1932

Abstract

is a common veterinary and human pathogen that persists as latent bradyzoite forms within infected hosts. The ability of the parasite to interconvert between tachyzoite and bradyzoite is key for pathogenesis of toxoplasmosis, particularly in immunocompromised individuals. The transition between tachyzoites and bradyzoites is epigenetically regulated and coupled to the cell cycle. Recent epigenomic studies have begun to elucidate the chromatin states associated with developmental switches in . Evidence is also emerging that AP2 transcription factors both activate and repress the bradyzoite developmental program. Further studies are needed to understand the mechanisms by which transduces environmental signals to coordinate the epigenetic and transcriptional machinery that are responsible for tachyzoite-bradyzoite interconversion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090817-062741
2018-09-08
2024-06-04
Loading full text...

Full text loading...

/deliver/fulltext/micro/72/1/annurev-micro-090817-062741.html?itemId=/content/journals/10.1146/annurev-micro-090817-062741&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Altschul SF, Wootton JC, Zaslavsky E, Yu YK 2010. The construction and use of log-odds substitution scores for multiple sequence alignment. PLOS Comput. Biol. 6:e1000852
    [Google Scholar]
  2. 2.  Alvarez CA, Suvorova ES 2017. Checkpoints of apicomplexan cell division identified in Toxoplasma gondii. . PLOS Pathog 13:e1006483
    [Google Scholar]
  3. 3.  Atayde VD, Tschudi C, Ullu E 2011. The emerging world of small silencing RNAs in protozoan parasites. Trends Parasitol 27:321–27
    [Google Scholar]
  4. 4.  Avvakumov N, Cote J 2007. Functions of myst family histone acetyltransferases and their link to disease. Subcell. Biochem. 41:295–317
    [Google Scholar]
  5. 5.  Balaji S, Babu MM, Iyer LM, Aravind L 2005. Discovery of the principal specific transcription factors of Apicomplexa and their implication for the evolution of the AP2-integrase DNA binding domains. Nucleic Acids Res 33:3994–4006
    [Google Scholar]
  6. 6.  Bandini G, Haserick JR, Motari E, Ouologuem DT, Lourido S et al. 2016. O-fucosylated glycoproteins form assemblies in close proximity to the nuclear pore complexes of Toxoplasma gondii. . PNAS 113:11567–72
    [Google Scholar]
  7. 7.  Behnke MS, Wootton JC, Lehmann MM, Radke JB, Lucas O et al. 2010. Coordinated progression through two subtranscriptomes underlies the tachyzoite cycle of Toxoplasma gondii. . PLOS ONE 5:e12354
    [Google Scholar]
  8. 8.  Behnke MS, Zhang TP, Dubey JP, Sibley LD 2014. Toxoplasma gondii merozoite gene expression analysis with comparison to the life cycle discloses a unique expression state during enteric development. BMC Genom 15:350
    [Google Scholar]
  9. 9.  Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ et al. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–26
    [Google Scholar]
  10. 10.  Bhatti MM, Livingston M, Mullapudi N, Sullivan WJ, Jr. 2006. Pair of unusual GCN5 histone acetyltransferases and ADA2 homologues in the protozoan parasite Toxoplasma gondii. Eukaryot. . Cell 5:62–76
    [Google Scholar]
  11. 11.  Bogado SS, Dalmasso MC, Ganuza A, Kim K, Sullivan WJ Jr et al. 2014. Canonical histone H2Ba and H2A.X dimerize in an opposite genomic localization to H2A.Z/H2B.Z dimers in Toxoplasma gondii. Mol. Biochem. . Parasitol 197:36–42
    [Google Scholar]
  12. 12.  Borst P, Sabatini R 2008. Base J: discovery, biosynthesis, and possible functions. Annu. Rev. Microbiol. 62:235–51
    [Google Scholar]
  13. 13.  Bougdour A, Braun L, Cannella D, Hakimi MA 2010. Chromatin modifications: implications in the regulation of gene expression in Toxoplasma gondii. . Cell Microbiol 12:413–23
    [Google Scholar]
  14. 14.  Bougdour A, Maubon D, Baldacci P, Ortet P, Bastien O et al. 2009. Drug inhibition of HDAC3 and epigenetic control of differentiation in Apicomplexa parasites. J. Exp. Med. 206:953–66
    [Google Scholar]
  15. 15.  Bozdech Z, Llinas M, Pulliam BL, Wong ED, Zhu J, DeRisi JL 2003. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. . PLOS Biol 1:E5
    [Google Scholar]
  16. 16.  Brancucci NM, Bertschi NL, Zhu L, Niederwieser I, Chin WH et al. 2014. Heterochromatin protein 1 secures survival and transmission of malaria parasites. Cell Host Microbe 16:165–76
    [Google Scholar]
  17. 17.  Braun L, Cannella D, Ortet P, Barakat M, Sautel CF et al. 2010. A complex small RNA repertoire is generated by a plant/fungal-like machinery and effected by a metazoan-like Argonaute in the single-cell human parasite Toxoplasma gondii. . PLOS Pathog 6:e1000920
    [Google Scholar]
  18. 18.  Broadbent KM, Park D, Wolf AR, Van Tyne D, Sims JS et al. 2011. A global transcriptional analysis of Plasmodium falciparum malaria reveals a novel family of telomere-associated lncRNAs. Genome Biol 12:R56
    [Google Scholar]
  19. 19.  Brooks CF, Francia ME, Gissot M, Croken MM, Kim K, Striepen B 2011. Toxoplasma gondii sequesters centromeres to a specific nuclear region throughout the cell cycle. PNAS 108:3767–72
    [Google Scholar]
  20. 20.  Brown KM, Long S, Sibley LD 2017. Plasma membrane association by N-acylation governs PKG function in Toxoplasma gondii. . mBio 8:e00375–17
    [Google Scholar]
  21. 21.  Campbell TL, De Silva EK, Olszewski KL, Elemento O, Llinas M 2010. Identification and genome-wide prediction of DNA binding specificities for the ApiAP2 family of regulators from the malaria parasite. PLOS Pathog 6:e1001165
    [Google Scholar]
  22. 22.  Choi SW, Keyes MK, Horrocks P 2006. LC/ESI-MS demonstrates the absence of 5-methyl-2′-deoxycytosine in Plasmodium falciparum genomic DNA. Mol. Biochem. Parasitol. 150:350–52
    [Google Scholar]
  23. 23.  Coleman BI, Skillman KM, Jiang RH, Childs LM, Altenhofen LM et al. 2014. A Plasmodium falciparum histone deacetylase regulates antigenic variation and gametocyte conversion. Cell Host Microbe 16:177–86
    [Google Scholar]
  24. 24.  Croken MM, Nardelli SC, Kim K 2012. Chromatin modifications, epigenetics, and how protozoan parasites regulate their lives. Trends Parasitol 28:202–13
    [Google Scholar]
  25. 25.  Croken MM, Qiu W, White MW, Kim K 2014. Gene Set Enrichment Analysis (GSEA) of Toxoplasma gondii expression datasets links cell cycle progression and the bradyzoite developmental program. BMC Genom 15:515
    [Google Scholar]
  26. 26.  Dalmasso MC, Echeverria PC, Zappia MP, Hellman U, Dubremetz JF, Angel SO 2006. Toxoplasma gondii has two lineages of histones 2b (H2B) with different expression profiles. Mol. Biochem. Parasitol. 148:103–7
    [Google Scholar]
  27. 27.  Dalmasso MC, Onyango DO, Naguleswaran A, Sullivan WJ Jr, Angel SO 2009. Toxoplasma H2A variants reveal novel insights into nucleosome composition and functions for this histone family. J. Mol. Biol. 392:33–47
    [Google Scholar]
  28. 28.  Deitsch KW, Dzikowski R 2017. Variant gene expression and antigenic variation by malaria parasites. Annu. Rev. Microbiol. 71:625–41
    [Google Scholar]
  29. 29.  Dubey JP 2009. History of the discovery of the life cycle of Toxoplasma gondii. Int. J. . Parasitol 39:877–82
    [Google Scholar]
  30. 30.  Duraisingh MT, Voss TS, Marty AJ, Duffy MF, Good RT et al. 2005. Heterochromatin silencing and locus repositioning linked to regulation of virulence genes in Plasmodium falciparum. . Cell 121:13–24
    [Google Scholar]
  31. 31.  Egelhofer TA, Minoda A, Klugman S, Lee K, Kolasinska-Zwierz P et al. 2011. An assessment of histone-modification antibody quality. Nat. Struct. Mol. Biol. 18:91–93
    [Google Scholar]
  32. 32.  El Bissati K, Suvorova ES, Xiao H, Lucas O, Upadhya R et al. 2016. Toxoplasma gondii arginine methyltransferase 1 (PRMT1) is necessary for centrosome dynamics during tachyzoite cell division. mBio 7:e02094–15
    [Google Scholar]
  33. 33.  Fan Q, Miao J, Cui L, Cui L 2009. Characterization of PRMT1 from Plasmodium falciparum. Biochem. J 421:107–18
    [Google Scholar]
  34. 34.  Flegr J, Prandota J, Sovickova M, Israili ZH 2014. Toxoplasmosis—a global threat: correlation of latent toxoplasmosis with specific disease burden in a set of 88 countries. PLOS ONE 9:e90203
    [Google Scholar]
  35. 35.  Flueck C, Bartfai R, Niederwieser I, Witmer K, Alako BT et al. 2010. A major role for the Plasmodium falciparum ApiAP2 protein PfSIP2 in chromosome end biology. PLOS Pathog 6:e1000784
    [Google Scholar]
  36. 36.  Flueck C, Bartfai R, Volz J, Niederwieser I, Salcedo-Amaya AM et al. 2009. Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. PLOS Pathog 5:e1000569
    [Google Scholar]
  37. 37.  Freitas-Junior LH, Hernandez-Rivas R, Ralph SA, Montiel-Condado D, Ruvalcaba-Salazar OK et al. 2005. Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. Cell 121:25–36
    [Google Scholar]
  38. 38.  Fritz HM, Buchholz KR, Chen X, Durbin-Johnson B, Rocke DM et al. 2012. Transcriptomic analysis of Toxoplasma development reveals many novel functions and structures specific to sporozoites and oocysts. PLOS ONE 7:e29998
    [Google Scholar]
  39. 39.  Gissot M, Choi SW, Thompson RF, Greally JM, Kim K 2008. Toxoplasma gondii and Cryptosporidium parvum lack detectable DNA cytosine methylation. Eukaryot. Cell 7:537–40
    [Google Scholar]
  40. 40.  Gissot M, Kelly KA, Ajioka JW, Greally JM, Kim K 2007. Epigenomic modifications predict active promoters and gene structure in Toxoplasma gondii. . PLOS Pathog 3:e77
    [Google Scholar]
  41. 41.  Gissot M, Walker R, Delhaye S, Huot L, Hot D, Tomavo S 2012. Toxoplasma gondii chromodomain protein 1 binds to heterochromatin and colocalises with centromeres and telomeres at the nuclear periphery. PLOS ONE 7:e32671
    [Google Scholar]
  42. 42.  Gubbels MJ, White M, Szatanek T 2008. The cell cycle and Toxoplasma gondii cell division: tightly knit or loosely stitched?. Int. J. Parasitol. 38:1343–58
    [Google Scholar]
  43. 43.  Hakimi MA, Olias P, Sibley LD 2017. Toxoplasma effectors targeting host signaling and transcription. Clin. Microbiol. Rev. 30:615–45
    [Google Scholar]
  44. 44.  Heaslip AT, Nishi M, Stein B, Hu K 2011. The motility of a human parasite, Toxoplasma gondii, is regulated by a novel lysine methyltransferase. PLOS Pathog 7:e1002201
    [Google Scholar]
  45. 45.  Hehl AB, Basso WU, Lippuner C, Ramakrishnan C, Okoniewski M et al. 2015. Asexual expansion of Toxoplasma gondii merozoites is distinct from tachyzoites and entails expression of non-overlapping gene families to attach, invade, and replicate within feline enterocytes. BMC Genom 16:66
    [Google Scholar]
  46. 46.  Hong DP, Radke JB, White MW 2017. Opposing transcriptional mechanisms regulate Toxoplasma development. mSphere 2:e00347–16
    [Google Scholar]
  47. 47.  Huang S, Holmes MJ, Radke JB, Hong DP, Liu TK et al. 2017. Toxoplasma gondii AP2IX-4 regulates gene expression during bradyzoite development. mSphere 2:e00054–17
    [Google Scholar]
  48. 48.  Hunter CA, Sibley LD 2012. Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nat. Rev. Microbiol. 10:766–78
    [Google Scholar]
  49. 49.  Hutson SL, Mui E, Kinsley K, Witola WH, Behnke MS et al. 2010. T. gondii RP promoters & knockdown reveal molecular pathways associated with proliferation and cell-cycle arrest. PLOS ONE 5:e14057
    [Google Scholar]
  50. 50.  Iyer LM, Anantharaman V, Wolf MY, Aravind L 2008. Comparative genomics of transcription factors and chromatin proteins in parasitic protists and other eukaryotes. Int. J. Parasitol. 38:1–31
    [Google Scholar]
  51. 51.  Jeffers V, Sullivan WJ Jr 2012. Lysine acetylation is widespread on proteins of diverse function and localization in the protozoan parasite Toxoplasma gondii. Eukaryot. . Cell 11:735–42
    [Google Scholar]
  52. 52.  Jeffers V, Tampaki Z, Kim K, Sullivan WJ Jr 2018. A latent ability to persist: differentiation in Toxoplasma gondii. . Cell. Mol. Life Sci 75:2355–73
    [Google Scholar]
  53. 53.  Jeffers V, Yang C, Huang S, Sullivan WJ Jr 2017. Bromodomains in protozoan parasites: evolution, function, and opportunities for drug development. Microbiol. Mol. Biol. Rev. 81:e00047–16
    [Google Scholar]
  54. 54.  Jenuwein T, Allis CD 2001. Translating the histone code. Science 293:1074–80
    [Google Scholar]
  55. 55.  Jia Y, Marq JB, Bisio H, Jacot D, Mueller C et al. 2017. Crosstalk between PKA and PKG controls pH-dependent host cell egress of Toxoplasma gondii. . EMBO J 36:3250–67
    [Google Scholar]
  56. 56.  Kafsack BF, Rovira-Graells N, Clark TG, Bancells C, Crowley VM et al. 2014. A transcriptional switch underlies commitment to sexual development in malaria parasites. Nature 507:248–52
    [Google Scholar]
  57. 57.  LaCount DJ, Vignali M, Chettier R, Phansalkar A, Bell R et al. 2005. A protein interaction network of the malaria parasite Plasmodium falciparum. . Nature 438:103–7
    [Google Scholar]
  58. 58.  Lawrence M, Daujat S, Schneider R 2016. Lateral thinking: how histone modifications regulate gene expression. Trends Genet 32:42–56
    [Google Scholar]
  59. 59.  Le Roch KG, Zhou Y, Blair PL, Grainger M, Moch JK et al. 2003. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301:1503–8
    [Google Scholar]
  60. 60.  Licausi F, Ohme-Takagi M, Perata P 2013. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–49
    [Google Scholar]
  61. 61.  Long Y, Wang X, Youmans DT, Cech TR 2017. How do lncRNAs regulate transcription?. Sci. Adv. 3:eaao2110
    [Google Scholar]
  62. 62.  Lopez-Rubio JJ, Mancio-Silva L, Scherf A 2009. Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. Cell Host Microbe 5:179–90
    [Google Scholar]
  63. 63.  Matrajt M 2010. Non-coding RNA in apicomplexan parasites. Mol. Biochem. Parasitol. 174:1–7
    [Google Scholar]
  64. 64.  Montoya JG, Liesenfeld O 2004. Toxoplasmosis. Lancet 363:1965–76
    [Google Scholar]
  65. 65.  Musiyenko A, Majumdar T, Andrews J, Adams B, Barik S 2012. PRMT1 methylates the single Argonaute of Toxoplasma gondii and is important for the recruitment of Tudor nuclease for target RNA cleavage by antisense guide RNA. Cell Microbiol 14:882–901
    [Google Scholar]
  66. 66.  Naguleswaran A, Elias EV, McClintick J, Edenberg HJ, Sullivan WJ Jr 2010. Toxoplasma gondii lysine acetyltransferase GCN5-A functions in the cellular response to alkaline stress and expression of cyst genes. PLOS Pathog 6:e1001232
    [Google Scholar]
  67. 67.  Nardelli SC, Che FY, Silmon de Monerri NC, Xiao H, Nieves E et al. 2013. The histone code of Toxoplasma gondii comprises conserved and unique posttranslational modifications. mBio 4:e00922–13
    [Google Scholar]
  68. 68.  Nardelli SC, Ting LM, Kim K 2015. Techniques to study epigenetic control and the epigenome in parasites. Methods Mol. Biol. 1201:177–91 https://doi.org/10.1007/978-1-4939-1438-8_10
    [Crossref] [Google Scholar]
  69. 69.  Oberstaller J, Pumpalova Y, Schieler A, Llinas M, Kissinger JC 2014. The Cryptosporidium parvum ApiAP2 gene family: insights into the evolution of apicomplexan AP2 regulatory systems. Nucleic Acids Res 42:8271–84
    [Google Scholar]
  70. 70.  Painter HJ, Campbell TL, Llinas M 2011. The Apicomplexan AP2 family: integral factors regulating Plasmodium development. Mol. Biochem. Parasitol. 176:1–7
    [Google Scholar]
  71. 71.  Pardee AB 1974. A restriction point for control of normal animal cell proliferation. PNAS 71:1286–90
    [Google Scholar]
  72. 72.  Patil V, Lescault PJ, Lirussi D, Thompson AB, Matrajt M 2012. Disruption of the expression of a non-coding RNA significantly impairs cellular differentiation in Toxoplasma gondii. Int. J. Mol. . Sci 14:611–24
    [Google Scholar]
  73. 73.  Perez-Toledo K, Rojas-Meza AP, Mancio-Silva L, Hernandez-Cuevas NA, Delgadillo DM et al. 2009. Plasmodium falciparum heterochromatin protein 1 binds to tri-methylated histone 3 lysine 9 and is linked to mutually exclusive expression of var genes. Nucleic Acids Res 37:2596–606
    [Google Scholar]
  74. 74.  Petter M, Lee CC, Byrne TJ, Boysen KE, Volz J et al. 2011. Expression of P. falciparum var genes involves exchange of the histone variant H2A.Z at the promoter. PLOS Pathog 7:e1001292
    [Google Scholar]
  75. 75.  Ponts N, Fu L, Harris EY, Zhang J, Chung DW et al. 2013. Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum. . Cell Host Microbe 14:696–706
    [Google Scholar]
  76. 76.  Poran A, Notzel C, Aly O, Mencia-Trinchant N, Harris CT et al. 2017. Single-cell RNA sequencing reveals a signature of sexual commitment in malaria parasites. Nature 551:95–99
    [Google Scholar]
  77. 77.  Radke JB, Lucas O, De Silva EK, Ma Y, Sullivan WJ Jr et al. 2013. ApiAP2 transcription factor restricts development of the Toxoplasma tissue cyst. PNAS 110:6871–76
    [Google Scholar]
  78. 78.  Radke JR, Guerini MN, Jerome M, White MW 2003. A change in the premitotic period of the cell cycle is associated with bradyzoite differentiation in Toxoplasma gondii. Mol. Biochem. . Parasitol 131:119–27
    [Google Scholar]
  79. 79.  Radke JR, Striepen B, Guerini MN, Jerome ME, Roos DS, White MW 2001. Defining the cell cycle for the tachyzoite stage of Toxoplasma gondii. Mol. Biochem. . Parasitol 115:165–75
    [Google Scholar]
  80. 80.  Ruthenburg AJ, Li H, Patel DJ, Allis CD 2007. Multivalent engagement of chromatin modifications by linked binding modules. Nat. Rev. Molec. Cell Biol. 8:983–94
    [Google Scholar]
  81. 81.  Saksouk N, Bhatti MM, Kieffer S, Smith AT, Musset K et al. 2005. Histone-modifying complexes regulate gene expression pertinent to the differentiation of the protozoan parasite Toxoplasma gondii. Mol. Cell. . Biol 25:10301–14
    [Google Scholar]
  82. 82.  Salcedo-Amaya AM, van Driel MA, Alako BT, Trelle MB, van den Elzen AM et al. 2009. Dynamic histone H3 epigenome marking during the intraerythrocytic cycle of Plasmodium falciparum. . PNAS 106:9655–60
    [Google Scholar]
  83. 83.  Sautel CF, Cannella D, Bastien O, Kieffer S, Aldebert D et al. 2007. SET8-mediated methylations of histone H4 lysine 20 mark silent heterochromatic domains in apicomplexan genomes. Mol. Cell. Biol. 27:5711–24
    [Google Scholar]
  84. 84.  Shen B, Brown K, Long S, Sibley LD 2017. Development of CRISPR/Cas9 for efficient genome editing in Toxoplasma gondii. Methods Mol. . Biol 1498:79–103
    [Google Scholar]
  85. 85.  Shen B, Brown KM, Lee TD, Sibley LD 2014. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. mBio 5:e01114–14
    [Google Scholar]
  86. 86.  Sidik SM, Hackett CG, Tran F, Westwood NJ, Lourido S 2014. Efficient genome engineering of Toxoplasma gondii using CRISPR/Cas9. PLOS ONE 9:e100450
    [Google Scholar]
  87. 87.  Sidik SM, Huet D, Ganesan SM, Huynh MH, Wang T et al. 2016. A genome-wide CRISPR screen in Toxoplasma identifies essential apicomplexan genes. Cell 166:1423–35.e12
    [Google Scholar]
  88. 88.  Silmon de Monerri NC, Yakubu RR, Chen AL, Bradley PJ, Nieves E et al. 2015. The ubiquitin proteome of Toxoplasma gondii reveals roles for protein ubiquitination in cell-cycle transitions. Cell Host Microbe 18:621–33
    [Google Scholar]
  89. 89.  Sindikubwabo F, Ding S, Hussain T, Ortet P, Barakat M et al. 2017. Modifications at K31 on the lateral surface of histone H4 contribute to genome structure and expression in apicomplexan parasites. eLife 6:e29391
    [Google Scholar]
  90. 90.  Sinha A, Hughes KR, Modrzynska KK, Otto TD, Pfander C et al. 2014. A cascade of DNA-binding proteins for sexual commitment and development in Plasmodium. . Nature 507:253–57
    [Google Scholar]
  91. 91.  Smith AT, Tucker-Samaras SD, Fairlamb AH, Sullivan WJ Jr 2005. MYST family histone acetyltransferases in the protozoan parasite Toxoplasma gondii. Eukaryot. . Cell 4:2057–65
    [Google Scholar]
  92. 92.  Sugi T, Ma YF, Tomita T, Murakoshi F, Eaton MS et al. 2016. Toxoplasma gondii cyclic AMP-dependent protein kinase subunit 3 is involved in the switch from tachyzoite to bradyzoite development. mBio 7:e00755–16
    [Google Scholar]
  93. 93.  Sullivan WJ Jr, Monroy MA, Bohne W, Nallani KC, Chrivia J et al. 2003. Molecular cloning and characterization of an SRCAP chromatin remodeling homologue in Toxoplasma gondii. Parasitol. . Res 90:1–8
    [Google Scholar]
  94. 94.  Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ 2007. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Molec. Biol. 14:1025–40
    [Google Scholar]
  95. 95.  Tonkin CJ, Carret CK, Duraisingh MT, Voss TS, Ralph SA et al. 2009. Sir2 paralogues cooperate to regulate virulence genes and antigenic variation in Plasmodium falciparum. . PLOS Biol 7:e84
    [Google Scholar]
  96. 96.  Treeck M, Sanders JL, Elias JE, Boothroyd JC 2011. The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites’ boundaries. Cell Host Microbe 10:410–19
    [Google Scholar]
  97. 97.  van Luenen HG, Farris C, Jan S, Genest PA, Tripathi P et al. 2012. Glucosylated hydroxymethyluracil, DNA base J, prevents transcriptional readthrough in Leishmania. . Cell 150:909–21
    [Google Scholar]
  98. 98.  Vonlaufen N, Naguleswaran A, Coppens I, Sullivan WJ Jr 2010. MYST family lysine acetyltransferase facilitates ataxia telangiectasia mutated (ATM) kinase-mediated DNA damage response in Toxoplasma gondii. J. Biol. Chem 285:11154–61
    [Google Scholar]
  99. 99.  Walker R, Gissot M, Croken MM, Huot L, Hot D et al. 2013. The Toxoplasma nuclear factor TgAP2XI-4 controls bradyzoite gene expression and cyst formation. Mol. Microbiol. 87:641–55
    [Google Scholar]
  100. 100.  Wang J, Dixon SE, Ting LM, Liu TK, Jeffers V et al. 2014. Lysine acetyltransferase GCN5b interacts with AP2 factors and is required for Toxoplasma gondii proliferation. PLOS Pathog 10:e1003830
    [Google Scholar]
  101. 101.  Watts E, Zhao Y, Dhara A, Eller B, Patwardhan A, Sinai AP 2015. Novel approaches reveal that Toxoplasma gondii bradyzoites within tissue cysts are dynamic and replicating entities in vivo. mBio 6:e01155–15
    [Google Scholar]
  102. 102.  White MW, Radke JR, Radke JB 2014. Toxoplasma development—turn the switch on or off?. Cell Microbiol 16:466–72
    [Google Scholar]
  103. 103.  Xiao H, El Bissati K, Verdier-Pinard P, Burd B, Zhang H et al. 2010. Post-translational modifications to Toxoplasma gondii α- and β-tubulins include novel C-terminal methylation. J. Proteome Res. 9:359–72
    [Google Scholar]
  104. 104.  Yahiaoui B, Dzierszinski F, Bernigaud A, Slomianny C, Camus D, Tomavo S 1999. Isolation and characterization of a subtractive library enriched for developmentally regulated transcripts expressed during encystation of Toxoplasma gondii. Mol. Biochem. . Parasitol 99:223–35
    [Google Scholar]
  105. 105.  Yakubu RR, Silmon de Monerri NC, Nieves E, Kim K, Weiss LM 2017. Comparative monomethylarginine proteomics suggests that protein arginine methyltransferase 1 (PRMT1) is a significant contributor to arginine monomethylation in Toxoplasma gondii. Mol. Cell. . Proteom 16:567–80
    [Google Scholar]
  106. 106.  Zhang Q, Huang Y, Zhang Y, Fang X, Claes A et al. 2011. A critical role of perinuclear filamentous actin in spatial repositioning and mutually exclusive expression of virulence genes in malaria parasites. Cell Host Microbe 10:451–63
    [Google Scholar]
/content/journals/10.1146/annurev-micro-090817-062741
Loading
/content/journals/10.1146/annurev-micro-090817-062741
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error