1932

Abstract

Sexual differentiation of malaria parasites from the asexual blood stage into gametocytes is an essential part of the life cycle, as gametocytes are the form that is taken up by the mosquito host. Because of the essentiality of this process for transmission to the mosquito, gametocytogenesis is an extremely attractive target for therapeutic interventions. The subject of this review is the considerable progress that has been made in recent years in elucidating the molecular mechanisms governing this important differentiation process. In particular, a number of critical transcription factors and epigenetic regulators have emerged as crucial elements in the regulation of commitment. The identification of these factors has allowed us to understand better than ever before the events occurring prior to and during commitment to sexual development and offers potential for new therapeutic interventions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090817-062712
2018-09-08
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/72/1/annurev-micro-090817-062712.html?itemId=/content/journals/10.1146/annurev-micro-090817-062712&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Alano P 2007. Plasmodium falciparum gametocytes: still many secrets of a hidden life. Mol. Microbiol. 66:291–302
    [Google Scholar]
  2. 2.  Alano P, Carter R 1990. Sexual differentiation in malaria parasites. Annu. Rev. Microbiol. 44:429–49
    [Google Scholar]
  3. 3.  Baker DA 2010. Malaria gametocytogenesis. Mol. Biochem. Parasitol. 172:57–65
    [Google Scholar]
  4. 4.  Bechtsi DP, Waters AP 2017. Genomics and epigenetics of sexual commitment in Plasmodium. Int. J. Parasitol. 47:425–34
    [Google Scholar]
  5. 5.  Bousema T, Drakeley C 2011. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin. Microbiol. Rev. 24:377–410
    [Google Scholar]
  6. 6.  Brancucci NM, Bertschi NL, Zhu L, Niederwieser I, Chin WH et al. 2014. Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell Host Microbe 16:165–76
    [Google Scholar]
  7. 7.  Brancucci NM, Goldowitz I, Buchholz K, Werling K, Marti M 2015. An assay to probe Plasmodium falciparum growth, transmission stage formation and early gametocyte development. Nat. Protoc. 10:1131–42
    [Google Scholar]
  8. 8.  Brancucci NMB, Gerdt JP, Wang C, De Niz M Philip N et al. 2017. Lysophosphatidylcholine regulates sexual stage differentiation in the human malaria parasite Plasmodium falciparum. . Cell 171:1532–44.e15
    [Google Scholar]
  9. 9.  Bruce MC, Alano P, Duthie S, Carter R 1990. Commitment of the malaria parasite Plasmodium falciparum to sexual and asexual development. Parasitology 100:Part 2191–200
    [Google Scholar]
  10. 10.  Buchholz K, Burke TA, Williamson KC, Wiegand RC, Wirth DF, Marti M 2011. A high-throughput screen targeting malaria transmission stages opens new avenues for drug development. J. Infect. Dis. 203:1445–53
    [Google Scholar]
  11. 11.  Buckling A, Ranford-Cartwright LC, Miles A, Read AF 1999. Chloroquine increases Plasmodium falciparum gametocytogenesis in vitro. Parasitology 118:Part 4339–46
    [Google Scholar]
  12. 12.  Bunnik E, Cook K, Varoquaux N, Batugedara G, Prudhomme J et al. 2018. Changes in genome organization of parasite-specific gene families during the Plasmodium transmission stages. Nat. Commun. 9:1910
    [Google Scholar]
  13. 13.  Bunnik EM, Batugedara G, Saraf A, Prudhomme J, Florens L, Le Roch KG 2016. The mRNA-bound proteome of the human malaria parasite Plasmodium falciparum. . Genome Biol 17:147
    [Google Scholar]
  14. 14.  Bunnik EM, Polishko A, Prudhomme J, Ponts N, Gill SS et al. 2014. DNA-encoded nucleosome occupancy is associated with transcription levels in the human malaria parasite Plasmodium falciparum. . BMC Genom 15:347
    [Google Scholar]
  15. 15.  Bushell E, Gomes AR, Sanderson T, Anar B, Girling G et al. 2017. Functional profiling of a Plasmodium genome reveals an abundance of essential genes. Cell 170:260–72.e8
    [Google Scholar]
  16. 16.  Claessens A, Affara M, Assefa SA, Kwiatkowski DP, Conway DJ 2017. Culture adaptation of malaria parasites selects for convergent loss-of-function mutants. Sci. Rep. 7:41303
    [Google Scholar]
  17. 17.  Coetzee N, Sidoli S, van Biljon R, Painter H, Llinás M et al. 2017. Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites. Sci. Rep. 7:607
    [Google Scholar]
  18. 18.  Coleman BI, Skillman KM, Jiang RH, Childs LM, Altenhofen LM et al. 2014. A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host Microbe 16:177–86
    [Google Scholar]
  19. 19.  Dixon MW, Thompson J, Gardiner DL, Trenholme KR 2008. Sex in Plasmodium: a sign of commitment. Trends Parasitol 24:168–75
    [Google Scholar]
  20. 20.  Duffy MF, Selvarajah SA, Josling GA, Petter M 2013. Epigenetic regulation of the Plasmodium falciparum genome. Brief. Funct. Genom. 13:203–16
    [Google Scholar]
  21. 21.  Dyer M, Day K 2000. Expression of Plasmodium falciparum trimeric G proteins and their involvement in switching to sexual development. Mol. Biochem. Parasitol. 108:67–78
    [Google Scholar]
  22. 22.  Eksi S, Haile Y, Furuya T, Ma L, Su X, Williamson KC 2005. Identification of a subtelomeric gene family expressed during the asexual-sexual stage transition in Plasmodium falciparum. Mol. Biochem. Parasitol. 143:90–99
    [Google Scholar]
  23. 23.  Eksi S, Morahan BJ, Haile Y, Furuya T, Jiang H et al. 2012. Plasmodium falciparum gametocyte development 1 (Pfgdv1) and gametocytogenesis early gene identification and commitment to sexual development. PLOS Pathog 8:e1002964
    [Google Scholar]
  24. 24.  Filarsky M, Fraschka SA, Niederwieser I, Brancucci NMB, Carrington E et al. 2018. GDV1 induces sexual commitment of malaria parasites by antagonizing HP1-dependent gene silencing. Science 359:1259–63
    [Google Scholar]
  25. 25.  Fivelman QL, McRobert L, Sharp S, Taylor CJ, Saeed M et al. 2007. Improved synchronous production of Plasmodium falciparum gametocytes in vitro. Mol. Biochem. Parasitol. 154:119–23
    [Google Scholar]
  26. 26.  Flueck C, Bartfai R, Niederwieser I, Witmer K, Alako BTF et al. 2010. A major role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome end biology. PLOS Pathog 6:e1000784
    [Google Scholar]
  27. 27.  Flueck C, Bartfai R, Volz J, Niederwieser I, Salcedo-Amaya AM et al. 2009. Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. PLOS Pathog 5:e1000569
    [Google Scholar]
  28. 28.  Fraschka SA, Filarsky M, Hoo R, Niederwieser I, Yam XY et al. 2018. Comparative heterochromatin profiling reveals conserved and unique epigenome signatures linked to adaptation and development of malaria parasites. Cell Host Microbe 23:407–20.e8
    [Google Scholar]
  29. 29.  Gautret P, Motard A 1999. Periodic infectivity of Plasmodium gametocytes to the vector: a review. Parasite 6:103–11
    [Google Scholar]
  30. 30.  Gissot M, Refour P, Briquet S, Boschet C, Coupe S et al. 2004. Transcriptome of 3D7 and its gametocyte-less derivative F12 Plasmodium falciparum clones during erythrocytic development using a gene-specific microarray assigned to gene regulation, cell cycle and transcription factors. Gene 341:267–77
    [Google Scholar]
  31. 31.  Gomez-Diaz E, Yerbanga RS, Lefevre T, Cohuet A, Rowley MJ et al. 2017. Epigenetic regulation of Plasmodium falciparum clonally variant gene expression during development in Anopheles gambiae. Sci. Rep. 7:40655
    [Google Scholar]
  32. 32.  Guttery DS, Roques M, Holder AA, Tewari R 2015. Commit and transmit: molecular players in Plasmodium sexual development and zygote differentiation. Trends Parasitol 31:676–85
    [Google Scholar]
  33. 33.  Hawking F, Wilson ME, Gammage K 1971. Evidence for cyclic development and short-lived maturity in the gametocytes of Plasmodium falciparum. Trans. R. Soc. Trop. Med. Hygiene 65:549–59
    [Google Scholar]
  34. 34.  Ikadai H, Shaw Saliba K, Kanzok SM, McLean KJ, Tanaka TQ et al. 2013. Transposon mutagenesis identifies genes essential for Plasmodium falciparum gametocytogenesis. PNAS 110:E1676–84
    [Google Scholar]
  35. 35.  Joice R, Nilsson SK, Montgomery J, Dankwa S, Egan E et al. 2014. Plasmodium falciparum transmission stages accumulate in the human bone marrow. Sci. Transl. Med. 6:244re5
    [Google Scholar]
  36. 36.  Josling GA, Llinás M 2015. Sexual development in Plasmodium parasites: knowing when it's time to commit. Nat. Rev. Microbiol. 13:573–87
    [Google Scholar]
  37. 37.  Kafsack BF, Rovira-Graells N, Clark TG, Bancells C, Crowley VM et al. 2014. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 507:248–52
    [Google Scholar]
  38. 38.  Kaushal DC, Carter R, Miller LH, Krishna G 1980. Gametocytogenesis by malaria parasites in continuous culture. Nature 286:490–92
    [Google Scholar]
  39. 39.  Kent RS, Modrzynska KK, Cameron R, Philip N, Billker O, Waters AP 2018. Inducible developmental reprogramming redefines commitment to sexual development by a malaria parasite. Nat. Microbiol. In press
    [Google Scholar]
  40. 40.  Lasonder E, Rijpma SR, van Schaijk BC, Hoeijmakers WA, Kensche PR et al. 2016. Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular insight into sex-specific processes and translational repression. Nucleic Acids Res 44:6087–101
    [Google Scholar]
  41. 41.  Laveran A 1884. Traité des Fièvres Palustres avec la Description des Microbes du Paludisme Paris: Octave Doin
    [Google Scholar]
  42. 42.  Liu Z, Miao J, Cui L 2011. Gametocytogenesis in malaria parasite: commitment, development and regulation. Future Microbiol 6:1351–69
    [Google Scholar]
  43. 43.  Lopez-Barragan MJ, Lemieux J, Quinones M, Williamson KC, Molina-Cruz A et al. 2011. Directional gene expression and antisense transcripts in sexual and asexual stages of Plasmodium falciparum. . BMC Genom 12:587
    [Google Scholar]
  44. 44.  Lopez-Rubio JJ, Mancio-Silva L, Scherf A 2009. Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 5:179–90
    [Google Scholar]
  45. 45.  Lu XM, Batugedara G, Lee M, Prudhomme J, Bunnik EM, Le Roch KG 2017. Nascent RNA sequencing reveals mechanisms of gene regulation in the human malaria parasite Plasmodium falciparum. . Nucleic Acids Res 45:7825–40
    [Google Scholar]
  46. 46.  Maier AG, Rug M, O'Neill MT, Brown M, Chakravorty S et al. 2008. Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 134:48–61
    [Google Scholar]
  47. 47.  Mair GR, Braks JA, Garver LS, Wiegant JC, Hall N et al. 2006. Regulation of sexual development of Plasmodium by translational repression. Science 313:667–69
    [Google Scholar]
  48. 48.  Martins RM, Macpherson CR, Claes A, Scheidig-Benatar C, Sakamoto H et al. 2017. An ApiAP2 member regulates expression of clonally variant genes of the human malaria parasite Plasmodium falciparum. Sci. . Rep 7:14042
    [Google Scholar]
  49. 49.  Miao J, Fan Q, Cui L, Li J 2006. The malaria parasite Plasmodium falciparum histones: organization, expression, and acetylation. Gene 369:53–65
    [Google Scholar]
  50. 50.  Miao J, Fan Q, Parker D, Li X, Li J, Cui L 2013. Puf mediates translation repression of transmission-blocking vaccine candidates in malaria parasites. PLOS Pathog 9:e1003268
    [Google Scholar]
  51. 51.  Miao J, Li J, Fan Q, Li X, Cui L 2010. The Puf-family RNA-binding protein PfPuf2 regulates sexual development and sex differentiation in the malaria parasite Plasmodium falciparum. J. Cell Sci. 123:1039–49
    [Google Scholar]
  52. 52.  Modrzynska K, Pfander C, Chappell L, Yu L, Suarez C et al. 2017. A knockout screen of ApiAP2 genes reveals networks of interacting transcriptional regulators controlling the Plasmodium life cycle. Cell Host Microbe 21:11–22
    [Google Scholar]
  53. 53.  Munoz EE, Hart KJ, Walker MP, Kennedy MF, Shipley MM, Lindner SE 2017. ALBA4 modulates its stage-specific interactions and specific mRNA fates during Plasmodium yoelii growth and transmission. Mol. Microbiol. 106:266–84
    [Google Scholar]
  54. 54.  Ngwa C, Rosa TF, Pradel G 2016. The biology of malaria gametocytes. Current Topics in Malaria AJ Rodriguez-Morales 117–44 London: InTech Open
    [Google Scholar]
  55. 55.  Nilsson SK, Childs LM, Buckee C, Marti M 2015. Targeting human transmission biology for malaria elimination. PLOS Pathog 11:e1004871
    [Google Scholar]
  56. 56.  Painter HJ, Campbell TL, Llinás M 2011. The apicomplexan AP2 family: integral factors regulating Plasmodium development. Mol. Biochem. Parasitol. 176:1–7
    [Google Scholar]
  57. 57.  Painter HJ, Carrasquilla M, Llinás M 2017. Capturing in vivo RNA transcriptional dynamics from the malaria parasite Plasmodium falciparum. . Genome Res 27:1074–86
    [Google Scholar]
  58. 58.  Peatey CL, Dixon MW, Gardiner DL, Trenholme KR 2013. Temporal evaluation of commitment to sexual development in Plasmodium falciparum. Malar. J. 12:134
    [Google Scholar]
  59. 59.  Pelle KG, Oh K, Buchholz K, Narasimhan V, Joice R et al. 2015. Transcriptional profiling defines dynamics of parasite tissue sequestration during malaria infection. Genome Med 7:19
    [Google Scholar]
  60. 60.  Poran A, Notzel C, Aly O, Mencia-Trinchant N, Harris CT et al. 2017. Single-cell RNA sequencing reveals a signature of sexual commitment in malaria parasites. Nature 551:95–99
    [Google Scholar]
  61. 61.  Prudêncio M, Rodriguez A, Mota MM 2006. The silent path to thousands of merozoites: the Plasmodium liver stage. Nat. Rev. Microbiol. 4:11849–56
    [Google Scholar]
  62. 62.  Reddy BP, Shrestha S, Hart KJ, Liang X, Kemirembe K et al. 2015. A bioinformatic survey of RNA-binding proteins in Plasmodium. . BMC Genom 16:890
    [Google Scholar]
  63. 63.  Reid AJ, Talman AM, Bennett HM, Gomes AR, Sanders MJ et al. 2018. Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites. eLife 7:e33105
    [Google Scholar]
  64. 64.  Roncales M, Vidal-Mas J, Leroy D, Herreros E 2012. Comparison and optimization of different methods for the in vitro production of Plasmodium falciparum gametocytes. J. Parasitol. Res. 2012:927148
    [Google Scholar]
  65. 65.  Ross R 1910. The Prevention of Malaria New York: E.P. Dutton
    [Google Scholar]
  66. 66.  Shrestha S, Li X, Ning G, Miao J, Cui L 2016. The RNA-binding protein Puf1 functions in the maintenance of gametocytes in Plasmodium falciparum. J. Cell Sci. 129:3144–52
    [Google Scholar]
  67. 67.  Silvestrini F, Alano P, Williams JL 2000. Commitment to the production of male and female gametocytes in the human malaria parasite Plasmodium falciparum. . Parasitology 121:Part 5465–71
    [Google Scholar]
  68. 68.  Silvestrini F, Bozdech Z, Lanfrancotti A, Di Giulio E, Bultrini E et al. 2005. Genome-wide identification of genes upregulated at the onset of gametocytogenesis in Plasmodium falciparum. Mol. Biochem. Parasitol. 143:100–10
    [Google Scholar]
  69. 69.  Sinden RE 2009. Malaria, sexual development and transmission: retrospect and prospect. Parasitology 136:1427–34
    [Google Scholar]
  70. 70.  Sinden RE, Carter R, Drakeley C, Leroy D 2012. The biology of sexual development of Plasmodium: the design and implementation of transmission-blocking strategies. Malar. J. 11:70
    [Google Scholar]
  71. 71.  Sinha A, Hughes KR, Modrzynska KK, Otto TD, Pfander C et al. 2014. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. . Nature 507:253–57
    [Google Scholar]
  72. 72.  Smith TG, Lourenco P, Carter R, Walliker D, Ranford-Cartwright LC 2000. Commitment to sexual differentiation in the human malaria parasite, Plasmodium falciparum. Parasitology 121:Part 2127–33
    [Google Scholar]
  73. 73.  Smith TG, Walliker D, Ranford-Cartwright LC 2002. Sexual differentiation and sex determination in the Apicomplexa. Trends Parasitol 18:315–23
    [Google Scholar]
  74. 74.  Talman AM, Domarle O, McKenzie FE, Ariey F, Robert V 2004. Gametocytogenesis: the puberty of Plasmodium falciparum. Malar. J. 3:24
    [Google Scholar]
  75. 75.  Tiburcio M, Dixon MW, Looker O, Younis SY, Tilley L, Alano P 2015. Specific expression and export of the Plasmodium falciparum Gametocyte EXported Protein-5 marks the gametocyte ring stage. Malar. J. 14:334
    [Google Scholar]
  76. 76.  Tiburcio M, Niang M, Deplaine G, Perrot S, Bischoff E et al. 2012. A switch in infected erythrocyte deformability at the maturation and blood circulation of Plasmodium falciparum transmission stages. Blood 119:e172–80
    [Google Scholar]
  77. 77.  Trager W, Gill GS 1992. Enhanced gametocyte formation in young erythrocytes by Plasmodium falciparum in vitro. J. Protozool. 39:429–32
    [Google Scholar]
  78. 78.  Trelle MB, Salcedo-Amaya AM, Cohen A, Stunnenberg HG, Jensen ON 2009. Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum. J. Proteome Res. 8:3439–50
    [Google Scholar]
  79. 79.  Volz J, Carvalho TG, Ralph SA, Gilson P, Thompson J et al. 2010. Potential epigenetic regulatory proteins localise to distinct nuclear sub-compartments in Plasmodium falciparum. Int. J. Parasitol. 40:109–21
    [Google Scholar]
  80. 80.  Walzer KA, Kubicki DM, Tang X, Chi JT 2018. Single-cell analysis reveals distinct gene expression and heterogeneity in male and female Plasmodium falciparum gametocytes. mSphere 3:e00130–18
    [Google Scholar]
  81. 81.  Wernsdorfer W, McGregor I 1988. Malaria: Principles and Practice of Malariology Edinburgh, UK: Churchill Livingstone
    [Google Scholar]
  82. 82.  Williams JL 1999. Stimulation of Plasmodium falciparum gametocytogenesis by conditioned medium from parasite cultures. Am. J. Trop. Med. Hyg. 60:7–13
    [Google Scholar]
  83. 83. World Health Organ. 2017. World malaria report 2017. Rep. World Health Organ. Geneva, Switz.:
  84. 84.  Young JA, Fivelman QL, Blair PL, de la Vega P, Le Roch KG et al. 2005. The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol. Biochem. Parasitol. 143:67–79
    [Google Scholar]
  85. 85.  Yuda M, Iwanaga S, Kaneko I, Kato T 2015. Global transcriptional repression: an initial and essential step for Plasmodium sexual development. PNAS 112:12824–29
    [Google Scholar]
  86. 86.  Yuda M, Iwanaga S, Shigenobu S, Kato T, Kaneko I 2010. Transcription factor AP2-Sp and its target genes in malarial sporozoites. Mol. Microbiol. 75:854–63
    [Google Scholar]
  87. 87.  Yuda M, Iwanaga S, Shigenobu S, Mair GR, Janse CJ et al. 2009. Identification of a transcription factor in the mosquito-invasive stage of malaria parasites. Mol. Microbiol. 71:1402–14
    [Google Scholar]
  88. 88.  Zhang C, Li Z, Cui H, Jiang Y, Yang Z et al. 2017. Systematic CRISPR-Cas9-mediated modifications of Plasmodium yoelii ApiAP2 genes reveal functional insights into parasite development. mBio 8:e01986–17
    [Google Scholar]
/content/journals/10.1146/annurev-micro-090817-062712
Loading
/content/journals/10.1146/annurev-micro-090817-062712
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error