1932

Abstract

Eukaryotic pathogens must survive in different hosts, respond to changing environments, and exploit specialized niches to propagate. parasites cause human malaria during bloodstream infections, where they must persist long enough to be transmitted. Parasites have evolved diverse strategies of variant gene expression that control critical biological processes of blood-stage infections, including antigenic variation, erythrocyte invasion, innate immune evasion, and nutrient acquisition, as well as life-cycle transitions. Epigenetic mechanisms within the parasite are being elucidated, with discovery of epigenomic marks associated with gene silencing and activation, and the identification of epigenetic regulators and chromatin proteins that are required for the switching and maintenance of gene expression. Here, we review the key epigenetic processes that facilitate transition through the parasite life cycle and epigenetic regulatory mechanisms utilized by parasites to survive changing environments and consider epigenetic switching in the context of the outcome of human infections.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090817-062722
2018-09-08
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/72/1/annurev-micro-090817-062722.html?itemId=/content/journals/10.1146/annurev-micro-090817-062722&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Allis CD, Jenuwein T 2016. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17:8487–500
    [Google Scholar]
  2. 2.  Amit-Avraham I, Pozner G, Eshar S, Fastman Y, Kolevzon N et al. 2015. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum. . PNAS 112:9E982–91
    [Google Scholar]
  3. 3.  Ay F, Bunnik EM, Varoquaux N, Bol SM, Prudhomme J et al. 2014. Three-dimensional modeling of the P. falciparum genome during the erythrocytic cycle reveals a strong connection between genome architecture and gene expression. Genome Res 24:6974–88
    [Google Scholar]
  4. 4.  Bachmann A, Petter M, Krumkamp R, Esen M, Held J et al. 2016. Mosquito passage dramatically changes var gene expression in controlled human Plasmodium falciparum infections. PLOS Pathog 12:4e1005538
    [Google Scholar]
  5. 5.  Bachmann A, Petter M, Tilly A-K, Biller L, Uliczka KA et al. 2012. Temporal expression and localization patterns of variant surface antigens in clinical Plasmodium falciparum isolates during erythrocyte schizogony. PLOS ONE 7:11e49540
    [Google Scholar]
  6. 6.  Barber BE, William T, Grigg MJ, Parameswaran U, Piera KA et al. 2015. Parasite biomass-related inflammation, endothelial activation, microvascular dysfunction and disease severity in vivax malaria. PLOS Pathog 11:1e1004558
    [Google Scholar]
  7. 7.  Bártfai R, Hoeijmakers WAM, Salcedo-Amaya AM, Smits AH, Janssen-Megens E et al. 2010. H2A.Z demarcates intergenic regions of the Plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3. PLOS Pathog 6:12e1001223
    [Google Scholar]
  8. 8.  Baruch DI, Pasloske BL, Singh HB, Bi X, Ma XC et al. 1995. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82:177–87
    [Google Scholar]
  9. 9.  Baum J, Maier AG, Good RT, Simpson KM, Cowman AF 2005. Invasion by P. falciparum merozoites suggests a hierarchy of molecular interactions. PLOS Pathog 1:4e37
    [Google Scholar]
  10. 10.  Bei AK, Brugnara C, Duraisingh MT 2010. In vitro genetic analysis of an erythrocyte determinant of malaria infection. J. Infect. Dis. 202:111722–27
    [Google Scholar]
  11. 11.  Beri D, Balan B, Chaubey S, Subramaniam S, Surendra B, Tatu U 2017. A disrupted transsulphuration pathway results in accumulation of redox metabolites and induction of gametocytogenesis in malaria. Sci Rep 7:40213
    [Google Scholar]
  12. 12.  Brancucci NMB, Bertschi NL, Zhu L, Niederwieser I, Chin WH et al. 2014. Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell Host Microbe 16:2165–76
    [Google Scholar]
  13. 13.  Brancucci NMB, Gerdt JP, Wang C, De Niz M, Philip N et al. 2017. Lysophosphatidylcholine regulates sexual stage differentiation in the human malaria parasite Plasmodium falciparum. . Cell 171:71532–44.e15
    [Google Scholar]
  14. 14.  Brancucci NMB, Witmer K, Schmid CD, Flueck C, Voss TS 2012. Identification of a cis-acting DNA-protein interaction implicated in singular var gene choice in Plasmodium falciparum. . Cell Microbiol 14:121836–48
    [Google Scholar]
  15. 15.  Broadbent KM, Broadbent JC, Ribacke U, Wirth D, Rinn JL, Sabeti PC 2015. Strand-specific RNA sequencing in Plasmodium falciparum malaria identifies developmentally regulated long non-coding RNA and circular RNA. BMC Genom 16:1454
    [Google Scholar]
  16. 16.  Brown KN, Brown IN 1965. Immunity to malaria: antigenic variation in chronic infections of Plasmodium knowlesi. . Nature 208:50171286–88
    [Google Scholar]
  17. 17.  Bunnik EM, Polishko A, Prudhomme J, Ponts N, Gill SS et al. 2014. DNA-encoded nucleosome occupancy is associated with transcription levels in the human malaria parasite Plasmodium falciparum. . BMC Genom 15:1347
    [Google Scholar]
  18. 18.  Bushell E, Gomes AR, Sanderson T, Anar B, Girling G et al. 2017. Functional profiling of a Plasmodium genome reveals an abundance of essential genes. Cell 170:2260–68
    [Google Scholar]
  19. 19.  Chaubey S, Grover M, Tatu U 2014. Endoplasmic reticulum stress triggers gametocytogenesis in the malaria parasite. J. Biol. Chem. 289:2416662–74
    [Google Scholar]
  20. 20.  Chen Q, Fernandez V, Sundström A, Schlichtherle M, Datta S et al. 1998. Developmental selection of var gene expression in Plasmodium falciparum. . Nature 394:6691392–95
    [Google Scholar]
  21. 21.  Coleman BI, Ribacke U, Manary M, Bei AK, Winzeler EA et al. 2012. Nuclear repositioning precedes promoter accessibility and is linked to the switching frequency of a Plasmodium falciparum invasion gene. Cell Host Microbe 12:6739–50
    [Google Scholar]
  22. 22.  Coleman BI, Skillman KM, Jiang RHY, Childs LM, Altenhofen LM et al. 2014. A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host Microbe 16:2177–86
    [Google Scholar]
  23. 23.  Comeaux CA, Coleman BI, Bei AK, Whitehurst N, Duraisingh MT 2011. Functional analysis of epigenetic regulation of tandem RhopH1/clag genes reveals a role in Plasmodium falciparum growth. Mol. Microbiol. 80:2378–90
    [Google Scholar]
  24. 24.  Cortés A, Carret C, Kaneko O, Yim Lim BYS, Ivens A, Holder AA 2007. Epigenetic silencing of Plasmodium falciparum genes linked to erythrocyte invasion. PLOS Pathog 3:8e107
    [Google Scholar]
  25. 25.  Cowman AF, Crabb BS 2006. Invasion of red blood cells by malaria parasites. Cell 124:4755–66
    [Google Scholar]
  26. 26.  Cowman AF, Healer J, Marapana D, Marsh K 2016. Malaria: biology and disease. Cell 167:3610–24
    [Google Scholar]
  27. 27.  Crowley VM, Rovira-Graells N, Ribas de Pouplana L, Cortés A 2011. Heterochromatin formation in bistable chromatin domains controls the epigenetic repression of clonally variant Plasmodium falciparum genes linked to erythrocyte invasion. Mol. Microbiol. 80:2391–406
    [Google Scholar]
  28. 28.  Cui L, Fan Q, Cui L, Miao J 2008. Histone lysine methyltransferases and demethylases in Plasmodium falciparum.Int. J. . Parasitol 38:101083–97
    [Google Scholar]
  29. 29.  Dastidar EG, Dzeyk K, Krijgsveld J, Malmquist NA, Doerig C et al. 2013. Comprehensive histone phosphorylation analysis and identification of Pf14–3–3 protein as a histone H3 phosphorylation reader in malaria parasites. PLOS ONE 8:1e53179
    [Google Scholar]
  30. 30.  Deans A-M, Nery S, Conway DJ, Kai O, Marsh K, Rowe JA 2007. Invasion pathways and malaria severity in Kenyan Plasmodium falciparum clinical isolates. Infect. Immun. 75:63014–20
    [Google Scholar]
  31. 31.  Deitsch KW, Dzikowski R 2017. Variant gene expression and antigenic variation by malaria parasites. Annu. Rev. Microbiol. 71:1625–41
    [Google Scholar]
  32. 32.  Dembélé L, Franetich J-F, Lorthiois A, Gego A, Zeeman A-M et al. 2014. Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nat. Med. 20:3307–12
    [Google Scholar]
  33. 33.  Deshmukh AS, Srivastava S, Herrmann S, Gupta A, Mitra P et al. 2012. The role of N-terminus of Plasmodium falciparum ORC1 in telomeric localization and var gene silencing. Nucleic Acids Res 40:125313–31
    [Google Scholar]
  34. 34.  Dimonte S, Bruske EI, Hass J, Supan C, Salazar CL et al. 2016. Sporozoite route of infection influences in vitro var gene transcription of Plasmodium falciparum parasites from controlled human infections. J. Infect. Dis. 214:6884–94
    [Google Scholar]
  35. 35.  Duraisingh MT, Maier AG, Triglia T, Cowman AF 2003. Erythrocyte-binding antigen 175 mediates invasion in Plasmodium falciparum utilizing sialic acid-dependent and -independent pathways. PNAS 100:84796–801
    [Google Scholar]
  36. 36.  Duraisingh MT, Voss TS, Marty AJ, Duffy MF, Good RT et al. 2005. Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum. . Cell 121:113–24
    [Google Scholar]
  37. 37.  Enderes C, Kombila D, Dal-Bianco M, Dzikowski R, Kremsner P, Frank M 2011. var gene promoter activation in clonal Plasmodium falciparum isolates follows a hierarchy and suggests a conserved switching program that is independent of genetic background. J. Infect. Dis. 204:101620–31
    [Google Scholar]
  38. 38.  Fastman Y, Noble R, Recker M, Dzikowski R 2012. Erasing the epigenetic memory and beginning to switch—the onset of antigenic switching of var genes in Plasmodium falciparum. . PLOS ONE 7:3e34168
    [Google Scholar]
  39. 39.  Flueck C, Bártfai R, Niederwieser I, Witmer K, Alako BTF et al. 2010. A major role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome end biology. PLOS Pathog 6:2e1000784
    [Google Scholar]
  40. 40.  Flueck C, Bártfai R, Volz J, Niederwieser I, Salcedo-Amaya AM et al. 2009. Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. PLOS Pathog 5:9e1000569
    [Google Scholar]
  41. 41.  Fraschka SA-K, Henderson RWM, Bártfai R 2016. H3.3 demarcates GC-rich coding and subtelomeric regions and serves as potential memory mark for virulence gene expression in Plasmodium falciparum. . Sci. Rep 6:131965
    [Google Scholar]
  42. 42.  Freitas-Junior LH, Hernandez-Rivas R, Ralph SA, Montiel-Condado D, Ruvalcaba-Salazar OK et al. 2005. Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121:125–36
    [Google Scholar]
  43. 43.  Gamain B, Trimnell AR, Scheidig C, Scherf A, Miller LH, Smith JD 2005. Identification of multiple chondroitin sulfate A (CSA)-binding domains in the var2CSA gene transcribed in CSA-binding parasites. J. Infect. Dis. 191:61010–13
    [Google Scholar]
  44. 44.  Gardner MJ, Hall N, Fung E, White O, Berriman M et al. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. . Nature 419:6906498–511
    [Google Scholar]
  45. 45.  Gaur D, Furuya T, Mu J, Jiang L-B, Su X-Z, Miller LH 2006. Upregulation of expression of the reticulocyte homology gene 4 in the Plasmodium falciparum clone Dd2 is associated with a switch in the erythrocyte invasion pathway. Mol. Biochem. Parasitol. 145:2205–15
    [Google Scholar]
  46. 46.  Goel S, Palmkvist M, Moll K, Joannin N, Lara P et al. 2015. RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nat. Med. 21:4314–17
    [Google Scholar]
  47. 47.  Gupta AP, Chin WH, Zhu L, Mok S, Luah Y-H et al. 2013. Dynamic epigenetic regulation of gene expression during the life cycle of malaria parasite Plasmodium falciparum. . PLOS Pathog 9:2e1003170
    [Google Scholar]
  48. 48.  Hodder AN, Czabotar PE, Uboldi AD, Clarke OB, Lin CS et al. 2012. Insights into Duffy binding-like domains through the crystal structure and function of the merozoite surface protein MSPDBL2 from Plasmodium falciparum. J. Biol. Chem 287:3932922–39
    [Google Scholar]
  49. 49.  Hoeijmakers WAM, Salcedo-Amaya AM, Smits AH, Françoijs K-J, Treeck M et al. 2013. H2A.Z/H2B.Z double-variant nucleosomes inhabit the AT-rich promoter regions of the Plasmodium falciparum genome. Mol. Microbiol. 87:51061–73
    [Google Scholar]
  50. 50.  Howitt CA, Wilinski D, Llinás M, Templeton TJ, Dzikowski R, Deitsch KW 2009. Clonally variant gene families in Plasmodium falciparum share a common activation factor. Mol. Microbiol. 73:61171–85
    [Google Scholar]
  51. 51.  Inselburg J 1983. Gametocyte formation by the progeny of single Plasmodium falciparum schizonts. J. Parasitol. 69:3584–91
    [Google Scholar]
  52. 52.  Iyer J, Grüner AC, Rénia L, Snounou G, Preiser PR 2007. Invasion of host cells by malaria parasites: a tale of two protein families. Mol. Microbiol. 65:2231–49
    [Google Scholar]
  53. 53.  Jennings CV, Ahouidi AD, Zilversmit M, Bei AK, Rayner J et al. 2007. Molecular analysis of erythrocyte invasion in Plasmodium falciparum isolates from Senegal. Infect. Immun. 75:73531–38
    [Google Scholar]
  54. 54.  Jiang L, López-Barragán MJ, Jiang H, Mu J, Gaur D et al. 2010. Epigenetic control of the variable expression of a Plasmodium falciparum receptor protein for erythrocyte invasion. PNAS 107:52224–29
    [Google Scholar]
  55. 55.  Jiang L, Mu J, Zhang Q, Ni T, Srinivasan P et al. 2013. PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum. . Nature 499:7457223–27
    [Google Scholar]
  56. 56.  Josling GA, Petter M, Oehring SC, Gupta AP, Dietz O et al. 2015. A Plasmodium falciparum bromodomain protein regulates invasion gene expression. Cell Host Microbe 17:6741–51
    [Google Scholar]
  57. 57.  Kafsack BFC, Rovira-Graells N, Clark TG, Bancells C, Crowley VM et al. 2014. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 507:7491248–52
    [Google Scholar]
  58. 58.  Kanyal A, Rawat M, Gurung P, Choubey D, Anamika K, Karmodiya K 2018. Genome-wide survey and phylogenetic analysis of histone acetyltransferases and histone deacetylases of Plasmodium falciparum. . FEBS J 285:1767–82
    [Google Scholar]
  59. 59.  Karmodiya K, Pradhan SJ, Joshi B, Jangid R, Reddy PC, Galande S 2015. A comprehensive epigenome map of Plasmodium falciparum reveals unique mechanisms of transcriptional regulation and identifies H3K36me2 as a global mark of gene suppression. Epigenetics Chromatin 8:132
    [Google Scholar]
  60. 60.  Kyes SA, Rowe JA, Kriek N, Newbold CI 1999. Rifins: a second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. . PNAS 96:169333–38
    [Google Scholar]
  61. 61.  Lapp SA, Korir-Morrison C, Jiang J, Bai Y, Corredor V, Galinski MR 2013. Spleen-dependent regulation of antigenic variation in malaria parasites: Plasmodium knowlesi SICAvar expression profiles in splenic and asplenic hosts. PLOS ONE 8:10e78014
    [Google Scholar]
  62. 62.  Lavazec C, Sanyal S, Templeton TJ 2007. Expression switching in the stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Mol. . Microbiol 64:61621–34
    [Google Scholar]
  63. 63.  Lemieux JE, Kyes SA, Otto TD, Feller AI, Eastman RT et al. 2013. Genome-wide profiling of chromosome interactions in Plasmodium falciparum characterizes nuclear architecture and reconfigurations associated with antigenic variation. Mol. Microbiol. 90:3519–37
    [Google Scholar]
  64. 64.  Lopez-Rubio JJ, Mâncio-Silva L, Scherf A 2009. Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 5:2179–90
    [Google Scholar]
  65. 65.  Mantel P-Y, Hoang AN, Goldowitz I, Potashnikova D, Hamza B et al. 2013. Malaria-infected erythrocyte-derived microvesicles mediate cellular communication within the parasite population and with the host immune system. Cell Host Microbe 13:5521–34
    [Google Scholar]
  66. 66.  Merrick CJ, Huttenhower C, Buckee C, Amambua-Ngwa A, Gomez-Escobar N et al. 2012. Epigenetic dysregulation of virulence gene expression in severe Plasmodium falciparum malaria. J. Infect. Dis. 205:101593–1600
    [Google Scholar]
  67. 67.  Merrick CJ, Jiang RHY, Skillman KM, Samarakoon U, Moore RM et al. 2015. Functional analysis of sirtuin genes in multiple Plasmodium falciparum strains. PLOS ONE 10:3e0118865
    [Google Scholar]
  68. 68.  Miao J, Fan Q, Cui L, Li X, Wang H et al. 2010. The MYST family histone acetyltransferase regulates gene expression and cell cycle in malaria parasite Plasmodium falciparum. Mol. . Microbiol 78:4883–902
    [Google Scholar]
  69. 69.  Miller LH, Ackerman HC, Su X-Z, Wellems TE 2013. Malaria biology and disease pathogenesis: insights for new treatments. Nat. Med. 19:2156–67
    [Google Scholar]
  70. 70.  Mira-Martínez S, Rovira-Graells N, Crowley VM, Altenhofen LM, Llinás M, Cortés A 2013. Epigenetic switches in clag3 genes mediate blasticidin S resistance in malaria parasites. Cell Microbiol 15:111913–23
    [Google Scholar]
  71. 71.  Moll K, Palmkvist M, Ch'ng J, Kiwuwa MS, Wahlgren M 2015. Evasion of immunity to Plasmodium falciparum: rosettes of blood group A impair recognition of PfEMP1. PLOS ONE 10:12e0145120 Correction. 2016 PLOS ONE 11:2e0149765
    [Google Scholar]
  72. 72.  Nery S, Deans A-M, Mosobo M, Marsh K, Rowe JA, Conway DJ 2006. Expression of Plasmodium falciparum genes involved in erythrocyte invasion varies among isolates cultured directly from patients. Mol. Biochem. Parasitol. 149:2208–15
    [Google Scholar]
  73. 73.  Nguitragool W, Bokhari AAB, Pillai AD, Rayavara K, Sharma P et al. 2011. Malaria parasite clag3 genes determine channel-mediated nutrient uptake by infected red blood cells. Cell 145:5665–77
    [Google Scholar]
  74. 74.  Niang M, Bei AK, Madnani KG, Pelly S, Dankwa S et al. 2014. STEVOR is a Plasmodium falciparum erythrocyte binding protein that mediates merozoite invasion and rosetting. Cell Host Microbe 16:181–93
    [Google Scholar]
  75. 75.  Niang M, Yan Yam X, Preiser PR 2009. The Plasmodium falciparum STEVOR multigene family mediates antigenic variation of the infected erythrocyte. PLOS Pathog 5:2e1000307
    [Google Scholar]
  76. 76.  Noble R, Christodoulou Z, Kyes S, Pinches R, Newbold CI, Recker M 2013. The antigenic switching network of Plasmodium falciparum and its implications for the immuno-epidemiology of malaria. eLife 2:e01074
    [Google Scholar]
  77. 77.  Oehring SC, Woodcroft BJ, Moes S, Wetzel J, Dietz O et al. 2012. Organellar proteomics reveals hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum. . Genome Biol 13:11R108
    [Google Scholar]
  78. 78.  Persson KEM, McCallum FJ, Reiling L, Lister NA, Stubbs J et al. 2008. Variation in use of erythrocyte invasion pathways by Plasmodium falciparum mediates evasion of human inhibitory antibodies. J. Clin. Investig. 118:1342–51
    [Google Scholar]
  79. 79.  Peters JM, Fowler EV, Krause DR, Cheng Q, Gatton ML 2007. Differential changes in Plasmodium falciparum var transcription during adaptation to culture. J. Infect. Dis. 195:5748–55
    [Google Scholar]
  80. 80.  Petter M, Haeggström M, Khattab A, Fernandez V, Klinkert M-Q, Wahlgren M 2007. Variant proteins of the Plasmodium falciparum RIFIN family show distinct subcellular localization and developmental expression patterns. Mol. Biochem. Parasitol. 156:151–61
    [Google Scholar]
  81. 81.  Petter M, Lee CC, Byrne TJ, Boysen KE, Volz J et al. 2011. Expression of P. falciparum var genes involves exchange of the histone variant H2A.Z at the promoter. PLOS Pathog 7:2e1001292
    [Google Scholar]
  82. 82.  Petter M, Selvarajah SA, Lee CC, Chin WH, Gupta AP et al. 2013. H2A.Z and H2B.Z double-variant nucleosomes define intergenic regions and dynamically occupy var gene promoters in the malaria parasite Plasmodium falciparum. Mol. . Microbiol 87:61167–82
    [Google Scholar]
  83. 83.  Ponts N, Fu L, Harris EY, Zhang J, Chung D-WD et al. 2013. Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum. . Cell Host Microbe 14:6696–706
    [Google Scholar]
  84. 84.  Ponts N, Harris EY, Prudhomme J, Wick I, Eckhardt-Ludka C et al. 2010. Nucleosome landscape and control of transcription in the human malaria parasite. Genome Res 20:2228–38
    [Google Scholar]
  85. 85.  Poran A, Nötzel C, Aly O, Mencia-Trinchant N, Harris CT et al. 2017. Single-cell RNA sequencing reveals a signature of sexual commitment in malaria parasites. Nature 551:767895–99
    [Google Scholar]
  86. 86.  Ralph SA, Scheidig-Benatar C, Scherf A 2005. Antigenic variation in Plasmodium falciparum is associated with movement of var loci between subnuclear locations. PNAS 102:155414–19
    [Google Scholar]
  87. 87.  Recker M, Buckee CO, Serazin A, Kyes S, Pinches R et al. 2011. Antigenic variation in Plasmodium falciparum malaria involves a highly structured switching pattern. PLOS Pathog 7:3e1001306
    [Google Scholar]
  88. 88.  Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM et al. 2013. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 153:51120–33
    [Google Scholar]
  89. 89.  Reiling L, Richards JS, Fowkes FJI, Wilson DW, Chokejindachai W et al. 2012. The Plasmodium falciparum erythrocyte invasion ligand Pfrh4 as a target of functional and protective human antibodies against malaria. PLOS ONE 7:9e45253
    [Google Scholar]
  90. 90.  Rono MK, Nyonda MA, Simam JJ, Ngoi JM, Mok S et al. 2018. Adaptation of Plasmodium falciparum to its transmission environment. Nat. Ecol. Evol. 2:2377–87
    [Google Scholar]
  91. 91.  Rosenberg E, Ben-Shmuel A, Shalev O, Sinay R, Cowman A, Pollack Y 2009. Differential, positional-dependent transcriptional response of antigenic variation (var) genes to biological stress in Plasmodium falciparum. . PLOS ONE 4:9e6991
    [Google Scholar]
  92. 92.  Rovira-Graells N, Crowley VM, Bancells C, Mira-Martínez S, Ribas de Pouplana L, Cortés A 2015. Deciphering the principles that govern mutually exclusive expression of Plasmodium falciparum clag3 genes. Nucleic Acids Res 43:178243–57
    [Google Scholar]
  93. 93.  Rovira-Graells N, Gupta AP, Planet E, Crowley VM, Mok S et al. 2012. Transcriptional variation in the malaria parasite Plasmodium falciparum. . Genome Res 22:5925–38
    [Google Scholar]
  94. 94.  Saito F, Hirayasu K, Satoh T, Wang CW, Lusingu J et al. 2017. Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors. Nature 552:7683101–5
    [Google Scholar]
  95. 95.  Salanti A, Staalsoe T, Lavstsen T, Jensen ATR, Sowa MPK et al. 2003. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol. Microbiol. 49:1179–91
    [Google Scholar]
  96. 96.  Salcedo-Amaya AM, van Driel MA, Alako BT, Trelle MB, van den Elzen AMG et al. 2009. Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. . PNAS 106:249655–60
    [Google Scholar]
  97. 97.  Santos JM, Josling G, Ross P, Joshi P, Orchard L et al. 2017. Red blood cell invasion by the malaria parasite is coordinated by the PfAP2-I transcription factor. Cell Host Microbe 21:6731–41.e10
    [Google Scholar]
  98. 98.  Saraf A, Cervantes S, Bunnik EM, Ponts N, Sardiu ME et al. 2016. Dynamic and combinatorial landscape of histone modifications during the intraerythrocytic developmental cycle of the malaria parasite. J. Proteome Res. 15:82787–801
    [Google Scholar]
  99. 99.  Scherf A, Hernandez-Rivas R, Buffet P, Bottius E, Benatar C et al. 1998. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. . EMBO J 17:185418–26
    [Google Scholar]
  100. 100.  Sharma P, Wollenberg K, Sellers M, Zainabadi K, Galinsky K et al. 2013. An epigenetic antimalarial resistance mechanism involving parasite genes linked to nutrient uptake. J. Biol. Chem. 288:2719429–40
    [Google Scholar]
  101. 101.  Sinha A, Hughes KR, Modrzynska KK, Otto TD, Pfander C et al. 2014. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. . Nature 507:7491253–57
    [Google Scholar]
  102. 102.  Smith JD, Chitnis CE, Craig AG, Roberts DJ, Hudson-Taylor DE et al. 1995. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82:1101–10
    [Google Scholar]
  103. 103.  Spadafora C, Awandare GA, Kopydlowski KM, Czege J, Moch JK et al. 2010. Complement receptor 1 is a sialic acid-independent erythrocyte receptor of Plasmodium falciparum. . PLOS Pathog 6:6e1000968
    [Google Scholar]
  104. 104.  Spence PJ, Jarra W, Lévy P, Reid AJ, Chappell L et al. 2013. Vector transmission regulates immune control of Plasmodium virulence. Nature 498:7453228–31
    [Google Scholar]
  105. 105.  Stubbs J, Simpson KM, Triglia T, Plouffe D, Tonkin CJ et al. 2005. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science 309:57391384–87
    [Google Scholar]
  106. 106.  Su XZ, Heatwole VM, Wertheimer SP, Guinet F, Herrfeldt JA et al. 1995. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82:189–100
    [Google Scholar]
  107. 107.  Tetteh KKA, Osier FHA, Salanti A, Kamuyu G, Drought L et al. 2013. Analysis of antibodies to newly described Plasmodium falciparum merozoite antigens supports MSPDBL2 as a predicted target of naturally acquired immunity. Infect. Immun. 81:103835–42
    [Google Scholar]
  108. 108.  Tham W-H, Healer J, Cowman AF 2012. Erythrocyte and reticulocyte binding-like proteins of Plasmodium falciparum. . Trends Parasitol 28:123–30
    [Google Scholar]
  109. 109.  Tham W-H, Schmidt CQ, Hauhart RE, Guariento M, Tetteh-Quarcoo PB et al. 2011. Plasmodium falciparum uses a key functional site in complement receptor type-1 for invasion of human erythrocytes. Blood 118:71923–33
    [Google Scholar]
  110. 110.  Tonkin CJ, Carret CK, Duraisingh MT, Voss TS, Ralph SA et al. 2009. Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum. . PLOS Biol 7:4e84
    [Google Scholar]
  111. 111.  Trelle MB, Salcedo-Amaya AM, Cohen AM, Stunnenberg HG, Jensen ON 2009. Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum. J. . Proteome Res 8:73439–50
    [Google Scholar]
  112. 112.  Ukaegbu UE, Deitsch KW 2015. The emerging role for RNA polymerase II in regulating virulence gene expression in malaria parasites. PLOS Pathog 11:7e1004926
    [Google Scholar]
  113. 113.  Ukaegbu UE, Kishore SP, Kwiatkowski DL, Pandarinath C, Dahan-Pasternak N et al. 2014. Recruitment of PfSET2 by RNA polymerase II to variant antigen encoding loci contributes to antigenic variation in P. falciparum. . PLOS Pathog 10:1e1003854
    [Google Scholar]
  114. 114.  Van Tyne D, Uboldi AD, Healer J, Cowman AF, Wirth DF 2013. Modulation of PF10_0355 (MSPDBL2) alters Plasmodium falciparum response to antimalarial drugs. Antimicrob. Agents Chemother. 57:72937–41
    [Google Scholar]
  115. 115.  Vaughan AM, Pinapati RS, Cheeseman IH, Camargo N, Fishbaugher M et al. 2015. Plasmodium falciparum genetic crosses in a humanized mouse model. Nat. Methods 12:7631–33
    [Google Scholar]
  116. 116.  Verstrepen KJ, Fink GR 2009. Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi. Annu. Rev. Genet. 43:1–24
    [Google Scholar]
  117. 117.  Viebig NK, Gamain B, Scheidig C, Lépolard C, Przyborski J et al. 2005. A single member of the Plasmodium falciparum var multigene family determines cytoadhesion to the placental receptor chondroitin sulphate A. EMBO Rep 6:8775–81
    [Google Scholar]
  118. 118.  Volz J, Carvalho TG, Ralph SA, Gilson P, Thompson J et al. 2010. Potential epigenetic regulatory proteins localise to distinct nuclear sub-compartments in Plasmodium falciparum. Int. J. . Parasitol 40:1109–21
    [Google Scholar]
  119. 119.  Volz JC, Bártfai R, Petter M, Langer C, Josling GA et al. 2012. PfSET10, a Plasmodium falciparum methyltransferase, maintains the active var gene in a poised state during parasite division. Cell Host Microbe 11:17–18
    [Google Scholar]
  120. 120.  Voss TS, Healer J, Marty AJ, Duffy MF, Thompson JK et al. 2006. A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria. Nature 439:70791004–8
    [Google Scholar]
  121. 121.  Wahlgren M, Goel S, Akhouri RR 2017. Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat. Rev. Microbiol. 15:8479–91
    [Google Scholar]
  122. 122.  Witmer K, Schmid CD, Brancucci NMB, Luah Y-H, Preiser PR et al. 2012. Analysis of subtelomeric virulence gene families in Plasmodium falciparum by comparative transcriptional profiling. Mol. Microbiol. 84:2243–59
    [Google Scholar]
  123. 123.  Zhang Q, Huang Y, Zhang Y, Fang X, Claes A et al. 2011. A critical role of perinuclear filamentous actin in spatial repositioning and mutually exclusive expression of virulence genes in malaria parasites. Cell Host Microbe 10:5451–63
    [Google Scholar]
  124. 124.  Zhang Q, Siegel TN, Martins RM, Wang F, Cao J et al. 2014. Exonuclease-mediated degradation of nascent RNA silences genes linked to severe malaria. Nature 513:7518431–35
    [Google Scholar]
/content/journals/10.1146/annurev-micro-090817-062722
Loading
/content/journals/10.1146/annurev-micro-090817-062722
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error