1932

Abstract

The common marmoset (), a small New World primate, is receiving substantial attention in the neuroscience and biomedical science fields because its anatomical features, functional and behavioral characteristics, and reproductive features and its amenability to available genetic modification technologies make it an attractive experimental subject. In this review, I outline the progress of marmoset neuroscience research and summarize both the current status (opportunities and limitations) of and the future perspectives on the application of marmosets in neuroscience and disease modeling.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-030520-101844
2021-07-08
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/neuro/44/1/annurev-neuro-030520-101844.html?itemId=/content/journals/10.1146/annurev-neuro-030520-101844&mimeType=html&fmt=ahah

Literature Cited

  1. Abe H, Tani T, Mashiko H, Kitamura N, Hayami T et al. 2018. Axonal projections from the middle temporal area in the common marmoset. Front. Neuroanat. 12:89
    [Google Scholar]
  2. Agamaite JA, Chang C-J, Osmanski MS, Wang X 2015. A quantitative acoustic analysis of the vocal repertoire of the common marmoset (Callithrix jacchus). J. Acoust. Soc. Am. 138:2906–28
    [Google Scholar]
  3. Alexander L, Gaskin PLR, Sawiak SJ, Fryer TD, Hong YT et al. 2019. Fractionating blunted reward processing characteristic of anhedonia by over-activating primate subgenual anterior cingulate cortex. Neuron 101:307–20
    [Google Scholar]
  4. Ando K, Inoue T, Hikishima K, Komaki Y, Kawai K et al. 2020. Measurement of baseline locomotion and other behavioral traits in a common marmoset model of Parkinson's disease established by a single administration regimen of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: providing reference data for efficacious preclinical evaluations. Behav. Pharmacol. 31:45–60
    [Google Scholar]
  5. Baker HF, Ridley RM, Duchen LW, Crow TJ, Bruton CJ et al. 1993. Experimental induction of β-amyloid plaques and cerebral angiopathy in primates. Ann. N. Y. Acad. Sci. 695:274–77
    [Google Scholar]
  6. Belcher AM, Yen CC, Stepp H, Gu H, Lu H et al. 2013. Large-scale brain networks in the awake, truly resting marmoset monkey. J. Neurosci. 33:16796–804
    [Google Scholar]
  7. Bezerra BM, Souto A. 2008. Structure and usage of the vocal repertoire of Callithrix jacchus. Int. J. Primatol 29:671–701
    [Google Scholar]
  8. Bihel E, Pro-Sistiaga P, Letourneur A, Toutain J, Saulnier R et al. 2010. Permanent or transient chronic ischemic stroke in the non-human primate: behavioral, neuroimaging, histological, and immunohistochemical investigations. J. Cereb. Blood Flow Metab. 30:273–85
    [Google Scholar]
  9. Boroviak T, Stirparo GG, Dietmann S, Hernando-Herraez I, Mohammed H et al. 2018. Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development. Development 145:dev167833
    [Google Scholar]
  10. Bourdenx M, Dovero S, Engeln M, Bido S, Bastide MF et al. 2015. Lack of additive role of ageing in nigro-striatal neurodegeneration triggered by α-synuclein overexpression. Acta Neuropathol. Commun. 3:46
    [Google Scholar]
  11. Burkart JM, Allon O, Amici F, Fichtel C, Finkenwirth C et al. 2014. The evolutionary origin of human hyper-cooperation. Nat. Commun. 5:4747
    [Google Scholar]
  12. Carroll D. 2011. Genome engineering with zinc-finger nucleases. Genetics 188:773–82
    [Google Scholar]
  13. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82
    [Google Scholar]
  14. Chaplin TA, Yu HH, Soares JG, Gattass R, Rosa MGP 2013. A conserved pattern of differential expansion of cortical areas in simian primates. J. Neurosci. 33:15120–25
    [Google Scholar]
  15. Cohen JL, Crowley TB, McGinn DE, McDougall C, Unolt M et al. 2018. 22q and two: 22q11.2 deletion syndrome and coexisting conditions. Am. J. Med. Genet. A 176:2203–14
    [Google Scholar]
  16. Dell'Mour V, Range F, Huber L 2009. Social learning and mother's behavior in manipulative tasks in infant marmosets. Am. J. Primatol. 71:503–9
    [Google Scholar]
  17. Dettling AC, Schnell CR, Maier C, Feldon J, Pryce CR 2007. Behavioral and physiological effects of an infant-neglect manipulation in a bi-parental, twinning primate: Impact is dependent on familial factors. Psychoneuroendocrinology 32:331–49
    [Google Scholar]
  18. Deverman BE, Pravdo PL, Simpson BP, Kumar SR, Chan KY et al. 2016. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat. Biotechnol. 34:204–9
    [Google Scholar]
  19. Digby LJ. 1995. Social organization in a wild population of Callithrix jacchus: II. Intragroup social behavior. Primates 36:361–75
    [Google Scholar]
  20. Ebina T, Masamizu Y, Tanaka YR, Watakabe A, Hirakawa R 2018. Two-photon imaging of neuronal activity in motor cortex of marmosets during upper-limb movement tasks. Nat. Commun. 9:1879
    [Google Scholar]
  21. Ebina T, Obara K, Watakabe A, Masamizu Y, Terada SI et al. 2019. Arm movements induced by noninvasive optogenetic stimulation of the motor cortex in the common marmoset. PNAS 116:22844–50
    [Google Scholar]
  22. Eliades SJ, Wang X. 2008. Neural substrates of vocalization feedback monitoring in primate auditory cortex. Nature 453:1102–6
    [Google Scholar]
  23. Endo K, Ishigaki S, Masamizu Y, Fujioka Y, Watakabe A et al. 2018. Silencing of FUS in the common marmoset (Callithrix jacchus) brain via stereotaxic injection of an adeno-associated virus encoding shRNA. Neurosci. Res. 130:56–64
    [Google Scholar]
  24. Enomoto T, Konoike N, Takemoto A, Nakamura K, Ikeda K 2018. Blockade of dopamine D1 receptors, but not D2 receptors, decreases motivation in a novel effort-discounting paradigm in common marmosets. Behav. Neurosci. 132:526–35
    [Google Scholar]
  25. Feng G, Jensen FE, Greely HT, Okano H, Treue S et al. 2020. Opportunities and limitations of genetically modified nonhuman primate models for neuroscience research. PNAS 117:24022–31
    [Google Scholar]
  26. Fenno L, Yizhar O, Deisseroth K 2011. The development and application of optogenetics. Annu. Rev. Neurosci. 34:389–412
    [Google Scholar]
  27. French JA. 1997. Proximate regulation of singular breeding in callitrichid primates. Cooperative Breeding in Mammals N Solomon, JA French 34–75 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  28. Fujiyoshi K, Hikishima K, Nakahara J, Tsuji O, Hata J et al. 2016. Application of q-space diffusion MRI for the visualization of white matter. J. Neurosci. 36:2796–808
    [Google Scholar]
  29. Fujiyoshi K, Yamada M, Nakamura M, Yamane J, Katoh H et al. 2007. In vivo tracing of neural tracts in the intact and injured spinal cord of marmosets by diffusion tensor tractography. J. Neurosci. 27:11991–98
    [Google Scholar]
  30. Fukushima M, Ichinohe N, Okano H 2018. Neuroanatomy of the marmoset. The Common Marmoset in Captivity and Biomedical Research RP Marini, LM Wachtman, SD Tardif, K Mansfield, JG Fox 43–62 London: Academic
    [Google Scholar]
  31. Georgieva L, Rees E, Moran JL, Chambert KD, Milanova V et al. 2014. De novo CNVs in bipolar affective disorder and schizophrenia. Hum. Mol. Genet. 3:6677–83
    [Google Scholar]
  32. Ghahremani M, Hutchison RM, Menon RS, Everling S 2017. Frontoparietal functional connectivity in the common marmoset. Cereb. Cortex 27:3890–905
    [Google Scholar]
  33. Ghosh KK, Burns LD, Cocker ED, Nimmerjahn A, Ziv Y 2011. Miniaturized integration of a fluorescence microscope. Nat. Methods 8:871–78
    [Google Scholar]
  34. Gnanalingham KK, Smith LA, Hunter AJ, Jenner P, Marsden CD 1993. Alterations in striatal and extrastriatal D-1 and D-2 dopamine receptors in the MPTP-treated common marmoset: an autoradiographic study. Synapse 14:184e94
    [Google Scholar]
  35. Gordon DJ, Rogers LJ. 2010. Differences in social and vocal behavior between left- and right-handed common marmosets (Callithrix jacchus). J. Comp. Psychol. 124:402–11
    [Google Scholar]
  36. Grillner S, Ip N, Koch C, Koroshetz W, Okano H et al. 2016. Worldwide initiatives to advance brain research. Nat. Neurosci. 19:1118–22
    [Google Scholar]
  37. Hage SR, Nieder A. 2013. Single neurons in monkey prefrontal cortex encode volitional initiation of vocalizations. Nat. Commun. 4:2409
    [Google Scholar]
  38. Hashikawa T, Nakatomi R, Iriki A 2015. Current models of the marmoset brain. Neurosci. Res. 93:116–27
    [Google Scholar]
  39. Hashimoto T, Yamazaki Y, Iriki A 2013. Hand preference depends on posture in common marmosets. Behav. Brain Res. 248:144–50
    [Google Scholar]
  40. Heide M, Haffner C, Murayama A, Kurotaki Y, Shinohara H et al. 2020. Human-specific ARHGAP11B increases size and folding of the fetal neocortex of a non-human primate. Science 18:eabb2401
    [Google Scholar]
  41. Hikishima K, Ando K, Komaki Y, Kawai K, Yano R et al. 2015. Voxel-based morphometry of the marmoset brain: in vivo detection of volume loss in the substantia nigra of the MPTP-treated Parkinson's disease model. Neuroscience 300:585–92
    [Google Scholar]
  42. Hikishima K, Quallo MM, Komaki Y, Yamada M, Kawai K et al. 2011. Population-averaged standard template brain atlas for the common marmoset (Callithrix jacchus). NeuroImage 54:2741–49
    [Google Scholar]
  43. Hirano Y, Yen CC, Liu JV, Mackel JB, Merkle H et al. 2018. Investigation of the BOLD and CBV fMRI responses to somatosensory stimulation in awake marmosets (Callithrix jacchus). NMR Biomed 31:3e3864
    [Google Scholar]
  44. Hori Y, Schaeffer DJ, Gilbert KM, Hayrynen LK, Cléry JC et al. 2020. Comparison of resting-state functional connectivity in marmosets with tracer-based cellular connectivity. NeuroImage 204:116241
    [Google Scholar]
  45. Huber L, Voelkl B. 2009. Social and physical cognition in marmosets and tamarins. The Smallest Anthropoids: The Marmoset/Callimico Radiation SM Ford, LM Porter, LC Davis 183–201 New York: Springer
    [Google Scholar]
  46. Hung C-C, Yen CC, Ciuchta JL, Papoti D, Bock NA et al. 2015. Functional MRI of visual responses in the awake, behaving marmoset. NeuroImage 120:1–11
    [Google Scholar]
  47. Inoue M, Takeuchi A, Manita S, Horigane SI, Sakamoto M et al. 2019. Rational engineering of XCaMPs, a multicolor GECI suite for in vivo imaging of complex brain circuit dynamics. Cell 177:1346–60
    [Google Scholar]
  48. Iriki A, Okano HJ, Sasaki E, Okano H 2018. The 3-Dimensional Atlas of the Marmoset Brain Tokyo: Springer
  49. Ishii T, Ishikawa M, Fujimori K, Maeda T, Kushima I et al. 2019. In vitro modeling of the bipolar disorder and schizophrenia using patient-derived induced pluripotent stem cells with copy number variations of PCDH15 and RELN. . eNeuro 6:5ENEURO.0403–18.2019
    [Google Scholar]
  50. Iwanami A, Kaneko S, Nakamura M, Kanemura Y, Mori H et al. 2005a. Transplantation of human neural stem cells for spinal cord injury in primates. J. Neurosci. Res. 80:182–90
    [Google Scholar]
  51. Iwanami A, Yamane J, Katoh H, Nakamura M, Momoshima S et al. 2005b. Establishment of graded spinal cord injury model in a nonhuman primate: the common marmoset. J. Neurosci. Res. 80:172–81
    [Google Scholar]
  52. Izpisua Belmonte JC, Callaway EM, Caddick SJ, Churchland P, Feng G et al. 2015. Brains, genes, and primates. Neuron 86:617–31
    [Google Scholar]
  53. Jayakumar V, Ishii H, Seki M, Kumiko W, Inoue T et al. 2020. An improved de novo genome assembly of the common marmoset genome yields improved contiguity and increased mapping rates of sequence data. BMC Genom 21:Suppl. 3243
    [Google Scholar]
  54. Johnston K, Ma L, Schaeffer L, Everling S 2019. Alpha oscillations modulate preparatory activity in marmoset area 8Ad. J. Neurosci. 39:101855–66
    [Google Scholar]
  55. Keeler AM, Flotte TR. 2019. Recombinant adeno-associated virus gene therapy in light of Luxturna (and Zolgensma and Glybera): Where are we, and how did we get here. ? Annu. Rev. Virol. 6:601–21
    [Google Scholar]
  56. Kendall AL, Rayment FD, Torres EM, Baker HF, Ridley RM, Dunnett SB 1998. Functional integration of striatal allografts in a primate model of Huntington's disease. Nat. Med. 4:727–29
    [Google Scholar]
  57. Kishi N, Sato K, Sasaki E, Okano H 2014. Common marmoset as a new model animal for neuroscience research and genome editing technology. Dev. Growth Differ. 56:53–62
    [Google Scholar]
  58. Kitamura K, Fujiyoshi K, Yamane J, Toyota F, Hikishima K et al. 2011. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury. PLOS ONE 6:e27706
    [Google Scholar]
  59. Kitamura K, Nagoshi N, Tsuji O, Matsumoto M, Okano H, Nakamura M 2019. Application of hepatocyte growth factor for acute spinal cord injury: the road from basic studies to human treatment. Int. J. Mol. Sci. 20:1054
    [Google Scholar]
  60. Komatsu M, Kaneko T, Okano H, Ichinohe N 2019. Chronic implantation of whole-cortical electrocorticographic array in the common marmoset. J. Vis. Exp. 144:e58980
    [Google Scholar]
  61. Komatsu M, Takaura K, Fujii N 2015. Mismatch negativity in common marmosets: whole-cortical recordings with multi-channel electrocorticograms. Sci. Rep. 5:15006
    [Google Scholar]
  62. Kondo T, Saito R, Otaka M, Yoshino-Saito K, Yamanaka A et al. 2018. Calcium transient dynamics of neural ensembles in the primary motor cortex of naturally behaving monkeys. Cell Rep 24:2191–95
    [Google Scholar]
  63. Kotani M, Enomoto T, Murai T, Nakako T, Iwamura Y et al. 2016. The atypical antipsychotic blonanserin reverses (+)-PD-128907- and ketamine-induced deficit in executive function in common marmosets. Behav. Brain Res. 305:212–17
    [Google Scholar]
  64. Kotani M, Shimono K, Yoneyama T, Nakako T, Matsumoto K et al. 2017. An eye tracking system for monitoring face scanning patterns reveals the enhancing effect of oxytocin on eye contact in common marmosets. Psychoneuroendocrinology 83:42–48
    [Google Scholar]
  65. Kosicki M, Tomberg K, Bradley A 2018. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol. 36:765–71
    [Google Scholar]
  66. Krienen FM, Goldman M, Zhang Q, del Rosario R, Florio M et al. 2020. Innovations in primate interneuron repertoire. Nature 586:262–69
    [Google Scholar]
  67. Kumita W, Sato K, Suzuki Y, Kurotaki Y, Harada T et al. 2019. Efficient generation of knock-in/knock-out marmoset embryo via CRISPR/Cas9 gene editing. Sci. Rep. 9:12719
    [Google Scholar]
  68. Lee JH, Durand R, Gradinaru V, Zhang F, Goshen I et al. 2010. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465:788–92
    [Google Scholar]
  69. Lin MK, Takahashi YS, Huo B, Hanada M, Nagashima J et al. 2019. A high-throughput neurohistological pipeline for brain-wide mesoscale connectivity mapping of the common marmoset. eLife 8:e40042
    [Google Scholar]
  70. Lin MZ, Schnitzer MJ. 2016. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19:1142–53
    [Google Scholar]
  71. Liu C, Ye FQ, Newman JD, Szczupak D, Tian X et al. 2020. A resource for the detailed 3D mapping of white matter pathways in the marmoset brain. Nat. Neurosci. 23:271–80
    [Google Scholar]
  72. Liu C, Ye FQ, Yen CC, Newman JD, Glen D et al. 2017. A digital 3D atlas of the marmoset brain based on multi-modal MRI. NeuroImage 169:106–16
    [Google Scholar]
  73. Liu C, Yen CC, Szczupak D, Ye FQ, Leopold DA, Silva AC 2019. Anatomical and functional investigation of the marmoset default mode network. Nat. Commun. 10:1975
    [Google Scholar]
  74. Liu H, Chen Y, Niu Y, Zhang K, Kang Y et al. 2014. TALEN-mediated gene mutagenesis in rhesus and cynomolgus monkeys. Cell Stem Cell 14:323–28
    [Google Scholar]
  75. Liu JV, Hirano Y, Nascimento GC, Stefanovic B, Leopold DA, Silva AC 2013. fMRI in the awake marmoset: somatosensory-evoked responses, functional connectivity, and comparison with propofol anesthesia. NeuroImage 78:186–95
    [Google Scholar]
  76. Liu Z, Cai Y, Liao Z, Xu Y, Wang Y et al. 2019. Cloning of a gene-edited macaque monkey by somatic cell nuclear transfer. Nat. Sci. Rev. 6:101–8
    [Google Scholar]
  77. Liu Z, Cai Y, Wang Y, Nie Y, Zhang C et al. 2018. Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 172:881–87
    [Google Scholar]
  78. Liu Z, Li X, Zhang JT, Cai YJ, Cheng TL et al. 2016. Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature 530:98–102
    [Google Scholar]
  79. Maclean CJ, Baker HF, Ridley RM, Mori H 2000. Naturally occurring and experimentally induced β-amyloid deposits in the brains of marmosets (Callithrix jacchus). J. Neural Transm. 107:799–814
    [Google Scholar]
  80. Marx V. 2016. Neurobiology: learning from marmosets. Nat. Methods 13:911–16
    [Google Scholar]
  81. Mashiko H, Yoshida AC, Kikuchi SS, Niimi K, Takahashi E et al. 2012. Comparative anatomy of marmoset and mouse cortex from genomic expression. J. Neurosci. 32:5039–53
    [Google Scholar]
  82. Matsuzaki Y, Konno A, Mochizuki R, Shinohara Y, Nitta K et al. 2018. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain. Neurosci. Lett. 665:182–88
    [Google Scholar]
  83. Mendell JR, Al-Zaidy S, Shell R, Arnold WD, Rodino-Klapac LR et al. 2017. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377:1713–22
    [Google Scholar]
  84. MGSAC (Marmoset Genome Seq. Anal. Consort.) 2014. The common marmoset genome provides insight into primate biology and evolution. Nat. Genet. 46:850–57
    [Google Scholar]
  85. Michaels JA, Dann B, Intveld RW, Scherberger H 2018. Neural dynamics of variable grasp-movement preparation in the macaque frontoparietal network. J. Neurosci. 38:5759–73
    [Google Scholar]
  86. Miller CT. 2017. Why marmosets. ? Dev. Neurobiol. 77:237–43
    [Google Scholar]
  87. Miller CT, Freiwald W, Leopold DA, Mitchell JF, Silva AC, Wang X 2016. Marmosets: a neuroscientific model of human social behavior. Neuron 90:219–33
    [Google Scholar]
  88. Miller EK, Cohen JD. 2001. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24:167–202
    [Google Scholar]
  89. Mitchell JF, Leopold DA. 2015. The marmoset monkey as a model for visual neuroscience. Neurosci. Res. 93:20–46
    [Google Scholar]
  90. Moran S, Chi T, Prucha MS, Ahn KS, Connor-Stroud F et al. 2015. Germline transmission in transgenic Huntington's disease monkeys. Theriogenology 84:277–85
    [Google Scholar]
  91. Murayama A, Kuwako K, Okahara J, Bae BI, Okuno M et al. 2020. The polymicrogyria-associated GPR56 promoter preferentially drives gene expression in developing GABAergic neurons in common marmosets. Sci. Rep. 10:21516
    [Google Scholar]
  92. Nagoshi N, Tsuji O, Kitamura K, Suda K, Maeda T et al. 2020. Phase I/II study of intrathecal administration of recombinant human hepatocyte growth factor in patients with acute spinal cord injury: a double-blind, randomized clinical trial of safety and efficacy. J. Neurotrauma 37:1752–58
    [Google Scholar]
  93. Nakako T, Murai T, Ikejiri M, Hashimoto T, Kotani M 2014. Effects of lurasidone on ketamine-induced joint visual attention dysfunction as a possible disease model of autism spectrum disorders in common marmosets. Behav. Brain Res. 274:349–54
    [Google Scholar]
  94. Newman JD, Kenkel WM, Aronoff EC, Bock NA, Zametkin MR, Silva AC 2009. A combined histological and MRI brain atlas of the common marmoset monkey, Callithrix jacchus. Brain Res. Rev. 62:1–18
    [Google Scholar]
  95. Nishimura S, Sasaki T, Shimizu A, Yoshida K, Iwai H et al. 2014. Global gene expression analysis following spinal cord injury in non-human primates. Exp. Neurol. 261:171–79
    [Google Scholar]
  96. Niu Y, Guo X, Chen Y, Wang CE, Gao J et al. 2015. Early Parkinson's disease symptoms in α-synuclein transgenic monkeys. Hum. Mol. Genet. 224:2308–17
    [Google Scholar]
  97. Ogawa S, Lee TM, Kay AR, Tank DW 1990. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. PNAS 87:9868–72
    [Google Scholar]
  98. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG et al. 1992. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. PNAS 89:5951–55
    [Google Scholar]
  99. Okano H, Hikishima K, Iriki A, Sasaki E 2012. The common marmoset as a novel animal model system for biomedical and neuroscience research applications. Semin. Fetal Neonatal Med. 17:336–40
    [Google Scholar]
  100. Okano H, Kishi N. 2017. Investigation of brain science and neurological/psychiatric disorders using genetically modified non-human primates. Curr. Opin. Neurobiol. 50:1–6
    [Google Scholar]
  101. Okano H, Mitra P. 2015. Brain-mapping projects using the common marmoset. Neurosci. Res. 93:3–7
    [Google Scholar]
  102. Okano H, Sasaki E, Yamamori T, Iriki A, Shimogori T et al. 2016. Brain/MINDS: a Japanese national brain project for marmoset neuroscience. Neuron 92:582–90
    [Google Scholar]
  103. Okano H, Yamamori T. 2016. How can brain mapping initiatives cooperate to achieve the same goal. ? Nat. Rev. Neurosci. 17:733–34
    [Google Scholar]
  104. Park JE, Zhang XF, Choi SH, Okahara J, Sasaki E, Silva AC 2016. Generation of transgenic marmosets expressing genetically encoded calcium indicators. Sci. Rep. 6:34931
    [Google Scholar]
  105. Pomberger T, Risueno-Segovia C, Gultekin YB, Dohmen D, Hage SR 2019. Cognitive control of complex motor behavior in marmoset monkeys. Nat. Commun. 10:3796
    [Google Scholar]
  106. Proix T, Jirsa VK, Bartolomei F, Guye M, Truccolo W 2018. Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy. Nat. Commun. 9:1088
    [Google Scholar]
  107. Raichle ME. 2015. The brain's default mode network. Annu. Rev. Neurosci. 38:433–47
    [Google Scholar]
  108. Rees HA, Liu DR. 2018. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19:770–88
    [Google Scholar]
  109. Roy S, Zhao L, Wang X 2016. Distinct neural activities in premotor cortex during natural vocal behaviors in a New World primate, the common marmoset (Callithrix jacchus). J. Neurosci. 36:12168–79
    [Google Scholar]
  110. Sadakane O, Masamizu Y, Watakabe A, Terada S, Ohtsuka M 2015a. Long-term two-photon calcium imaging of neuronal populations with subcellular resolution in adult non-human primates. Cell Rep 13:1989–99
    [Google Scholar]
  111. Sadakane O, Watakabe A, Ohtsuka M, Takaji M, Sasaki T et al. 2015b. In vivo two-photon imaging of dendritic spines in marmoset neocortex. eNeuro 2:4ENEURO.0019–15.2015
    [Google Scholar]
  112. Santangelo AM, Ito M, Shiba Y, Clarke HF, Schut EH et al. 2016. Novel primate model of serotonin transporter genetic polymorphisms associated with gene expression, anxiety and sensitivity to antidepressants. Neuropsychopharmacology 41:2366–76
    [Google Scholar]
  113. Santangelo AM, Sawiak SJ, Fryer T, Hong Y, Shiba Y et al. 2019. Insula serotonin 2A receptor binding and gene expression contribute to serotonin transporter polymorphism anxious phenotype in primates. PNAS 116:14761–68
    [Google Scholar]
  114. Santisakultarm TP, Kersbergen CJ, Bandy DK, Ide DC, Choi SH, Silva AC 2016. Two-photon imaging of cerebral hemodynamics and neural activity in awake and anesthetized marmosets. J. Neurosci. Methods 271:55–64
    [Google Scholar]
  115. Sasaguri H, Nagata K, Sekiguchi M, Fujioka R, Matsuba Y et al. 2018. Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID. Nat. Commun. 9:2892
    [Google Scholar]
  116. Sasaki E, Hanazawa K, Kurita R, Akatsuka A, Yoshizaki T et al. 2005. Establishment of novel embryonic stem cell lines derived from the common marmoset (Callithrix jacchus). Stem Cells 23:1304–13
    [Google Scholar]
  117. Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R et al. 2009. Generation of transgenic non-human primates with germline transmission. Nature 459:523–27
    [Google Scholar]
  118. Sato K, Kuroki Y, Kumita W, Fujiyama A, Toyoda A et al. 2015. Resequencing of the common marmoset genome assemblies and gene-coding sequence analysis. Sci. Rep. 5:16894
    [Google Scholar]
  119. Sato K, Oiwa R, Kumita W, Henry R, Sakuma T et al. 2016. Generation of a nonhuman primate model of severe combined immunodeficiency using highly efficient genome editing. Cell Stem Cell 19:127–38
    [Google Scholar]
  120. Sawiak SJ, Shiba Y, Oikonomidis L, Windle CP, Santangelo AM et al. 2018. Trajectories and milestones of cortical and subcortical development of the marmoset brain from infancy to adulthood. Cereb. Cortex 28:4440–53
    [Google Scholar]
  121. Schaeffer DJ, Adam R, Gilbert KM, Gati JS, Li AX et al. 2017. Diffusion-weighted tractography in the common marmoset monkey at 9.4T. J. Neurophysiol. 118:1344–54
    [Google Scholar]
  122. Schaeffer DJ, Gilbert KM, Hori Y, Hayrynen LK, Johnston KD et al. 2019. Task-based fMRI of a free-viewing visuo-saccadic network in the marmoset monkey. NeuroImage 202:116147
    [Google Scholar]
  123. Schultz-Darken N, Braun KM, Emborg ME 2016. Neurobehavioral development of common marmoset monkeys. Dev. Psychobiol. 58:141–58
    [Google Scholar]
  124. Seki F, Hikishima K, Komaki Y, Hata J, Uematsu A et al. 2017. Developmental trajectories of macroanatomical structures in common marmoset brain. Neuroscience 364:143–56
    [Google Scholar]
  125. Shiba Y, Oikonomidis L, Sawiak S, Fryer TD, Hong YT 2017. Converging prefronto-insula-amygdala pathways in negative emotion regulation in marmoset monkeys. Biol. Psychiatry 82:895–903
    [Google Scholar]
  126. Shimogori T, Abe A, Go Y, Hashikawa T, Kishi N et al. 2018. Digital gene atlas of neonate common marmoset brain. Neurosci. Res. 128:1–13
    [Google Scholar]
  127. Shimozawa A, Ono M, Takahara D, Tarutani A, Imura S et al. 2017. Propagation of pathological α-synuclein in marmoset brain. Acta Neuropathol. Commun. 5:12
    [Google Scholar]
  128. Silva AC, Liu JV, Hirano Y, Leoni RF, Merkle H et al. 2011. Longitudinal functional magnetic resonance imaging in animal models. Methods Mol. Biol. 711:281–302
    [Google Scholar]
  129. Song X, Osmanski MS, Guo Y, Wang X 2016. Complex pitch perception mechanisms are shared by humans and a New World monkey. PNAS 113:781–86
    [Google Scholar]
  130. Sternson SM, Roth BL. 2014. Chemogenetic tools to interrogate brain functions. Annu. Rev. Neurosci. 37:387–407
    [Google Scholar]
  131. Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J et al. 2016. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540:144–49
    [Google Scholar]
  132. Takemi M, Kondo T, Yoshino-Saito K, Sekiguchi T, Kosugi A et al. 2014. Three-dimensional motion analysis of arm-reaching movements in healthy and hemispinalized common marmosets. Behav. Brain Res. 275:259–68
    [Google Scholar]
  133. Tatsumoto S, Adati N, Tohtoki Y, Sakaki Y, Boroviak T et al. 2013. Development and characterization of cDNA resources for the common marmoset: one of the experimental primate models. DNA Res 20:255–62
    [Google Scholar]
  134. Tervo DG, Hwang BY, Viswanathan S, Gaj T, Lavzin M et al. 2016. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92:372–82
    [Google Scholar]
  135. Tia B, Takemi M, Kosugi A, Castagnola E, Ansaldo A, Nakamura T et al. 2017. Cortical control of object-specific grasp relies on adjustments of both activity and effective connectivity: a common marmoset study. J. Physiol. 595:7203–21
    [Google Scholar]
  136. Toarmino CR, Yen CC, Papoti D, Bock NA, Leopold DA et al. 2017. Functional magnetic resonance imaging of auditory cortical fields in awake marmosets. NeuroImage 162:86–92
    [Google Scholar]
  137. Tokuno H, Watson C, Roberts A, Sasaki E, Okano H 2015. Marmoset neuroscience. Neurosci. Res. 93:1–2
    [Google Scholar]
  138. Tomioka I, Ishibashi H, Minakawa EN, Motohashi HH, Takayama O et al. 2017. Transgenic monkey model of the polyglutamine diseases recapitulating progressive neurological symptoms. eNeuro 4:2ENEURO.0250–16.2017
    [Google Scholar]
  139. Tomioka I, Maeda T, Shimada H, Kawai K, Okada Y et al. 2010. Generating induced pluripotent stem cells from common marmoset (Callithrix jacchus) fetal liver cells using defined factors including Lin28. Genes Cells 15:959–69
    [Google Scholar]
  140. Uematsu A, Hata J, Komaki Y, Seki F, Yamada C et al. 2017. Mapping orbitofrontal-limbic maturation in non-human primates: a longitudinal magnetic resonance imaging study. NeuroImage 163:55–67
    [Google Scholar]
  141. Umeda T, Koizumi M, Katakai Y, Saito R, Seki K 2019. Decoding of muscle activity from the sensorimotor cortex in freely behaving monkeys. NeuroImage 197:512–26
    [Google Scholar]
  142. Wagner HNJ. 1988. Positron emission tomography in assessment of regional stereospecificity of drugs. Biochem. Pharmacol. 37:51–59
    [Google Scholar]
  143. Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N et al. 2018. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361:6400eaat5691
    [Google Scholar]
  144. Watakabe A, Ohtsuka M, Kinoshita M, Takaji M, Isa K et al. 2015. Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci. Res. 93:144–57
    [Google Scholar]
  145. Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M et al. 2000. Real-time prediction of hand trajectory by ensembles of cortical neurons in primates. Nature 408:361–65
    [Google Scholar]
  146. Woodward A, Hashikawa T, Maeda M, Kaneko T, Hikishima K et al. 2018. The Brain/MINDS 3D digital marmoset brain atlas. Sci. Data 5:180009
    [Google Scholar]
  147. Wutz A, Loonis R, Roy JE, Donoghue JA, Miller EK 2018. Different levels of category abstraction by different dynamics in different prefrontal areas. Neuron 97:716–26
    [Google Scholar]
  148. Yamada Y, Matsumoto Y, Okahara N, Mikoshiba K 2016. Chronic multiscale imaging of neuronal activity in the awake common marmoset. Sci. Rep. 6:35722
    [Google Scholar]
  149. Yamazaki Y, Hikishima K, Saiki M, Inada M, Sasaki E et al. 2016. Neural changes in the primate brain correlated with the evolution of complex motor skills. Sci. Rep. 6:31084
    [Google Scholar]
  150. Yamazaki Y, Saiki M, Inada M, Iriki A, Watanabe S 2014. Transposition and its generalization in common marmosets. J. Exp. Psychol. Anim. Learn. Cogn. 40:317–26
    [Google Scholar]
  151. Yokoyama C, Mawatari A, Kawasaki A, Takeda C, Onoe K et al. 2016. Marmoset serotonin 5-HT1A receptor mapping with a biased agonist PET probe 18F-F13714: comparison with an antagonist tracer 18F-MPPF in awake and anesthetized states. Int. J. Neuropsychopharmacol. 19:12pyw079
    [Google Scholar]
  152. Yoshimatsu S, Okahara J, Sone T, Takeda Y, Nakamura M et al. 2019. Robust and efficient knock-in in embryonic stem cells and early-stage embryos of the common marmoset using the CRISPR-Cas9 system. Sci. Rep. 9:1528
    [Google Scholar]
  153. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC 2012. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61:1000–16
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-030520-101844
Loading
/content/journals/10.1146/annurev-neuro-030520-101844
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error