1932

Abstract

Microbial infections are recognized by the innate immune system through germline-encoded pattern recognition receptors (PRRs). As most microbial pathogens contain DNA and/or RNA during their life cycle, nucleic acid sensing has evolved as an essential strategy for host innate immune defense. Pathogen-derived nucleic acids with distinct features are recognized by specific host PRRs localized in endolysosomes and the cytosol. Activation of these PRRs triggers signaling cascades that culminate in the production of type I interferons and proinflammatory cytokines, leading to induction of an antimicrobial state, activation of adaptive immunity, and eventual clearance of the infection. Here, we review recent progress in innate immune recognition of nucleic acids upon microbial infection, including pathways involving endosomal Toll-like receptors, cytosolic RNA sensors, and cytosolic DNA sensors. We also discuss the mechanisms by which infectious microbes counteract host nucleic acid sensing to evade immune surveillance.

Keyword(s): cGAMPcGASinterferonIRF3MAVSMDA5NF-κBRIG-ISTINGTLR
Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-102215-095605
2018-09-08
2024-07-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/72/1/annurev-micro-102215-095605.html?itemId=/content/journals/10.1146/annurev-micro-102215-095605&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V 2009. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III–transcribed RNA intermediate. Nat. Immunol. 10:1065–72
    [Google Scholar]
  2. 2.  Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G et al. 2013. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498:380–84
    [Google Scholar]
  3. 3.  Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T et al. 2013. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503:530–34
    [Google Scholar]
  4. 4.  Aguirre S, Luthra P, Sanchez-Aparicio MT, Maestre AM, Patel J et al. 2017. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat. Microbiol. 2:17037
    [Google Scholar]
  5. 5.  Akira S, Uematsu S, Takeuchi O 2006. Pathogen recognition and innate immunity. Cell 124:783–801
    [Google Scholar]
  6. 6.  Alexopoulou L, Holt AC, Medzhitov R, Flavell RA 2001. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413:732–38
    [Google Scholar]
  7. 7.  Andreeva L, Hiller B, Kostrewa D, Lässig C, de Oliveira Mann CC et al. 2017. cGAS senses long and HMGB/TFAM-bound U-turn DNA by forming protein–DNA ladders. Nature 549:394–98
    [Google Scholar]
  8. 8.  Balachandran S, Roberts PC, Brown LE, Truong H, Pattnaik AK et al. 2000. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 13:129–41
    [Google Scholar]
  9. 9.  Baltimore D 1971. Expression of animal virus genomes. Bacteriol. Rev. 35:235–41
    [Google Scholar]
  10. 10.  Beachboard DC, Horner SM 2016. Innate immune evasion strategies of DNA and RNA viruses. Curr. Opin. Microbiol. 32:113–19
    [Google Scholar]
  11. 11.  Berke IC, Yu X, Modis Y, Egelman EH 2012. MDA5 assembles into a polar helical filament on dsRNA. PNAS 109:18437–41
    [Google Scholar]
  12. 12.  Bridgeman A, Maelfait J, Davenne T, Partridge T, Peng Y et al. 2015. Viruses transfer the antiviral second messenger cGAMP between cells. Science 349:1228–32
    [Google Scholar]
  13. 13.  Bruns AM, Leser GP, Lamb RA, Horvath CM 2014. The innate immune sensor LGP2 activates antiviral signaling by regulating MDA5-RNA interaction and filament assembly. Mol. Cell 55:771–81
    [Google Scholar]
  14. 14.  Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G et al. 2009. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10:266–72
    [Google Scholar]
  15. 15.  Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B et al. 2011. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478:515–18
    [Google Scholar]
  16. 16.  Cai X, Chen J, Xu H, Liu S, Jiang Q-X et al. 2014. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell 156:1207–22
    [Google Scholar]
  17. 17.  Cárdenas WB, Loo Y-M, Gale M, Hartman AL, Kimberlin CR et al. 2006. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J. Virol. 80:5168–78
    [Google Scholar]
  18. 18.  Casrouge A, Zhang S-Y, Eidenschenk C, Jouanguy E, Puel A et al. 2006. Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314:308–12
    [Google Scholar]
  19. 19.  Chan YK, Gack MU 2016. Viral evasion of intracellular DNA and RNA sensing. Nat. Rev. Microbiol. 14:360–73
    [Google Scholar]
  20. 20.  Cheng G, Zhong J, Chung J, Chisari FV 2007. Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. PNAS 104:9035–40
    [Google Scholar]
  21. 21.  Chiu Y-H, MacMillan JB, Chen ZJ 2009. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138:576–91
    [Google Scholar]
  22. 22.  Chockalingam A, Brooks JC, Cameron JL, Blum LK, Leifer CA 2009. TLR9 traffics through the Golgi complex to localize to endolysosomes and respond to CpG DNA. Immunol. Cell Biol. 87:209–17
    [Google Scholar]
  23. 23.  Christensen MH, Jensen SB, Miettinen JJ, Luecke S, Prabakaran T et al. 2016. HSV‐1 ICP27 targets the TBK1‐activated STING signalsome to inhibit virus‐induced type I IFN expression. EMBO J 35:1385–99
    [Google Scholar]
  24. 24.  Civril F, Deimling T, de Oliveira Mann CC, Ablasser A, Moldt M et al. 2013. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498:332–37
    [Google Scholar]
  25. 25.  Collins AC, Cai H, Li T, Franco LH, Li X-D et al. 2015. Cyclic GMP-AMP synthase is an innate immune DNA sensor for Mycobacterium tuberculosis. . Cell Host Microbe 17:820–28
    [Google Scholar]
  26. 26.  Daffis S, Szretter KJ, Schriewer J, Li J, Youn S et al. 2010. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468:452–56
    [Google Scholar]
  27. 27.  Davies BW, Bogard RW, Young TS, Mekalanos JJ 2012. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149:358–70
    [Google Scholar]
  28. 28.  de Oliveira Mann CC, Kranzusch PJ 2017. cGAS conducts micronuclei DNA surveillance. Trends Cell Biol 27:697–98
    [Google Scholar]
  29. 29.  Deddouche S, Goubau D, Rehwinkel J, Chakravarty P, Begum S et al. 2014. Identification of an LGP2-associated MDA5 agonist in picornavirus-infected cells. eLife 3:e01535
    [Google Scholar]
  30. 30.  Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C 2004. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–31
    [Google Scholar]
  31. 31.  Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA et al. 2013. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep 3:1355–61
    [Google Scholar]
  32. 32.  Dobbs N, Burnaevskiy N, Chen D, Gonugunta VK, Alto NM, Yan N 2015. STING activation by translocation from the ER is associated with infection and autoinflammatory disease. Cell Host Microbe 18:157–68
    [Google Scholar]
  33. 33.  Ea C-K, Deng L, Xia Z-P, Pineda G, Chen ZJ 2006. Activation of IKK by TNFα requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22:245–57
    [Google Scholar]
  34. 34.  Ewald SE, Lee BL, Lau L, Wickliffe KE, Shi GP et al. 2008. The ectodomain of Toll-like receptor 9 is cleaved to generate a functional receptor. Nature 456:658–62
    [Google Scholar]
  35. 35.  Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES 2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–13
    [Google Scholar]
  36. 36.  Fernandes-Alnemri T, Yu JW, Juliana C, Solorzano L, Kang S et al. 2010. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat. Immunol. 11:385–93
    [Google Scholar]
  37. 37.  Franchi L, Muñoz-Planillo R, Núñez G 2012. Sensing and reacting to microbes through the inflammasomes. Nat. Immunol. 13:325–32
    [Google Scholar]
  38. 38.  Fredericksen BL, Keller BC, Fornek J, Katze MG, Gale M 2008. Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. J. Virol. 82:609–16
    [Google Scholar]
  39. 39.  Friedman CS, O'Donnell MA, Legarda‐Addison D, Ng A, Cardenas WB et al. 2008. The tumour suppressor CYLD is a negative regulator of RIG‐I‐mediated antiviral response. EMBO Rep 9:930–36
    [Google Scholar]
  40. 40.  Gack MU, Albrecht RA, Urano T, Inn K-S, Huang I-C et al. 2009. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5:439–49
    [Google Scholar]
  41. 41.  Gack MU, Shin YC, Joo CH, Urano T, Liang C et al. 2007. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916–20
    [Google Scholar]
  42. 42.  Gao D, Wu J, Wu Y-T, Du F, Aroh C et al. 2013. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341:903–6
    [Google Scholar]
  43. 43.  Gao P, Ascano M, Wu Y, Barchet W, Gaffney BL et al. 2013. Cyclic [G(2′,5′)pA(3′,5′)p] is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell 153:1094–107
    [Google Scholar]
  44. 44.  Gao P, Ascano M, Zillinger T, Wang W, Dai P et al. 2013. Structure-function analysis of STING activation by c[G(2′,5′)pA(3′,5′)p] and targeting by antiviral DMXAA. Cell 154:748–62
    [Google Scholar]
  45. 45.  Gentili M, Kowal J, Tkach M, Satoh T, Lahaye X et al. 2015. Transmission of innate immune signaling by packaging of cGAMP in viral particles. Science 349:1232–36
    [Google Scholar]
  46. 46.  Gitlin L, Barchet W, Gilfillan S, Cella M, Beutler B et al. 2006. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. PNAS 103:8459–64
    [Google Scholar]
  47. 47.  Gohda J, Matsumura T, Inoue J 2004. Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not Toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta (TRIF)-dependent pathway in TLR signaling. J. Immunol. 173:2913–17
    [Google Scholar]
  48. 48.  Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T et al. 2014. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5′-diphosphates. Nature 514:372–75
    [Google Scholar]
  49. 49.  Habjan M, Andersson I, Klingström J, Schümann M, Martin A et al. 2008. Processing of genome 5′ termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLOS ONE 3:e2032
    [Google Scholar]
  50. 50.  Hacker H, Redecke V, Blagoev B, Kratchmarova I, Hsu LC et al. 2006. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature 439:204–7
    [Google Scholar]
  51. 51.  Hansen K, Prabakaran T, Laustsen A, Jørgensen SE, Rahbæk SH et al. 2014. Listeria monocytogenes induces IFNβ expression through an IFI16‐, cGAS‐ and STING‐dependent pathway. EMBO J 33:1654–66
    [Google Scholar]
  52. 52.  Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C et al. 2004. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303:1526–29
    [Google Scholar]
  53. 53.  Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H et al. 2002. Small anti-viral compounds activate immune cells via the TLR7 MyD88–dependent signaling pathway. Nat. Immunol. 3:196–200
    [Google Scholar]
  54. 54.  Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S et al. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:740–45
    [Google Scholar]
  55. 55.  Herzner A-M, Hagmann CA, Goldeck M, Wolter S, Kübler K et al. 2015. Sequence-specific activation of the DNA sensor cGAS by Y-form DNA structures as found in primary HIV-1 cDNA. Nat. Immunol. 16:1025–33
    [Google Scholar]
  56. 56.  Hipp MM, Shepherd D, Gileadi U, Aichinger MC, Kessler BM et al. 2013. Processing of human Toll-like receptor 7 by furin-like proprotein convertases is required for its accumulation and activity in endosomes. Immunity 39:4711–21
    [Google Scholar]
  57. 57.  Honda K, Ohba Y, Yanai H, Negishi H, Mizutani T et al. 2005. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434:1035–40
    [Google Scholar]
  58. 58.  Honda K, Yanai H, Negishi H, Asagiri M, Sato M et al. 2005. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434:772–77
    [Google Scholar]
  59. 59.  Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G et al. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–18
    [Google Scholar]
  60. 60.  Hornung V, Ellegast J, Kim S, Brzozka K, Jung A et al. 2006. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314:994–97
    [Google Scholar]
  61. 61.  Hoshino K, Sugiyama T, Matsumoto M, Tanaka T, Saito M et al. 2006. IκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9. Nature 440:949–53
    [Google Scholar]
  62. 62.  Hou F, Sun L, Zheng H, Skaug B, Jiang QX, Chen ZJ 2011. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146:448–61
    [Google Scholar]
  63. 63.  Huang Y-H, Liu X-Y, Du X-X, Jiang Z-F, Su X-D 2012. The structural basis for the sensing and binding of cyclic di-GMP by STING. Nat. Struct. Mol. Biol. 19:728–30
    [Google Scholar]
  64. 64.  Ishii KJ, Coban C, Kato H, Takahashi K, Torii Y et al. 2006. A Toll-like receptor–independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 7:40–48
    [Google Scholar]
  65. 65.  Ishikawa H, Barber GN 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–78
    [Google Scholar]
  66. 66.  Ishikawa H, Ma Z, Barber GN 2009. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461:788–92
    [Google Scholar]
  67. 67.  Jiang F, Ramanathan A, Miller MT, Tang GQ, Gale M Jr. et al. 2011. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479:423–27
    [Google Scholar]
  68. 68.  Jiang X, Kinch LN, Brautigam CA, Chen X, Du F et al. 2012. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 36:959–73
    [Google Scholar]
  69. 69.  Jin L, Hill KK, Filak H, Mogan J, Knowles H et al. 2011. MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. J. Immunol. 187:2595–601
    [Google Scholar]
  70. 70.  Jin T, Perry A, Jiang J, Smith P, Curry JA et al. 2012. Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity 36:561–71
    [Google Scholar]
  71. 71.  Johnston JB, Barrett JW, Nazarian SH, Goodwin M, Ricuttio D et al. 2005. A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. Immunity 23:587–98
    [Google Scholar]
  72. 72.  Junt T, Barchet W 2015. Translating nucleic acid-sensing pathways into therapies. Nat. Rev. Immunol. 15:529–44
    [Google Scholar]
  73. 73.  Kang DC, Gopalkrishnan RV, Wu Q, Jankowsky E, Pyle AM, Fisher PB 2002. mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. PNAS 99:637–42
    [Google Scholar]
  74. 74.  Kanneganti T-D, Özören N, Body-Malapel M, Amer A, Park J-H et al. 2006. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440:233–36
    [Google Scholar]
  75. 75.  Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M et al. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–5
    [Google Scholar]
  76. 76.  Kawai T, Akira S 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11:373–84
    [Google Scholar]
  77. 77.  Kawai T, Sato S, Ishii KJ, Coban C, Hemmi H et al. 2004. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 5:1061–68
    [Google Scholar]
  78. 78.  Kawai T, Takahashi K, Sato S, Coban C, Kumar H et al. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6:981–88
    [Google Scholar]
  79. 79.  Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K et al. 2015. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526:666–71
    [Google Scholar]
  80. 80.  Kim TW, Staschke K, Bulek K, Yao J, Peters K et al. 2007. A critical role for IRAK4 kinase activity in Toll-like receptor-mediated innate immunity. J. Exp. Med. 204:1025–36
    [Google Scholar]
  81. 81.  Kim YM, Brinkmann MM, Paquet ME, Ploegh HL 2008. UNC93B1 delivers nucleotide-sensing Toll-like receptors to endolysosomes. Nature 452:234–38
    [Google Scholar]
  82. 82.  Konno H, Konno K, Barber GN 2013. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155:688–98
    [Google Scholar]
  83. 83.  Kowalinski E, Lunardi T, McCarthy AA, Louber J, Brunel J et al. 2011. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147:423–35
    [Google Scholar]
  84. 84.  Kranzusch PJ, Lee AS-Y, Berger JM, Doudna JA 2013. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep 3:1362–68
    [Google Scholar]
  85. 85.  Kumar H, Kawai T, Kato H, Sato S, Takahashi K et al. 2006. Essential role of IPS-1 in innate immune responses against RNA viruses. J. Exp. Med. 203:1795–803
    [Google Scholar]
  86. 86.  Lahaye X, Satoh T, Gentili M, Cerboni S, Conrad C et al. 2013. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity 39:1132–42
    [Google Scholar]
  87. 87.  Lam E, Stein S, Falck-Pedersen E 2014. Adenovirus detection by the cGAS/STING/TBK1 DNA sensing cascade. J. Virol. 88:974–81
    [Google Scholar]
  88. 88.  Lamkanfi M, Dixit VM 2014. Mechanisms and functions of inflammasomes. Cell 157:1013–22
    [Google Scholar]
  89. 89.  Lau L, Gray EE, Brunette RL, Stetson DB 2015. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science 350:568–71
    [Google Scholar]
  90. 90.  Lee BL, Moon JE, Shu JH, Yuan L, Newman ZR et al. 2013. UNC93B1 mediates differential trafficking of endosomal TLRs. eLife 2:e00291
    [Google Scholar]
  91. 91.  Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A 2007. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315:1398–401
    [Google Scholar]
  92. 92.  Li S, Strelow A, Fontana EJ, Wesche H 2002. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. PNAS 99:5567–72
    [Google Scholar]
  93. 93.  Li X, Shu C, Yi G, Chaton CT, Shelton CL et al. 2013. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39:1019–31
    [Google Scholar]
  94. 94.  Li X-D, Chen ZJ 2012. Sequence specific detection of bacterial 23S ribosomal RNA by TLR13. eLife 1:e00102
    [Google Scholar]
  95. 95.  Li X-D, Sun L, Seth RB, Pineda G, Chen ZJ 2005. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. PNAS 102:17717–22
    [Google Scholar]
  96. 96.  Li X-D, Wu J, Gao D, Wang H, Sun L, Chen ZJ 2013. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341:1390–94
    [Google Scholar]
  97. 97.  Lin SC, Lo YC, Wu H 2010. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465:885–90
    [Google Scholar]
  98. 98.  Lio C-WJ, McDonald B, Takahashi M, Dhanwani R, Sharma N et al. 2016. cGAS-STING signaling regulates initial innate control of cytomegalovirus infection. J. Virol. 90:7789–97
    [Google Scholar]
  99. 99.  Liu L, Botos I, Wang Y, Leonard JN, Shiloach J et al. 2008. Structural basis of Toll-like receptor 3 signaling with double-stranded RNA. Science 320:379–81
    [Google Scholar]
  100. 100.  Liu S, Cai X, Wu J, Cong Q, Chen X et al. 2015. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 347:aaa2630
    [Google Scholar]
  101. 101.  Liu S, Chen J, Cai X, Wu J, Chen X et al. 2013. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. eLife 2:e00785
    [Google Scholar]
  102. 102.  Loo Y-M, Fornek J, Crochet N, Bajwa G, Perwitasari O et al. 2008. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82:335–45
    [Google Scholar]
  103. 103.  Lopez-Pelaez M, Lamont DJ, Peggie M, Shpiro N, Gray NS, Cohen P 2014. Protein kinase IKKβ-catalyzed phosphorylation of IRF5 at Ser462 induces its dimerization and nuclear translocation in myeloid cells. PNAS 111:17432–37
    [Google Scholar]
  104. 104.  Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK et al. 2014. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156:1193–206
    [Google Scholar]
  105. 105.  Lu C, Xu H, Ranjith-Kumar C, Brooks MT, Hou TY et al. 2010. The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure 18:1032–43
    [Google Scholar]
  106. 106.  Lu H-L, Liao F 2013. Melanoma differentiation–associated gene 5 senses hepatitis B virus and activates innate immune signaling to suppress virus replication. J. Immunol. 191:3264–76
    [Google Scholar]
  107. 107.  Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC et al. 2004. Recognition of single-stranded RNA viruses by Toll-like receptor 7. PNAS 101:5598–603
    [Google Scholar]
  108. 108.  Luo D, Ding SC, Vela A, Kohlway A, Lindenbach BD, Pyle AM 2011. Structural insights into RNA recognition by RIG-I. Cell 147:409–22
    [Google Scholar]
  109. 109.  Ma Z, Jacobs SR, West JA, Stopford C, Zhang Z et al. 2015. Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses. PNAS 112:E4306–15
    [Google Scholar]
  110. 110.  Man SM, Karki R, Malireddi RK, Neale G, Vogel P et al. 2015. The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nat. Immunol. 16:467–75
    [Google Scholar]
  111. 111.  Man SM, Karki R, Sasai M, Place DE, Kesavardhana S et al. 2016. IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes. Cell 167:382–96.e17
    [Google Scholar]
  112. 112.  Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR 2010. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467:214–17
    [Google Scholar]
  113. 113.  Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS 2012. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe 11:469–80
    [Google Scholar]
  114. 114.  Maschalidi S, Hässler S, Blanc F, Sepulveda FE, Tohme M et al. 2012. Asparagine endopeptidase controls anti-influenza virus immune responses through TLR7 activation. PLOS Pathog 8:e1002841
    [Google Scholar]
  115. 115.  McFarlane S, Aitken J, Sutherland JS, Nicholl MJ, Preston VG, Preston CM 2011. Early induction of autophagy in human fibroblasts after infection with human cytomegalovirus or herpes simplex virus 1. J. Virol. 85:4212–21
    [Google Scholar]
  116. 116.  McWhirter SM, Barbalat R, Monroe KM, Fontana MF, Hyodo M et al. 2009. A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. J. Exp. Med. 206:1899–911
    [Google Scholar]
  117. 117.  Meylan E, Burns K, Hofmann K, Blancheteau V, Martinon F et al. 2004. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat. Immunol. 5:503–7
    [Google Scholar]
  118. 118.  Meylan E, Curran J, Hofmann K, Moradpour D, Binder M et al. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167–72
    [Google Scholar]
  119. 119.  Minks MA, West DK, Benvin S, Baglioni C 1979. Structural requirements of double-stranded RNA for the activation of 2′, 5′-oligo (A) polymerase and protein kinase of interferon-treated HeLa cells. J. Biol. Chem. 254:10180–83
    [Google Scholar]
  120. 120.  Moretti J, Roy S, Bozec D, Martinez J, Chapman JR et al. 2017. STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum. Cell 171:809–23.e13
    [Google Scholar]
  121. 121.  Motshwene PG, Moncrieffe MC, Grossmann JG, Kao C, Ayaluru M et al. 2009. An oligomeric signaling platform formed by the Toll-like receptor signal transducers MyD88 and IRAK-4. J. Biol. Chem. 284:25404–11
    [Google Scholar]
  122. 122.  Motz C, Schuhmann KM, Kirchhofer A, Moldt M, Witte G et al. 2013. Paramyxovirus V proteins disrupt the fold of the RNA sensor MDA5 to inhibit antiviral signaling. Science 339:690–93
    [Google Scholar]
  123. 123.  Mukai K, Konno H, Akiba T, Uemura T, Waguri S et al. 2016. Activation of STING requires palmitoylation at the Golgi. Nat. Commun. 7:11932
    [Google Scholar]
  124. 124.  Mukherjee A, Morosky SA, Delorme-Axford E, Dybdahl-Sissoko N, Oberste MS et al. 2011. The coxsackievirus B 3Cpro protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. PLOS Pathog 7:e1001311
    [Google Scholar]
  125. 125.  Murali A, Li X, Ranjith-Kumar C, Bhardwaj K, Holzenburg A et al. 2008. Structure and function of LGP2, a DEX (D/H) helicase that regulates the innate immunity response. J. Biol. Chem. 283:15825–33
    [Google Scholar]
  126. 126.  Muruve DA, Pétrilli V, Zaiss AK, White LR, Clark SA et al. 2008. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452:103–7
    [Google Scholar]
  127. 127.  Myong S, Cui S, Cornish PV, Kirchhofer A, Gack MU et al. 2009. Cytosolic viral sensor RIG-I is a 5′-triphosphate–dependent translocase on double-stranded RNA. Science 323:1070–74
    [Google Scholar]
  128. 128.  Negishi H, Osawa T, Ogami K, Ouyang X, Sakaguchi S et al. 2008. A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. PNAS 105:20446–51
    [Google Scholar]
  129. 129.  Ng KW, Marshall EA, Bell JC, Lam WL 2018. cGAS–STING and cancer: dichotomous roles in tumor immunity and development. Trends Immunol 39:44–54
    [Google Scholar]
  130. 130.  Oganesyan G, Saha SK, Guo B, He JQ, Shahangian A et al. 2006. Critical role of TRAF3 in the Toll-like receptor-dependent and -independent antiviral response. Nature 439:208–11
    [Google Scholar]
  131. 131.  Ohto U, Ishida H, Shibata T, Sato R, Miyake K, Shimizu T 2018. Toll-like receptor 9 contains two DNA binding sites that function cooperatively to promote receptor dimerization and activation. Immunity 48:649–58
    [Google Scholar]
  132. 132.  Ohto U, Shibata T, Tanji H, Ishida H, Krayukhina E et al. 2015. Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature 520:702–5
    [Google Scholar]
  133. 133.  Oldenburg M, Krüger A, Ferstl R, Kaufmann A, Nees G et al. 2012. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance–forming modification. Science 337:1111–15
    [Google Scholar]
  134. 134.  Orzalli MH, Knipe DM 2014. Cellular sensing of viral DNA and viral evasion mechanisms. Annu. Rev. Microbiol. 68:477–92
    [Google Scholar]
  135. 135.  Oshiumi H, Matsumoto M, Funami K, Akazawa T, Seya T 2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat. Immunol. 4:161–67
    [Google Scholar]
  136. 136.  Oshiumi H, Matsumoto M, Hatakeyama S, Seya T 2009. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J. Biol. Chem. 284:807–17
    [Google Scholar]
  137. 137.  Oshiumi H, Miyashita M, Inoue N, Okabe M, Matsumoto M, Seya T 2010. The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe 8:496–509
    [Google Scholar]
  138. 138.  Ouyang S, Song X, Wang Y, Ru H, Shaw N et al. 2012. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity 36:1073–86
    [Google Scholar]
  139. 139.  Park B, Brinkmann MM, Spooner E, Lee CC, Kim YM, Ploegh HL 2008. Proteolytic cleavage in an endolysosomal compartment is required for activation of Toll-like receptor 9. Nat. Immunol. 9:1407–14
    [Google Scholar]
  140. 140.  Peisley A, Lin C, Wu B, Orme-Johnson M, Liu M et al. 2011. Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. PNAS 108:21010–15
    [Google Scholar]
  141. 141.  Peisley A, Wu B, Xu H, Chen ZJ, Hur S 2014. Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature 509:110–14
    [Google Scholar]
  142. 142.  Pichlmair A, Lassnig C, Eberle C-A, Górna MW, Baumann CL et al. 2011. IFIT1 is an antiviral protein that recognizes 5′-triphosphate RNA. Nat. Immunol. 12:624
    [Google Scholar]
  143. 143.  Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P et al. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314:997–1001
    [Google Scholar]
  144. 144.  Pippig DA, Hellmuth JC, Cui S, Kirchhofer A, Lammens K et al. 2009. The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Res 37:2014–25
    [Google Scholar]
  145. 145.  Qu L, Feng Z, Yamane D, Liang Y, Lanford RE et al. 2011. Disruption of TLR3 signaling due to cleavage of TRIF by the hepatitis A virus protease-polymerase processing intermediate, 3CD. PLOS Pathog 7:e1002169
    [Google Scholar]
  146. 146.  Rasaiyaah J, Tan CP, Fletcher AJ, Price AJ, Blondeau C et al. 2013. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 503:402–5
    [Google Scholar]
  147. 147.  Rasmussen SB, Horan KA, Holm CK, Stranks AJ, Mettenleiter TC et al. 2011. Activation of autophagy by α-herpesviruses in myeloid cells is mediated by cytoplasmic viral DNA through a mechanism dependent on stimulator of IFN genes. J. Immunol. 187:5268–76
    [Google Scholar]
  148. 148.  Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE et al. 2010. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11:395–402
    [Google Scholar]
  149. 149.  Rehermann B, Nascimbeni M 2005. Immunology of hepatitis B virus and hepatitis C virus infection. Nat. Rev. Immunol. 5:215–29
    [Google Scholar]
  150. 150.  Ren J, Chen X, Chen ZJ 2014. IKKβ is an IRF5 kinase that instigates inflammation. PNAS 111:17438–43
    [Google Scholar]
  151. 151.  Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM et al. 2009. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323:1057–60
    [Google Scholar]
  152. 152.  Roers A, Hiller B, Hornung V 2016. Recognition of endogenous nucleic acids by the innate immune system. Immunity 44:739–54
    [Google Scholar]
  153. 153.  Saiga H, Kitada S, Shimada Y, Kamiyama N, Okuyama M et al. 2012. Critical role of AIM2 in Mycobacterium tuberculosis infection. Int. Immunol. 24:637–44
    [Google Scholar]
  154. 154.  Saito T, Hirai R, Loo YM, Owen D, Johnson CL et al. 2007. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. PNAS 104:582–87
    [Google Scholar]
  155. 155.  Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T et al. 2009. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. PNAS 106:20842–46
    [Google Scholar]
  156. 156.  Sasai M, Linehan MM, Iwasaki A 2010. Bifurcation of Toll-like receptor 9 signaling by adaptor protein 3. Science 329:1530–34
    [Google Scholar]
  157. 157.  Sato S, Li K, Kameyama T, Hayashi T, Ishida Y et al. 2015. The RNA sensor RIG-I dually functions as an innate sensor and direct antiviral factor for hepatitis B virus. Immunity 42:123–32
    [Google Scholar]
  158. 158.  Sato S, Sugiyama M, Yamamoto M, Watanabe Y, Kawai T et al. 2003. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor-3, in the Toll-like receptor signaling. J. Immunol. 171:4304–10
    [Google Scholar]
  159. 159.  Satoh T, Kato H, Kumagai Y, Yoneyama M, Sato S et al. 2010. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. PNAS 107:1512–17
    [Google Scholar]
  160. 160.  Sauer J-D, Sotelo-Troha K, Von Moltke J Monroe KM, Rae CS et al. 2011. The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect. Immunity 79:688–94
    [Google Scholar]
  161. 161.  Schlee M, Roth A, Hornung V, Hagmann CA, Wimmenauer V et al. 2009. Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31:25–34
    [Google Scholar]
  162. 162.  Schmidt A, Schwerd T, Hamm W, Hellmuth JC, Cui S et al. 2009. 5′-Triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. PNAS 106:12067–72
    [Google Scholar]
  163. 163.  Schnare M, Holt AC, Takeda K, Akira S, Medzhitov R 2000. Recognition of CpG DNA is mediated by signaling pathways dependent on the adaptor protein MyD88. Curr. Biol. 10:1139–42
    [Google Scholar]
  164. 164.  Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B et al. 2014. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505:691–95
    [Google Scholar]
  165. 165.  Schröder M, Baran M, Bowie AG 2008. Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKε-mediated IRF activation. EMBO J 27:2147–57
    [Google Scholar]
  166. 166.  Schuberth-Wagner C, Ludwig J, Bruder AK, Herzner A-M, Zillinger T et al. 2015. A conserved histidine in the RNA sensor RIG-I controls immune tolerance to N1–2′O-methylated self RNA. Immunity 43:41–51
    [Google Scholar]
  167. 167.  Seth RB, Sun L, Ea CK, Chen ZJ 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell 122:669–82
    [Google Scholar]
  168. 168.  Shang G, Zhu D, Li N, Zhang J, Zhu C et al. 2012. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat. Struct. Mol. Biol. 19:725–27
    [Google Scholar]
  169. 169.  Shi J, Zhao Y, Wang K, Shi X, Wang Y et al. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526:660–65
    [Google Scholar]
  170. 170.  Shi Y, Yuan B, Qi N, Zhu W, Su J et al. 2015. An autoinhibitory mechanism modulates MAVS activity in antiviral innate immune response. Nat. Commun. 6:7811
    [Google Scholar]
  171. 171.  Shu C, Yi G, Watts T, Kao CC, Li P 2012. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat. Struct. Mol. Biol. 19:722–24
    [Google Scholar]
  172. 172.  Silverman N, Maniatis T 2001. NF-κB signaling pathways in mammalian and insect innate immunity. Genes Dev 15:2321–42
    [Google Scholar]
  173. 173.  Silverman RH 2007. Viral encounters with 2′, 5′-oligoadenylate synthetase and RNase L during the interferon antiviral response. J. Virol. 81:12720–29
    [Google Scholar]
  174. 174.  Song W, Wang J, Han Z, Zhang Y, Zhang H et al. 2015. Structural basis for specific recognition of single-stranded RNA by Toll-like receptor 13. Nat. Struct. Mol. Biol. 22:782–87
    [Google Scholar]
  175. 175.  Stetson DB, Ko JS, Heidmann T, Medzhitov R 2008. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134:587–98
    [Google Scholar]
  176. 176.  Stetson DB, Medzhitov R 2006. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24:93–103
    [Google Scholar]
  177. 177.  Sun L, Wu J, Du F, Chen X, Chen ZJ 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–91
    [Google Scholar]
  178. 178.  Sun Q, Sun L, Liu HH, Chen X, Seth RB et al. 2006. The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24:633–42
    [Google Scholar]
  179. 179.  Sun W, Li Y, Chen L, Chen H, You F et al. 2009. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. PNAS 106:8653–58
    [Google Scholar]
  180. 180.  Tabeta K, Hoebe K, Janssen EM, Du X, Georgel P et al. 2006. The Unc93b1 mutation 3d disrupts exogenous antigen presentation and signaling via Toll-like receptors 3, 7 and 9. Nat. Immunol. 7:156–64
    [Google Scholar]
  181. 181.  Takaoka A, Yanai H, Kondo S, Duncan G, Negishi H et al. 2005. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434:243–49
    [Google Scholar]
  182. 182.  Tanaka Y, Chen ZJ 2012. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signaling 5:ra20–ra
    [Google Scholar]
  183. 183.  Tanji H, Ohto U, Shibata T, Taoka M, Yamauchi Y et al. 2015. Toll-like receptor 8 senses degradation products of single-stranded RNA. Nat. Struct. Mol. Biol. 22:109–15
    [Google Scholar]
  184. 184.  Tatematsu M, Ishii A, Oshiumi H, Horiuchi M, Inagaki F et al. 2010. A molecular mechanism for Toll-IL-1 receptor domain-containing adaptor molecule-1-mediated IRF-3 activation. J. Biol. Chem. 285:20128–36
    [Google Scholar]
  185. 185.  Tschopp J, Martinon F, Burns K 2003. NALPs: a novel protein family involved in inflammation. Nat. Rev. Mol. Cell Biol. 4:95–104
    [Google Scholar]
  186. 186.  Tsuchiya Y, Jounai N, Takeshita F, Ishii KJ, Mizuguchi K 2016. Ligand-induced ordering of the C-terminal tail primes STING for phosphorylation by TBK1. EBioMedicine 9:87–96
    [Google Scholar]
  187. 187.  Uchikawa E, Lethier M, Malet H, Brunel J, Gerlier D, Cusack S 2016. Structural analysis of dsRNA binding to anti-viral pattern recognition receptors LGP2 and MDA5. Mol. Cell 62:586–602
    [Google Scholar]
  188. 188.  Uematsu S, Sato S, Yamamoto M, Hirotani T, Kato H et al. 2005. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction. J. Exp. Med. 201:915–23
    [Google Scholar]
  189. 189.  Unterholzner L 2013. The interferon response to intracellular DNA: why so many receptors?. Immunobiology 218:1312–21
    [Google Scholar]
  190. 190.  Venkataraman T, Valdes M, Elsby R, Kakuta S, Caceres G et al. 2007. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J. Immunol. 178:6444–55
    [Google Scholar]
  191. 191.  Virgin HW, Wherry EJ, Ahmed R 2009. Redefining chronic viral infection. Cell 138:30–50
    [Google Scholar]
  192. 192.  Wang J, Chai J, Wang H 2016. Structure of the mouse Toll-like receptor 13 ectodomain in complex with a conserved sequence from bacterial 23S ribosomal RNA. FEBS J 283:1631–35
    [Google Scholar]
  193. 193.  Wassermann R, Gulen MF, Sala C, Perin SG, Lou Y et al. 2015. Mycobacterium tuberculosis differentially activates cGAS- and inflammasome-dependent intracellular immune responses through ESX-1. Cell Host Microbe 17:799–810
    [Google Scholar]
  194. 194.  Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ et al. 2015. The cytosolic sensor cGAS detects Mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe 17:811–19
    [Google Scholar]
  195. 195.  Watson RO, Manzanillo PS, Cox JS 2012. Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150:803–15
    [Google Scholar]
  196. 196.  Welsch S, Miller S, Romero-Brey I, Merz A, Bleck CK et al. 2009. Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5:365–75
    [Google Scholar]
  197. 197.  Woodward JJ, Iavarone AT, Portnoy DA 2010. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328:1703–5
    [Google Scholar]
  198. 198.  Wu B, Peisley A, Richards C, Yao H, Zeng X et al. 2013. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152:276–89
    [Google Scholar]
  199. 199.  Wu B, Peisley A, Tetrault D, Li Z, Egelman EH et al. 2014. Molecular imprinting as a signal-activation mechanism of the viral RNA sensor RIG-I. Mol. Cell 55:511–23
    [Google Scholar]
  200. 200.  Wu C-J, Conze DB, Li T, Srinivasula SM, Ashwell JD 2006. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation. Nat. Cell Biol. 8:398–406
    [Google Scholar]
  201. 201.  Wu J, Sun L, Chen X, Du F, Shi H et al. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826–30
    [Google Scholar]
  202. 202.  Wu J-j, Li W, Shao Y, Avey D, Fu B et al. 2015. Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host Microbe 18:333–44
    [Google Scholar]
  203. 203.  Xu H, He X, Zheng H, Huang LJ, Hou F et al. 2014. Structural basis for the prion-like MAVS filaments in antiviral innate immunity. eLife 3:e01489 Correction. 2015 eLife 4:e07546
    [Google Scholar]
  204. 204.  Xu H, He X, Zheng H, Huang LJ, Hou F et al. 2015. Correction: Structural basis for the prion-like MAVS filaments in antiviral innate immunity. eLife 4:e07546
    [Google Scholar]
  205. 205.  Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB 2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol. Cell 19:727–40
    [Google Scholar]
  206. 206.  Xu S, Ducroux A, Ponnurangam A, Vieyres G, Franz S et al. 2016. cGAS-mediated innate immunity spreads intercellularly through HIV-1 Env-induced membrane fusion sites. Cell Host Microbe 20:443–57
    [Google Scholar]
  207. 207.  Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T et al. 2003. Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 301:640–43
    [Google Scholar]
  208. 208.  Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J 2010. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 11:1005–13
    [Google Scholar]
  209. 209.  Yang Y, Liang Y, Qu L, Chen Z, Yi M et al. 2007. Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. PNAS 104:7253–58
    [Google Scholar]
  210. 210.  Yin Q, Tian Y, Kabaleeswaran V, Jiang X, Tu D et al. 2012. Cyclic di-GMP sensing via the innate immune signaling protein STING. Mol. Cell 46:735–45
    [Google Scholar]
  211. 211.  Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T et al. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5:730–37
    [Google Scholar]
  212. 212.  Zeng W, Sun L, Jiang X, Chen X, Hou F et al. 2010. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141:315–30
    [Google Scholar]
  213. 213.  Zeng W, Xu M, Liu S, Sun L, Chen ZJ 2009. Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol. Cell 36:315–25
    [Google Scholar]
  214. 214.  Zhang G, Chan B, Samarina N, Abere B, Weidner-Glunde M et al. 2016. Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS. PNAS 113:E1034–43
    [Google Scholar]
  215. 215.  Zhang X, Shi H, Wu J, Zhang X, Sun L et al. 2013. Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol. Cell 51:226–35
    [Google Scholar]
  216. 216.  Zhang X, Wu J, Du F, Xu H, Sun L et al. 2014. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep 6:421–30
    [Google Scholar]
  217. 217.  Zhang Y, Yeruva L, Marinov A, Prantner D, Wyrick PB et al. 2014. The DNA sensor, cyclic GMP-AMP synthase, is essential for induction of IFN-β during Chlamydia trachomatis infection. J. Immunol. 193:2394–404
    [Google Scholar]
  218. 218.  Zhang Z, Ohto U, Shibata T, Krayukhina E, Taoka M et al. 2016. Structural analysis reveals that Toll-like receptor 7 is a dual receptor for guanosine and single-stranded RNA. Immunity 45:737–48
    [Google Scholar]
  219. 219.  Zhong B, Yang Y, Li S, Wang Y-Y, Li Y et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29:538–50
    [Google Scholar]
  220. 220.  Züst R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW et al. 2011. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 12:137–43
    [Google Scholar]
/content/journals/10.1146/annurev-micro-102215-095605
Loading
/content/journals/10.1146/annurev-micro-102215-095605
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error