The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiological, neurobiological, neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alexander GE, Delong MR, Strick PL. 1986. Parallel organization of functionally segregated circuits linking basal ganglia and cortex.. Annu. Rev. Neurosci. 9:357–81 [Google Scholar]
  2. Amaral DG, Price JL. 1984. Amygdalo-cortical projections in the monkey (Macaca fascicularis).. J. Comp. Neurol. 230:465–96 [Google Scholar]
  3. Anderson JR. 1983. The Architecture of Cognition. Cambridge, MA: Harvard Univ. Press [Google Scholar]
  4. Anderson KC, Asaad WF, Wallis JD, Miller EK. 1999. Simultaneous recordings from monkey prefrontal (PF) and posterior parietal (PP) cortices during visual search.. Soc. Neurosci. Abstr. 25:885 [Google Scholar]
  5. Asaad WF, Rainer G, Miller EK. 1998. Neural activity in the primate prefrontal cortex during associative learning.. Neuron 21:1399–407 [Google Scholar]
  6. Asaad WF, Rainer G, Miller EK. 2000. Task-specific neural activity in the primate prefrontal cortex.. J. Neurophysiol. 84:451–59 [Google Scholar]
  7. Baddeley A. 1986. Working Memory. Oxford: Clarendon [Google Scholar]
  8. Baker SC, Rogers RD, Owen AM, Frith CD, Dolan RJ. et al. 1996. Neural systems engaged by planning: a PET study of the Tower of London Task.. Neuropsychologia 34:515–26 [Google Scholar]
  9. Banich MT, Milham MP, Atchley R, Cohen NJ, Webb A. et al. 2000. Prefrontal regions play a predominant role in imposing an attentional “set”: evidence from fMRI.. Cogn. Brain Res. In press [Google Scholar]
  10. Barbas H, De Olmos J. 1990. Projections from the amygdala to basoventral and mediodorsal prefrontal regions in the rhesus monkey.. J. Comp. Neurol. 300:549–71 [Google Scholar]
  11. Barbas H, Pandya D. 1991. Patterns of connections of the prefrontal cortex in the rhesus monkey associated with cortical architecture. In Frontal Lobe Function and Dysfunction, ed. HS Levin, HM Eisenberg, AL Benton 35–58 New York: Oxford Univ. Press [Google Scholar]
  12. Barbas H, Pandya DN. 1989. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey.. J. Comp. Neurol. 286:353–75 [Google Scholar]
  13. Barone P, Joseph JP. 1989. Prefrontal cortex and spatial sequencing in macaque monkey.. Exp. Brain Res. 78:447–64 [Google Scholar]
  14. Bates JF, Goldman-Rakic PS. 1993. Prefrontal connections of medial motor areas in the rhesus monkey.. J. Comp. Neurol. 336:211–28 [Google Scholar]
  15. Bechara A, Damasio AR, Damasio H, Anderson SW. 1994. Insensitivity to future consequences following damage to human prefrontal cortex.. Cognition 50:7–15 [Google Scholar]
  16. Bechara A, Damasio H, Tranel D, Damasio AR. 1997. Deciding advantageously before knowing the advantageous strategy.. Science 275:1293–95 [Google Scholar]
  17. Bianchi L. 1922. The Mechanism of the Brain and the Function of the Frontal Lobes. Edinburgh: Livingstone [Google Scholar]
  18. Bichot NP, Schall JD, Thompson KG. 1996. Visual feature selectivity in frontal eye fields induced by experience in mature macaques.. Nature 381:697–99 [Google Scholar]
  19. Botvinick M, Nystrom LE, Fissell K, Carter CS, Cohen JD. 1999. Conflict monitoring versus selection-for-action in anterior cingulate cortex.. Nature 402:179–81 [Google Scholar]
  20. Braver TS, Cohen JD. eds 2000. On the Control of Control: The Role of Dopamine in Regulating Prefrontal Function and Working Memory. Cambridge, MA: MIT Press. In press [Google Scholar]
  21. Braver TS, Cohen JD, Servan-Schreiber D. 1995. A computational model of prefrontal cortex function. In Advances in Neural Information Processing Systems, ed. DS Touretzky, G Tesauro, TK Leen 141–48 Cambridge, MA: MIT Press [Google Scholar]
  22. Broadbent DE. 1958. Perception and Communication. London: Pergamon [Google Scholar]
  23. Bruce C, Desimone R, Gross CG. 1981. Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque.. J. Neurophysiol. 46:369–84 [Google Scholar]
  24. Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD. 1998. Anterior cingulate cortex, error detection, and the online monitoring of performance.. Science 280:747–49 [Google Scholar]
  25. Carter CS, Macdonald AM, Botvinick M, Ross LL, Stenger VA. et al. 2000. Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex.. Proc. Natl. Acad. Sci. USA 97:1944–48 [Google Scholar]
  26. Casey BJ, Forman SD, Franzen P, Berkowitz A, Braver TS. et al. 2000. Sensitivity of prefrontal cortex to changes in target probability: a functional MRI study.. Hum. Brain Mapp. In press [Google Scholar]
  27. Chafee MV, Goldman-Rakic PS. 2000. Inactivation of parietal and prefrontal cortex reveals interdependence of neural activity during memory-guided saccades.. J. Neurophysiol. 83:1550–66 [Google Scholar]
  28. Chao LL, Knight RT. 1997. Prefrontal deficits in attention and inhibitory control with aging.. Cereb. Cortex 7:63–9 [Google Scholar]
  29. Chavis DA, Pandya DN. 1976. Further observations on cortico-frontal connections in the rhesus monkey.. Brain Res. 117:369–86 [Google Scholar]
  30. Cohen JD. 2000. Special issue: functional topography of prefrontal cortex.. Neuroimage 11:378–79 [Google Scholar]
  31. Cohen JD, Barch DM, Carter CS, Servan-Schreiber D. 1999. Schizophrenic deficits in the processing of context: converging evidence from three theoretically motivated cognitive tasks.. J. Abnorm. Psychol. 108:120–33 [Google Scholar]
  32. Cohen JD, Braver TS, O'Reilly RC. 1996. A computational approach to prefrontal cortex, cognitive control, and schizophrenia: Recent developments and current challenges.. Philos. Trans. Roy. Soc. London B. 351:1515–1527 [Google Scholar]
  33. Cohen JD, Dunbar K, McClelland JL. 1990. On the control of automatic processes: a parallel distributed processing account of the Stroop effect.. Psychol. Rev. 97:332–61 [Google Scholar]
  34. Cohen JD, Forman SD, Braver TS, Casey BJ, Servan-Schreiber D, Noll DC. 1994a. Activation of prefrontal cortex in a nonspatial working memory task with functional MRI.. Hum. Brain Mapp. 1:293–304 [Google Scholar]
  35. Cohen JD, O'Reilly RC. 1996. A preliminary theory of the interactions between the prefrontal cortex and hippocampus that contribute to planning and prospective memory.. In Prospective Memory: Theory and Applications, ed. M Brandimonte, G Einstein, M McDaniel. Hillsdale, New Jersey: Erlbaum
  36. Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC. et al. 1997. Temporal dynamics of brain activation during a working memory task.. Nature 386:604–8 [Google Scholar]
  37. Cohen JD, Romero RD, Farah MJ, Servan-Schreiber D. 1994b. Mechanisms of spatial attention: the relation of macrostructure to microstructure in parietal neglect.. J. Cogn. Neurosci. 6:377–87 [Google Scholar]
  38. Cohen JD, Servan-Schreiber D. 1992. Context, cortex and dopamine: a connectionist approach to behavior and biology in schizophrenia.. Psychol. Rev. 99:45–77 [Google Scholar]
  39. Cohen JD, Servan-Schreiber D, McClelland JL. 1992. A parallel distributed processing approach to automaticity.. Am. J. Psychol. 105:239–69 [Google Scholar]
  40. Constantinidis C, Steinmetz MA. 1996. Neuronal activity in posterior parietal area 7a during the delay periods of a spatial memory task.. J. Neurophysiol. 76:1352–55 [Google Scholar]
  41. Courtney SM, Ungerleider LG, Keil K, Haxby JV. 1997. Transient and sustained activity in a distributed neural system for human working memory.. Nature 386:608–12 [Google Scholar]
  42. Cowen N. 1998. Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information processing system.. Psychol. Bull. 104:163–91 [Google Scholar]
  43. Dehaene S, Changeux JP. 1989. A simple model of prefrontal cortex function in delayed-response tasks.. J. Cogn. Neurosci. 1:244–61 [Google Scholar]
  44. Dehaene S, Changeux JP. 1992. The Wisconsin card sorting test: theoretical analysis and modeling in a neuronal network.. Cerebr. Cortex 1:62–79 [Google Scholar]
  45. Desimone R, Duncan J. 1995. Neural mechanisms of selective visual attention.. Annu. Rev. Neurosci. 18:193–222 [Google Scholar]
  46. Diamond A. 1988. Abilities and neural mechanisms underlying AB performance.. Child Dev. 59:523–27 [Google Scholar]
  47. Diamond A, Goldman-Rakic PS. 1989. Comparison of human infants and rhesus monkeys on Piaget's A-not-B task: evidence for dependence on dorsolateral prefrontal cortex.. Exp. Brain Res. 74:24–40 [Google Scholar]
  48. Dias R, Robbins TW, Roberts AC. 1996a. Dissociation in prefrontal cortex of affective and attentional shifts.. Nature 380:69–72 [Google Scholar]
  49. Dias R, Robbins TW, Roberts AC. 1996b. Primate analogue of the Wisconsin Card Sorting Test: effects of excitotoxic lesions of the prefrontal cortex in the marmoset.. Behav. Neurosci. 110:872–86 [Google Scholar]
  50. Dias R, Robbins TW, Roberts AC. 1997. Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: restriction to novel situations and independence from “on-line” processing.. J. Neurosci 17:9285–97 [Google Scholar]
  51. di Pellegrino G, Wise SP. 1991. A neurophysiological comparison of three distinct regions of the primate frontal lobe.. Brain 114:951–78 [Google Scholar]
  52. Dunbar K, Sussman D. 1995. Toward a cognitive account of frontal lobe function: simulating frontal lobe deficits in normal subjects.. Ann. NY Acad. Sci. 769:289–304 [Google Scholar]
  53. Duncan J. 1986. Disorganization of behaviour after frontal lobe damage.. Cogn. Neuropsychol. 3:271–90 [Google Scholar]
  54. Duncan J, Emslie H, Williams P, Johnson R, Freer C. 1996. Intelligence and the frontal lobe: the organization of goal-directed behavior.. Cogn. Psychol. 30:257–303 [Google Scholar]
  55. Duncan J, Owen AM. 2000. Common regions of the human frontal lobe recruited by diverse cognitive demands.. Trends Neurosci. In press [Google Scholar]
  56. Durstewitz D, Kelc M, Gunturkun O. 1999. A neurocomputational theory of the dopaminergic modulation of working memory functions.. J. Neurosci. 19:2807–22 [Google Scholar]
  57. Durstewitz D, Seamans JK, Sejnowski TJ. 2000. Dopamine-mediated stabilization of delay-period activity in a network model of the prefrontal cortex.. J. Neurophysiol. 83:1733–50 [Google Scholar]
  58. Eacott MJ, Gaffan D. 1992. Inferotemporal-frontal disconnection—the uncinate fascicle and visual associative learning in monkeys.. Eur. J. Neurosci. 4:1320–32 [Google Scholar]
  59. Eichenbaum H, Dudchenko P, Wood E, Shapiro M, Tanila H. 1999. The hippocampus, memory, and place cells: Is it spatial memory or a memory space?. Neuron 23:209–26 [Google Scholar]
  60. Engel RW, Kane M, Tuholski S. 1999a. Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex.. In Mechanisms of Active Maintenance and Executive Control, ed. A Miyake, P Shah. New York: Cambridge Univ. Press
  61. Engel RW, Tuholski SW, Laughlin JE, Conway AR. 1999b. Working memory, short-term memory, and general fluid intelligence: a latent-variable approach.. J. Exp. Psychol. Gen. 128:309–31 [Google Scholar]
  62. Ferrera VP, Cohen J, Lee BB. 1999. Activity of prefrontal neurons during location and color delayed matching tasks.. NeuroReport 10:1315–22 [Google Scholar]
  63. Ferrier D. 1876. The Functions of the Brain. London: Smith, Elder [Google Scholar]
  64. Frith CD, Friston K, Liddle PF, Frackowiak RSJ. 1991. Willed action and the prefrontal cortex in man: a study with PET.. Proc. R. Soc. London Ser. B 244:241–46 [Google Scholar]
  65. Funahashi S, Bruce CJ, Goldman-Rakic PS. 1989. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex.. J. Neurophysiol. 61:331–49 [Google Scholar]
  66. Fuster JM. 1973. Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory.. J. Neurophysiol. 36:61–78 [Google Scholar]
  67. Fuster JM. 1980. The Prefrontal Cortex. New York: Raven [Google Scholar]
  68. Fuster JM. 1985. The prefrontal cortex, mediator of cross-temporal contingencies.. Hum. Neurobiol. 4:169–79 [Google Scholar]
  69. Fuster JM. 1989. The Prefrontal Cortex, Vol. 2. New York: Raven [Google Scholar]
  70. Fuster JM. 1995. Memory in the Cerebral Cortex. Cambridge, MA: MIT Press [Google Scholar]
  71. Fuster JM, Alexander GE. 1971. Neuron activity related to short-term memory.. Science 173:652–54 [Google Scholar]
  72. Fuster JM, Bauer RH, Jervey JP. 1982. Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks.. Exp. Neurol. 77:679–94 [Google Scholar]
  73. Fuster JM, Bauer RH, Jervey JP. 1985. Functional interactions between inferotemporal and prefrontal cortex in a cognitive task.. Brain Res. 330:299–307 [Google Scholar]
  74. Fuster JM, Jervey JP. 1981. Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli.. Science 212:952–55 [Google Scholar]
  75. Gaffan D, Harrison S. 1988. Inferotemporal-frontal disconnection and fornix transection in visuomotor conditional learning by monkeys.. Behav. Brain Res. 31:149–63 [Google Scholar]
  76. Gathercole SE. 1994. Neuropsychology and working memory: a review.. Neuropsychology 8:494–505 [Google Scholar]
  77. Gershberg FB, Shimamura AP. 1995. Impaired use of organizational strategies in free recall following frontal lobe damage.. Neuropsychologia 13:1305–33 [Google Scholar]
  78. Gnadt JW, Andersen RA. 1988. Memory related motor planning activity in posterior parietal cortex of macaque.. Exp. Brain Res. 70:216–20 [Google Scholar]
  79. Gobbel JR. 1995. A biophysically-based model of the neostriatum as a reconfigurable network.. Proc. Swed. Conf. Connectionism, 2nd. Hillsdale, NJ: Erlbaum [Google Scholar]
  80. Goldman PS, Nauta WJ. 1976. Autoradiographic demonstration of a projection from prefrontal association cortex to the superior colliculus in the rhesus monkey.. Brain Res. 116:145–49 [Google Scholar]
  81. Goldman-Rakic PS. 1987. Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In Handbook of Physiology: The Nervous System, ed. F Plum 373–417 Bethesda, MD: Am. Physiol. Soc [Google Scholar]
  82. Goldman-Rakic PS. 1996. The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive.. Philos. Trans. R. Soc. London Ser. B 351:1445–53 [Google Scholar]
  83. Goldman-Rakic PS, Schwartz ML. 1982. Interdigitation of contralateral and ipsilateral columnar projections to frontal association cortex in primates.. Science 216:755–57 [Google Scholar]
  84. Goldman-Rakic PS, Selemon LD, Schwartz ML. 1984. Dual pathways connecting the dorsolateral prefrontal cortex with the hippocampal formation and parahippocampal cortex in the rhesus monkey.. Neuroscience 12:719–43 [Google Scholar]
  85. Gould E, Reeves AJ, Graziano MS, Gross CG. 1999. Neurogenesis in the neocortex of adult primates.. Science 286:548–52 [Google Scholar]
  86. Grafman J. 1994. Alternative frameworks for the conceptualization of prefrontal functions. In Handbook of Neuropsychology, ed. F Boller, J Grafman 187 Amsterdam: Elsevier [Google Scholar]
  87. Gratton G, Coles MGH, Donchin E. 1992. Optimizing the use of information: strategic control of activation of responses.. J. Exp. Psychol. 121:480–506 [Google Scholar]
  88. Halsband U, Passingham RE. 1985. Premotor cortex and the conditions for movement in monkeys.. Behav. Brain Res. 18:269–76 [Google Scholar]
  89. Hecaen H, Albert ML. 1978. Human Neuropsychology. New York: Wiley [Google Scholar]
  90. Hollerman JR, Schultz W. 1998. Dopamine neurons report an error in the temporal prediction of reward during learning.. Nat. Neurosci. USA 1:304–9 [Google Scholar]
  91. Hopfield JJ. 1982. Neural networks and physical systems with emergent collective computational abilities.. Proc. Natl. Acad. Sci. USA 79:2554–58 [Google Scholar]
  92. Hoshi E, Shima K, Tanji J. 1998. Task-dependent selectivity of movement-related neuronal activity in the primate prefrontal cortex.. J. Neurophysiol. 80:3392–97 [Google Scholar]
  93. Houck JC. 1995. Models of Information in the Basal Ganglia. Cambridge, MA: MIT Press [Google Scholar]
  94. Janowsky JS, Shimamura AP, Kritchevsky M, Squire LR. 1989. Cognitive impairment following frontal lobe damage and its relevance to human amnesia.. Behav. Neurosci. 103:548–60 [Google Scholar]
  95. Jones EG, Powell TPS. 1970. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey.. Brain 93:793–820 [Google Scholar]
  96. Just MA, Carpenter PA. 1992. A capacity theory of comprehension: individual differences in working memory.. Psychol. Rev. 99:122–49 [Google Scholar]
  97. Knight RT. 1984. Decreased response to novel stimuli after prefrontal lesions in man.. Clin. Neurophysiol. 59:9–20 [Google Scholar]
  98. Knight RT. 1997. Distributed cortical network for visual attention.. J. Cogn. Neurosci. 9:75–91 [Google Scholar]
  99. Koechlin E, Basso G, Pietrini P, Panzer S, Grafman J. 1999. The role of the anterior prefrontal cortex in human cognition.. Nature 399:148–51 [Google Scholar]
  100. Kubota K, Niki H. 1971. Prefrontal cortical unit activity and delayed alternation performance in monkeys.. J. Neurophysiol. 34:337–47 [Google Scholar]
  101. Laming DRJ. 1968. Information Theory of Choice-Reaction Times. London: Academic [Google Scholar]
  102. Leon MI, Shadlen MN. 1999. Effect of expected reward magnitude on the response of neurons in the dorsolateral prefrontal cortex of the macaque.. Neuron 24:415–25 [Google Scholar]
  103. Levine B, Stuss DT, Milberg WP, Alexander MP, Schwartz M, Macdonald R. 1998. The effects of focal and diffuse brain damage on strategy application: evidence from focal lesions, traumatic brain injury and normal aging.. J. Int. Neuropsychol. Soc. 4:247–64 [Google Scholar]
  104. Levine DS, Prueitt PS. 1989. Modeling some effects of frontal lobe damage-novelty and perseveration.. Neural Networks 2:103–16 [Google Scholar]
  105. Lhermitte F. 1983. “Utilization behaviour” and its relation to lesions of the frontal lobes.. Brain 106:237–55 [Google Scholar]
  106. Logan GD, Zbrodoff NJ, Fostey ARW. 1983. Costs and benefits of strategy construction in a speeded discrimination task.. Mem. Cogn. 11:485–93 [Google Scholar]
  107. London ED, Ernst M, Grant S, Bonson K, Weinstein A. 2000. Orbitofrontal cortex and human drug abuse: functional imaging.. Cereb. Cortex 10:334–42 [Google Scholar]
  108. Lu MT, Preston JB, Strick PL. 1994. Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe.. J. Comp. Neurol. 341:375–92 [Google Scholar]
  109. Luria AR. 1969. Frontal lobe syndromes. In Handbook of Clinical Neurology, ed. PJ Vinken, GW Bruyn 725–57 New York: Elsevier [Google Scholar]
  110. MacDonald AW, Cohen JD, Stenger VA, Carter CS. 2000. Dissociating the role of dorsolateral prefrontal cortex and anterior cingulate cortex in cognitive control.. Science 288:1835–38 [Google Scholar]
  111. MacLeod CM. 1991. Half a century of research on the Stroop effect: an integrative review.. Psychol. Bull. 109:163–203 [Google Scholar]
  112. McClelland JL, McNaughton BL, O'Reilly RC. 1995. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory.. Psychol. Rev. 102:419–57 [Google Scholar]
  113. Melchitzky DS, Sesack SR, Pucak ML, Lewis DA. 1998. Synaptic targets of pyramidal neurons providing intrinsic horizontal connections in monkey prefrontal cortex.. J. Comp. Neurol. 390:211–24 [Google Scholar]
  114. Miller EK. 1999. The prefrontal cortex: complex neural properties for complex behavior.. Neuron 22:15–17 [Google Scholar]
  115. Miller EK. 2000. The neural basis of top-down control of visual attention in the prefrontal cortex.. In Attention and Performance, ed. S Monsell, J Driver, 18:In press. Cambridge, MA: MIT Press
  116. Miller EK, Desimone R. 1994. Parallel neuronal mechanisms for short-term memory.. Science 263:520–22 [Google Scholar]
  117. Miller EK, Erickson CA, Desimone R. 1996. Neural mechanisms of visual working memory in prefrontal cortex of the macaque.. J. Neurosci. 16:5154–67 [Google Scholar]
  118. Miller EK, Li L, Desimone R. 1993. Activity of neurons in anterior inferior temporal cortex during a short-term memory task.. J. Neurosci. 13:1460–78 [Google Scholar]
  119. Miller GA. 1956. The magical number seven plus or minus two: some limits on our capacity for processing information.. Psychol. Rev. 63:81–97 [Google Scholar]
  120. Milner B. 1963. Effects of different brain lesions on card sorting.. Arch. Neurol. 9:90 [Google Scholar]
  121. Mirenowicz J, Schultz W. 1994. Importance of unpredictability for reward responses in primate dopamine neurons.. J. Neurophysiol. 72:1024–27 [Google Scholar]
  122. Mirenowicz J, Schultz W. 1996. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli.. Nature 379:449–51 [Google Scholar]
  123. Mishkin M. 1964. Perseveration of central sets after frontal lesions in monkeys. In The Frontal Granular Cortex and Behavior, ed. JM Warren, K Abert 219–41 New York: McGraw-Hill [Google Scholar]
  124. Miyashita Y, Chang HS. 1988. Neuronal correlate of pictorial short-term memory in the primate temporal cortex.. Nature 331:68–70 [Google Scholar]
  125. Montague PR, Dayan P, Sejnowski TJ. 1996. A framework for mesencephalic dopamine systems based on predictive Hebbian learning.. J. Neurosci. 16:1936–47 [Google Scholar]
  126. Mozer MC. 1991. The Perception of Multiple Objects: A Connectionist Approach. Cambridge, MA: MIT Press [Google Scholar]
  127. Murray EA, Bussey TJ, Wise SP. 2000. Role of prefrontal cortex in a network for arbitrary visuomotor mapping.. Exp. Brain Res. In press [Google Scholar]
  128. Newell A, Simon HA. 1972. Human Problem Solving. Englewood Cliffs, NJ: Prentice Hall [Google Scholar]
  129. Nichelli P, Grafman J, Pietrini P, Alway D, Carton JC, Miletich R. 1994. Brain activity in chess playing.. Nature 369:191 [Google Scholar]
  130. Nystrom LE, Braver TS, Sabb FW, Delgado MR, Noll DC, Cohen JD. 2000. Working memory for letters, shapes and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex.. Neuroimage. In press [Google Scholar]
  131. O'Doherty J, Rolls ET, Francis S, Bowtell R, McGlone F. et al. 2000. Sensory-specific satiety-related olfactory activation of the human orbitofrontal cortex.. NeuroReport 11:893–97 [Google Scholar]
  132. O'Reilly RC, Braver TS, Cohen JD. 1999. A biologically-based computational model of working memory.. In Models of Working Memory: Mechanisms of Active Maintenance and Executive Control, ed. A Miyake, P Shah. New York: Cambridge Univ. Press
  133. O'Reilly RC, McClelland JL. 1994. Hippocampal conjunctive coding, storage, and recall: avoiding a tradeoff.. Hippocampus 4:661–82 [Google Scholar]
  134. O'Reilly RC, Munakata Y. 2000. Computational Explorations in Cognitive Neurosci ence: Understanding the Mind. Cambridge: MIT Press [Google Scholar]
  135. O Scalaidhe SP, Wilson FA, Goldman-Rakic PS. 1997. Areal segregation of face-processing neurons in prefrontal cortex.. Science 278:1135–38 [Google Scholar]
  136. Owen AM, Downes JJ, Sahakian BJ, Polkey CE, Robbins TW. 1990. Planning and spatial working memory following frontal lobe lesions in man.. Neuropsychologia 28:1021–34 [Google Scholar]
  137. Owen AM, Evans AC, Petrides M. 1996. Evidence for a two-stage model of spatial working memory processing within the lateral frontal cortex: a positron emission tomography study.. Cerebr. Cortex 6:31–38 [Google Scholar]
  138. Pandya DN, Barnes CL. 1987. Architecture and connections of the frontal lobe. In The Frontal Lobes Revisited, ed. E Perecman 41–72 New York: IRBN [Google Scholar]
  139. Pandya DN, Yeterian EH. 1990. Prefrontal cortex in relation to other cortical areas in rhesus monkey—architecture and connections.. Prog. Brain Res. 85:63–94 [Google Scholar]
  140. Parker A, Gaffan D. 1998. Memory after frontal/temporal disconnection in monkeys: conditional and non-conditional tasks, unilateral and bilateral frontal lesions.. Neuropsychologia 36:259–71 [Google Scholar]
  141. Passingham R. 1993. The Frontal Lobes and Voluntary Action. Oxford, UK: Oxford Univ. Press [Google Scholar]
  142. Perret E. 1974. The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour.. Neuropsychologia 12:323–30 [Google Scholar]
  143. Petersen SE, van Mier H, Fiez JA, Raichle ME. 1998. The effects of practice on the functional anatomy of task performance.. Proc. Natl. Acad. Sci. USA 95:853–60 [Google Scholar]
  144. Petrides M. 1982. Motor conditional associative-learning after selective prefrontal lesions in the monkey.. Behav. Brain Res. 5:407–13 [Google Scholar]
  145. Petrides M. 1985. Deficits in non-spatial conditional associative learning after periarcuate lesions in the monkey.. Behav. Brain Res. 16:95–101 [Google Scholar]
  146. Petrides M. 1990. Nonspatial conditional learning impaired in patients with unilateral frontal but not unilateral temporal lobe excisions.. Neuropsychologia 28:137–49 [Google Scholar]
  147. Petrides M. 1996. Specialized systems for the processing of mnemonic information within the primate frontal cortex.. Philos. Trans. R. Soc. London Ser. B 351:1455–61 [Google Scholar]
  148. Petrides M, Pandya DN. 1984. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey.. J. Comp. Neurol. 228:105–16 [Google Scholar]
  149. Petrides M, Pandya DN. 1999. Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns.. Eur. J. Neurosci. 11:1011–36 [Google Scholar]
  150. Phaf RH, Van der Heiden AHC, Hudson PTW. 1990. SLAM: a connectionist model for attention in visual selection tasks.. Cogn. Psychol. 22:273–341 [Google Scholar]
  151. Piaget J. 1954 (1937). The Origins of Intelligence in Children. New York: Basic Books [Google Scholar]
  152. Porrino LJ, Crane AM, Goldman-Rakic PS. 1981. Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys.. J. Comp. Neurol. 198:121–36 [Google Scholar]
  153. Posner MI, Snyder CRR. 1975. Attention and cognitive control.. In Information Processing and Cognition, ed. RL Solso. Hillsdale, NJ: Erlbaum
  154. Prabhakaran V, Narayanan K, Zhao Z, Gabrieli JD. 2000. Integration of diverse information in working memory within the frontal lobe.. Nat. Neurosci. 3:85–90 [Google Scholar]
  155. Price JL. 1999. Prefrontal cortical networks related to visceral function and mood.. Ann. NY Acad. Sci. 877:383–96 [Google Scholar]
  156. Pucak ML, Levitt JB, Lund JS, Lewis DA. 1996. Patterns of intrinsic and associational circuitry in monkey prefrontal cortex.. J. Comp. Neurol. 376:614–30 [Google Scholar]
  157. Quintana J, Fuster JM. 1992. Mnemonic and predictive functions of cortical neurons in a memory task.. NeuroReport 3:721–24 [Google Scholar]
  158. Rainer G, Asaad WF, Miller EK. 1998a. Memory fields of neurons in the primate prefrontal cortex.. Proc. Natl. Acad. Sci. USA 95:15008–13 [Google Scholar]
  159. Rainer G, Asaad WF, Miller EK. 1998b. Selective representation of relevant information by neurons in the primate prefrontal cortex.. Nature 393:577–79 [Google Scholar]
  160. Rainer G, Rao SC, Miller EK. 1999. Prospective coding for objects in the primate prefrontal cortex.. J. Neurosci. 19:5493–505 [Google Scholar]
  161. Rao SC, Rainer G, Miller EK. 1997. Integration of what and where in the primate prefrontal cortex.. Science 276:821–24 [Google Scholar]
  162. Roberts AC, Wallis JD. 2000. Inhibitory control and affective processing in the prefrontal cortex: neuropsychological studies in the common marmoset.. Cerebr. Cortex 10:252–62 [Google Scholar]
  163. Rolls ET. 2000. The orbitofrontal cortex and reward.. Cereb. Cortex 10:284–94 [Google Scholar]
  164. Romo R, Brody CD, Hernandez A, Lemus L. 1999. Neuronal correlates of parametric working memory in the prefrontal cortex.. Nature 399:470–73 [Google Scholar]
  165. Rossi AF, Rotter PS, Desimone R, Ungerleider LG. 1999. Prefrontal lesions produce impairments in feature-cued attention.. Soc. Neurosci. Abstr. 25:3 [Google Scholar]
  166. Rushworth MF, Nixon PD, Eacott MJ, Passingham RE. 1997. Ventral prefrontal cortex is not essential for working memory.. J. Neurosci. 17:4829–38 [Google Scholar]
  167. Schacter DL. 1997. The cognitive neuroscience of memory: perspectives from neuroimaging research.. Philos. Trans. R. Soc. London Ser. B 352:1689–95 [Google Scholar]
  168. Schmahmann JD, Pandya DN. 1997. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey.. J. Neurosci. 17:438–58 [Google Scholar]
  169. Schultz W. 1998. Predictive reward signal of dopamine neurons.. J. Neurophysiol. 80:1–27 [Google Scholar]
  170. Schultz W, Apicella P, Ljungberg T. 1993. Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task.. J. Neurosci. 13:900–13 [Google Scholar]
  171. Schultz W, Dickinson A. 2000. Neuronal coding of prediction errors.. Annu. Rev. Neurosci. 23:473–500 [Google Scholar]
  172. Schultz W, Dayan P, Montague PR. 1997. A neural substrate of prediction and reward.. Science 275:1593–99 [Google Scholar]
  173. Seltzer B, Pandya DN. 1989. Frontal lobe connections of the superior temporal sulcus in the rhesus monkey.. J. Comp. Neurol. 281:97–113 [Google Scholar]
  174. Shadmehr R, Holcomb H. 1997. Neural correlates of motor memory consolidation.. Science 277:821–24 [Google Scholar]
  175. Shallice T. 1982. Specific impairments of planning.. Philos. Trans. R. Soc. London Ser. B 298:199–209 [Google Scholar]
  176. Shallice T. 1988. From Neuropsychology to Mental Structure. Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  177. Shallic T, Burgess P. 1996. The domain of supervisory processes and temporal organization of behaviour.. Philos. Trans. R. Soc. London Ser. B 351:1405–11 [Google Scholar]
  178. Shiffrin RM, Schneider W. 1977. Controlled and automatic information processing: II.. Perceptual learning, automatic attending, and a general theory Psychol. Rev. 84:127–90 [Google Scholar]
  179. Smith EE, Jonides J. 1999. Storage and executive processes in the frontal lobes.. Science 283:1657–61 [Google Scholar]
  180. Squire LR. 1992. Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans.. Psychol. Rev. 99:195–231 [Google Scholar]
  181. Stroop JR. 1935. Studies of interference in serial verbal reactions.. J. Exp. Psychol. 18:643–62 [Google Scholar]
  182. Stuss DT, Benson DF. 1986. The Frontal Lobes. New York: Raven [Google Scholar]
  183. Swedo SE, Shapiro MB, Grady CL, Cheslow DL, Leonard HL. et al. 1989. Cerebral glucose metabolism in childhood-onset OCD.. Arch. Gen. Psychiatr. 46:518–23 [Google Scholar]
  184. Tomita H, Ohbayashi M, Nakahara K, Hasegawa I, Miyashita Y. 1999. Top-down signal from prefrontal cortex in executive control of memory retrieval.. Nature 401:699–703 [Google Scholar]
  185. Treisman A, Gelade G. 1980. A feature integration theory of attention.. Cogn. Psychol. 12:97–136 [Google Scholar]
  186. Tremblay L, Hollerman JR, Schultz W. 1998. Modifications of reward expectation-related neuronal activity during learning in primate striatum.. J. Neurophysiol. 80:964–77 [Google Scholar]
  187. Tremblay L, Schultz W. 1999. Relative reward preference in primate orbitofrontal cortex.. Nature 398:704–8 [Google Scholar]
  188. Tzelgov J, Henik A, Berger J. 1992. Controlling Stroop effects by manipulating expectations for color words.. Mem. Cogn. 20:727–35 [Google Scholar]
  189. Usher M, Cohen JD. 1997. Interference-based capacity limitations in active memory.. Presented at Abstr. Psychonom. Soc., Philadelphia
  190. Van Hoesen GW, Pandya DN, Butters N. 1972. Cortical afferents to the entorhinal cortex of the rhesus monkey.. Science 175:1471–73 [Google Scholar]
  191. Vendrell P, Junque C, Pujol J, Jurado MA, Molet J, Grafman J. 1995. The role of prefrontal regions in the Stroop task.. Neuropsychologia 33:341–52 [Google Scholar]
  192. Wagner AD. 1999. Working memory contributions to human learning and remembering.. Neuron 22:19–22 [Google Scholar]
  193. Wallis JD, Anderson KC, Miller EK. 2000. Neuronal representation of abstract rules in the orbital and lateral prefrontal cortices (PFC).. Soc. Neurosci. Abstr. In press [Google Scholar]
  194. Wang XJ. 1999. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory.. J. Neurosci. 19:9587–603 [Google Scholar]
  195. Watanabe M. 1990. Prefrontal unit activity during associative learning in the monkey.. Exp. Brain Res. 80:296–309 [Google Scholar]
  196. Watanabe M. 1992. Frontal units of the monkey coding the associative significance of visual and auditory stimuli.. Exp. Brain Res. 89:233–47 [Google Scholar]
  197. Watanabe M. 1996. Reward expectancy in primate prefrontal neurons.. Nature 382:629–32 [Google Scholar]
  198. White IM, Wise SP. 1999. Rule-dependent neuronal activity in the prefrontal cortex.. Exp. Brain Res. 126:315–35 [Google Scholar]
  199. Wilson FAW, O Scalaidhe SP, Goldman-Rakic PS. 1993. Dissociation of object and spatial processing domains in primate prefrontal cortex.. Science 260:1955–58 [Google Scholar]
  200. Wise SP, Murray EA, Gerfen CR. 1996. The frontal-basal ganglia system in primates.. Crit. Rev. Neurobiol. 10:317–56 [Google Scholar]
  201. Yamaguchi S, Knight RT. 1991. Anterior and posterior association cortex contributions to the somatosensory P300.. J. Neurosci. 11:2039–54 [Google Scholar]
  202. Zipser D, Kehoe B, Littlewort G, Fuster J. 1993. A spiking network model of short-term active memory.. 133406–20
  203. Zola-Morgan S, Squire LR. 1993. Neuroanatomy of memory.. Annu. Rev. Neurosci. 16:547–63 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error