbiol 15:372–80
    [Google Scholar]
  81. 81.  Nivaskumar M, Bouvier G, Campos M, Nadeau N, Yu X et al. 2014. Distinct docking and stabilization steps of the pseudopilus conformational transition path suggest rotational assembly of type IV pilus-like fibers. Structure 22:5685–96
    [Google Scholar]
  82. 82.  Nivaskumar M, Francetic O 2014. Type II secretion system: a magic beanstalk or a protein escalator. Biochem. Biophys. Acta 1843:1568–77
    [Google Scholar]
  83. 83.  Notti RQ, Stebbins CE 2016. The structure and function of type III secretion systems. Microbiol. Spectr. 4(1):1–30
    [Google Scholar]
  84. 83.  Nouwen N, Ranson N, Saibil H, Wolpensinger B, Engel A et al. 1999. Secretin PulD: association with pilot PulS, structure, and ion-conducting channel formation. PNAS 96:148173–77
    [Google Scholar]
  85. 84.  Nunn D 1999. Bacterial type II protein export and pilus biogenesis: more than just homologies?. Trends Cell Biol 9:10402–8
    [Google Scholar]
  86. 85.  Park J, Zhang Y, Chen C, Dudley EG, Harvill ET 2015. Diversity of secretion systems associated with virulence characteristics of the classical bordetellae. Microbiology 161:122328–40 https://doi.org/10.1099/mic.0.000197
    [Crossref] [Google Scholar]
  87. 86.  Pineau C, Guschinskaya N, Robert X, Gouet P, Ballut L, Shevchik VE 2014. Substrate recognition by the bacterial type II secretion system: more than a simple interaction. Mol. Microbiol. 94:1126–40
    [Google Scholar]
  88. 87.  Planamente S, Salih O, Manoli E, Albesa-Jové D, Freemont PS, Filloux A 2016. TssA forms a gp6-like ring attached to the type VI secretion sheath. EMBO J 35:151613–27
    [Google Scholar]
  89. 88.  Pugsley AP 1993. The complete general secretory pathway in gram-negative bacteria. Microbiol. Rev. 57:150–108
    [Google Scholar]
  90. 99.  Pugsley AP, Kornacker MG, Poquet I 1991. The general protein‐export pathway is directly required for extracellular pullulanase secretion in Escherichia coli k12. Mol. Microbiol. 5:2343–52
    [Google Scholar]
  91. 90.  Pym AS, Brodin P, Brosch R, Huerre M, Cole ST 2002. Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol. . Microbiol 46:3709–17
    [Google Scholar]
  92. 91.  Radics J, Königsmaier L, Marlovits TC 2014. Structure of a pathogenic type 3 secretion system in action. Nat. Struct. Mol. Biol. 21:182–87
    [Google Scholar]
  93. 92.  Rapisarda C, Fronzes R 2017. Secretion systems used by bacteria to subvert host functions. Bacterial Evasion of the Host Immune System P Escoll 1–40 Poole, UK: Caister Acad.
    [Google Scholar]
  94. 93.  Redzej A, Ukleja M, Connery S, Trokter M, Felisberto‐Rodrigues C et al. 2017. Structure of a VirD4 coupling protein bound to a VirB type IV secretion machinery. EMBO J 36:20e201796629
    [Google Scholar]
  95. 94.  Reichow SL, Korotkov KV, Hol WGJ, Gonen T 2010. Structure of the cholera toxin secretion channel in its closed state. Nat. Struct. Mol. Biol. 17:101226–32
    [Google Scholar]
  96. 96.  Rivera-Calzada A, Fronzes R, Savva CG, Chandran V, Lian PW et al. 2013. Structure of a bacterial type IV secretion core complex at subnanometre resolution. EMBO J 32:81195–204
    [Google Scholar]
  97. 97.  Rosenberg OS, Dovala D, Li X, Connolly L, Bendebury A et al. 2015. Substrates control multimerization and activation of the multi-domain APTase motor of type VII secretion. Cell 161:501–12
    [Google Scholar]
  98. 98.  Russell AB, Hood RD, Bui NK, LeRoux M, Vollmer W, Mougous JD 2011. Type VI secretion delivers bacteriolytic effectors to target cells. Nature 475:7356343–47
    [Google Scholar]
  99. 99.  Salih O, He S, Planamente S, Stach L, MacDonald JT et al. 2017. Atomic structure of type VI contractile sheath from Pseudomonas aeruginosa. . Structure 26:329–336.e3
    [Google Scholar]
  100. 100.  Sandkvist M, Bagdasarian M, Howard SP, DiRita VJ 1995. Interaction between the autokinase EpsE and EpsL in the cytoplasmic membrane is required for extracellular secretion in Vibrio cholerae. . EMBO J 14:81664–73
    [Google Scholar]
  101. 101.  Scheres SHW 2012. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180:3519–30
    [Google Scholar]
  102. 102.  Schraidt O, Lefebre MD, Brunner MJ, Schmied WH, Schmidt A et al. 2010. Topology and organization of the Salmonella typhimurium type III secretion needle complex components. PLOS Pathog 6:4e1000824
    [Google Scholar]
  103. 103.  Schraidt O, Marlovits TC 2011. Three-dimensional model of Salmonella’s needle complex at subnanometer resolution. Science 331:60211192–95
    [Google Scholar]
  104. 104.  Shneider MM, Buth SA, Ho BT, Basler M, Mekalanos JJ, Leiman PG 2013. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike. Nature 500:7462350–53
    [Google Scholar]
  105. 105.  Spreter T, Yip CK, Sanowar S, André I, Kimbrough TG et al. 2009. A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system. Nat. Struct. Mol. Biol. 16:5468–76
    [Google Scholar]
  106. 106.  Tang G, Peng L, Baldwin PR, Mann DS, Jiang W et al. 2007. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157:138–46
    [Google Scholar]
  107. 107.  Tosi T, Estrozi LF, Job V, Guilvout I, Pugsley AP et al. 2014. Structural similarity of secretins from type II and type III secretion systems. Structure 22:91348–55
    [Google Scholar]
  108. 108.  Trokter M, Waksman G 2018. Translocation through the conjugative type 4 secretion system requires unfolding of its protein substrate. J. Bacteriol. 200:e00615–17
    [Google Scholar]
  109. 109.  Unnikrishnan M, Constantinidou C, Palmer T, Pallen MJ 2017. The enigmatic Esx proteins: looking beyond mycobacteria. Trends Microbiol 25:192–204
    [Google Scholar]
  110. 110.  Voulhoux R, Ball G, Ize B, Vasil ML, Lazdunski A et al. 2001. Involvement of the twin-arginine translocation system in protein secretion via the type II pathway. EMBO J 20:236735–41
    [Google Scholar]
  111. 111.  Wan W, Briggs JAG 2016. Cryo-electron tomography and subtomogram averaging. Methods Enzymol 579:329–67
    [Google Scholar]
  112. 112.  Wang J, Brackmann M, Castaño-Díez D, Kudryashev M, Goldie KN et al. 2017. Cryo-EM structure of the extended type VI secretion system sheath-tube complex. Nat. Microbiol. 2:111507–12
    [Google Scholar]
  113. 113.  Waters CM, Bassler BL 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21:319–46
    [Google Scholar]
  114. 114.  Winstanley C, Hart CA 2001. Type III secretion systems and pathogenicity islands. J. Med. Microbiol. 50:2116–26
    [Google Scholar]
  115. 115.  Wong K-W 2018. The Role of ESX-1 in Mycobacterium tuberculosis pathogenesis. Tuberculosis and the Tubercle Bacillus WR Jaccobs Jr., H McShane, V Mizrahi, IM Orme 627–34 Washington, DC: Am. Soc. Microbiol.
    [Google Scholar]
  116. 116.  Worrall LJ, Hong C, Vuckovic M, Deng W, Bergeron JRC et al. 2016. Near-atomic-resolution cryo-EM analysis of the Salmonella T3S injectisome basal body. Nature 540:7634597–601
    [Google Scholar]
  117. 117.  Yan Z, Yin M, Xu D, Zhu Y, Li X 2017. Structural insights into the secretin translocation channel in the type II secretion system. Nat. Struct. Mol. Biol. 24:2177–83
    [Google Scholar]
  118. 118.  Yip C, Kimbrough T, Felise H, Vuckovic M, Thomas N et al. 2005. Structural characterization of the molecular platform for type III secretion system assembly. Nature 435:7042702–7
    [Google Scholar]
  119. 119.  Zhang XL, Li DF, Fleming J, Wang LW, Zhou Y et al. 2015. Core component EccB1 of the Mycobacterium tuberculosis type VII secretion system is a periplasmic ATPase. FASEB J 29:124808–14
    [Google Scholar]
  120. 120.  Zoued A, Durand E, Brunet YR, Spinelli S, Douzi B et al. 2016. Priming and polymerization of a bacterial contractile tail structure. Nature 531:759259–63
    [Google Scholar]
/content/journals/10.1146/annurev-micro-090817-062702
Loading
/content/journals/10.1146/annurev-micro-090817-062702
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error