Significant advances have been made in the behavioral assessment and clinical management of disorders of consciousness (DOC). In addition, functional neuroimaging paradigms are now available to help assess consciousness levels in this challenging patient population. The success of these neuroimaging approaches as diagnostic markers is, however, intrinsically linked to understanding the relationships between consciousness and the brain. In this context, a combined theoretical approach to neuroimaging studies is needed. The promise of such theoretically based markers is illustrated by recent findings that used a perturbational approach to assess the levels of consciousness. Further research on the contents of consciousness in DOC is also needed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Am. Congr. Rehabil. Med 1995. Recommendations for use of uniform nomenclature pertinent to patients with severe alterations of consciousness. Arch. Phys. Med. Rehabil. 76:205–9 [Google Scholar]
  2. Bardin JC, Fins JJ, Katz DI, Hersh J, Heier LA. et al. 2011. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury. Brain 134:769–82 [Google Scholar]
  3. Barrett AB, Murphy M, Bruno MA, Noirhomme Q, Boly M. et al. 2012. Granger causality analysis of steady-state electroencephalographic signals during propofol-induced anaesthesia. PLoS ONE 7:e29072 [Google Scholar]
  4. Bauer G, Gerstenbrand F, Rumpl E. 1979. Varieties of the locked-in syndrome. J. Neurol. 221:77–91 [Google Scholar]
  5. Bekinschtein TA, Dehaene S, Rohaut B, Tadel F, Cohen L, Naccache L. 2009. Neural signature of the conscious processing of auditory regularities. Proc. Natl. Acad. Sci. USA 106:1672–77 [Google Scholar]
  6. Beuthien-Baumann B, Handrick W, Schmidt T, Burchert W, Oehme L. et al. 2003. Persistent vegetative state: evaluation of brain metabolism and brain perfusion with PET and SPECT. Nucl. Med. Commun. 24:643–49 [Google Scholar]
  7. Block N. 2011. Perceptual consciousness overflows cognitive access. Trends Cogn. Sci. 15:567–75 [Google Scholar]
  8. Blumenfeld H. 2005. Consciousness and epilepsy: Why are patients with absence seizures absent?. Prog. Brain Res. 150:271–86 [Google Scholar]
  9. Boly M, Coleman MR, Davis MH, Hampshire A, Bor D. et al. 2007. When thoughts become action: an fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. NeuroImage 36:979–92 [Google Scholar]
  10. Boly M, Faymonville M, Peigneux P, Lambermont B, Damas F. et al. 2005. Cerebral processing of auditory and noxious stimuli in severely brain injured patients: differences between VS and MCS. Neuropsychol. Rehabil. 15:283–89 [Google Scholar]
  11. Boly M, Faymonville ME, Schnakers C, Peigneux P, Lambermont B. et al. 2008. Perception of pain in the minimally conscious state with PET activation: an observational study. Lancet Neurol. 7:1013–20 [Google Scholar]
  12. Boly M, Garrido MI, Gosseries O, Bruno MA, Boveroux P. et al. 2011. Preserved feedforward but impaired top-down processes in the vegetative state. Science 332:858–62 [Google Scholar]
  13. Boly M, Massimini M, Tononi G. 2009. Theoretical approaches to the diagnosis of altered states of consciousness. Prog. Brain Res. 177:383–98 [Google Scholar]
  14. Boly M, Moran R, Murphy M, Boveroux P, Bruno MA. et al. 2012a. Connectivity changes underlying spectral EEG changes during propofol-induced loss of consciousness. J. Neurosci. 32:7082–90 [Google Scholar]
  15. Boly M, Perlbarg V, Marrelec G, Schabus M, Laureys S. et al. 2012b. Hierarchical clustering of brain activity during human nonrapid eye movement sleep. Proc. Natl. Acad. Sci. USA 109:5856–61 [Google Scholar]
  16. Bonhomme V, Fiset P, Meuret P, Backman S, Plourde G. et al. 2001. Propofol anesthesia and cerebral blood flow changes elicited by vibrotactile stimulation: a positron emission tomography study. J. Neurophysiol. 85:1299–308 [Google Scholar]
  17. Boveroux P, Vanhaudenhuyse A, Bruno MA, Noirhomme Q, Lauwick S. et al. 2010. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113:1038–53 [Google Scholar]
  18. Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M. et al. 1997. Regional cerebral blood flow throughout the sleep-wake cycle. An H215O PET study. Brain 120:Pt. 71173–97 [Google Scholar]
  19. Bruno M-A, Bernheim JL, Ledoux D, Pellas F, Demertzi A, Laureys S. 2011a. A survey on self-assessed well-being in a cohort of chronic locked-in syndrome patients: happy majority, miserable minority. BMJ Open 1e000039 [Google Scholar]
  20. Bruno M-A, Majerus S, Boly M, Vanhaudenhuyse A, Schnakers C. et al. 2012. Functional neuroanatomy underlying the clinical subcategorization of minimally conscious state patients. J. Neurol. 259:1087–98 [Google Scholar]
  21. Bruno M-A, Vanhaudenhuyse A, Schnakers C, Boly M, Gosseries O. et al. 2010. Visual fixation in the vegetative state: an observational case series PET study. BMC Neurol. 10:35 [Google Scholar]
  22. Bruno M-A, Vanhaudenhuyse A, Thibaut A, Moonen G, Laureys S. 2011b. From unresponsive wakefulness to minimally conscious PLUS and functional locked-in syndromes: recent advances in our understanding of disorders of consciousness. J. Neurol. 258:1373–84 [Google Scholar]
  23. Casali AG, Gosseries O, Rosanova M, Boly M, Sarasso S. et al. 2013. A theoretically based index of consciousness independent of sensory processing and behavior. Sci. Transl. Med. 5:198ra05 [Google Scholar]
  24. Chatelle C, Chennu S, Noirhomme Q, Cruse D, Owen AM, Laureys S. 2012a. Brain-computer interfacing in disorders of consciousness. Brain Inj. 26:1510–22 [Google Scholar]
  25. Chatelle C, Majerus S, Whyte J, Laureys S, Schnakers C. 2012b. A sensitive scale to assess nociceptive pain in patients with disorders of consciousness. J. Neurol. Neurosurg. Psychiatry 83:1233–37 [Google Scholar]
  26. Chatelle C, Thibaut A, Bruno MA, Boly M, Bernard C. et al. 2014. Nociception coma scale-revised scores correlate with metabolism in the anterior cingulate cortex. Neurorehabil. Neural Repair 28:149–52 [Google Scholar]
  27. Cheng L, Gosseries O, Ying L, Hu X, Yu D. et al. 2013. Assessment of localisation to auditory stimulation in post-comatose states: use the patient's own name. BMC Neurol. 13:27 [Google Scholar]
  28. Coleman MR, Davis MH, Rodd JM, Robson T, Ali A. et al. 2009. Towards the routine use of brain imaging to aid the clinical diagnosis of disorders of consciousness. Brain 132:2541–52 [Google Scholar]
  29. Crone JS, Ladurner G, Höller Y, Golaszewski S, Trinka E, Kronbichler M. 2011. Deactivation of the default mode network as a marker of impaired consciousness: an fMRI study. PLoS ONE 6:e26373 [Google Scholar]
  30. Cruse D, Chennu S, Chatelle C, Bekinschtein TA, Fernández-Espejo D. et al. 2011. Bedside detection of awareness in the vegetative state: a cohort study. Lancet 378:2088–94 [Google Scholar]
  31. Dang-Vu TT, Bonjean M, Schabus M, Boly M, Darsaud A. et al. 2011. Interplay between spontaneous and induced brain activity during human non-rapid eye movement sleep. Proc. Natl. Acad. Sci. USA 108:15438–43 [Google Scholar]
  32. Dehaene S, Changeux JP. 2011. Experimental and theoretical approaches to conscious processing. Neuron 70:200–27 [Google Scholar]
  33. Demertzi A, Ledoux D, Bruno MA, Vanhaudenhuyse A, Gosseries O. et al. 2011. Attitudes towards end-of-life issues in disorders of consciousness: a European survey. J. Neurol. 258:1058–65 [Google Scholar]
  34. Demertzi A, Racine E, Bruno M, Ledoux D, Gosseries O. et al. 2013. Pain perception in disorders of consciousness: neuroscience, clinical care, and ethics in dialogue. Neuroethics 6:37–50 [Google Scholar]
  35. Demertzi A, Schnakers C, Ledoux D, Chatelle C, Bruno MA. et al. 2009. Different beliefs about pain perception in the vegetative and minimally conscious states: a European survey of medical and paramedical professionals. Prog. Brain Res. 177:329–38 [Google Scholar]
  36. Di H, Boly M, Weng X, Ledoux D, Laureys S. 2008. Neuroimaging activation studies in the vegetative state: predictors of recovery?. Clin. Med. 8:502–7 [Google Scholar]
  37. Di H, Yu SM, Weng XC, Laureys S, Yu D. et al. 2007. Cerebral response to patient's own name in the vegetative and minimally conscious states. Neurology 68:895–99 [Google Scholar]
  38. Engel J Jr, Kuhl DE, Phelps ME. 1982. Patterns of human local cerebral glucose metabolism during epileptic seizures. Science 218:64–66 [Google Scholar]
  39. Estraneo A, Moretta P, Loreto V, Lanzillo B, Cozzolino A. et al. 2013. Predictors of recovery of responsiveness in prolonged anoxic vegetative state. Neurology 80:464–70 [Google Scholar]
  40. Faugeras F, Rohaut B, Weiss N, Bekinschtein T, Galanaud D. et al. 2012. Event related potentials elicited by violations of auditory regularities in patients with impaired consciousness. Neuropsychologia 50:403–18 [Google Scholar]
  41. Fernández-Espejo D, Owen AM. 2013. Detecting awareness after severe brain injury. Nat. Rev. Neurosci. 14:801–9 [Google Scholar]
  42. Ferrarelli F, Massimini M, Sarasso S, Casali A, Riedner B. et al. 2010. Breakdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc. Natl. Acad. Sci. USA 107:2681–86 [Google Scholar]
  43. Ferreira N. 2007. Latest legal and social developments in the euthanasia debate: bad moral consciences and political unrest. Med. Law 26:387–407 [Google Scholar]
  44. Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G. 2012a. DMN operational synchrony relates to self-consciousness: evidence from patients in vegetative and minimally conscious states. Open Neuroimag. J. 6:55–68 [Google Scholar]
  45. Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G. 2012b. EEG oscillatory states as neuro-phenomenology of consciousness as revealed from patients in vegetative and minimally conscious states. Conscious Cogn. 21:149–69 [Google Scholar]
  46. Fingelkurts AA, Fingelkurts AA, Bagnato S, Boccagni C, Galardi G. 2013. Dissociation of vegetative and minimally conscious patients based on brain operational architectonics: factor of etiology. Clin. EEG Neurosci. 44:209–20 [Google Scholar]
  47. Fischer C, Luaute J, Morlet D. 2010. Event-related potentials (MMN and novelty P3) in permanent vegetative or minimally conscious states. Clin. Neurophysiol. 121:1032–42 [Google Scholar]
  48. Fischer C, Luauté J, Némoz C, Morlet D, Kirkorian G, Mauguière F. 2006. Improved prediction of awakening or nonawakening from severe anoxic coma using tree-based classification analysis. Crit. Care Med. 34:1520–24 [Google Scholar]
  49. Fiset P, Paus T, Daloze T, Plourde G, Meuret P. et al. 1999. Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J. Neurosci. 19:5506–13 [Google Scholar]
  50. Giacino JT, Ashwal S, Childs N, Cranford R, Jennett B. et al. 2002. The minimally conscious state: definition and diagnostic criteria. Neurology 58:349–53 [Google Scholar]
  51. Giacino JT, Fins JJ, Laureys S, Schiff ND. 2014. Disorders of consciousness after acquired brain injury: the state of the science. Nat. Rev. Neurol. 10:99–114 [Google Scholar]
  52. Giacino JT, Kalmar K, Whyte J. 2004. The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch. Phys. Med. Rehabil. 85:2020–29 [Google Scholar]
  53. Giacino JT, Whyte J, Bagiella E, Kalmar K, Childs N. et al. 2012. Placebo-controlled trial of amantadine for severe traumatic brain injury. N. Engl. J. Med. 366:819–26 [Google Scholar]
  54. Gosseries O, Boly M, Vanhaudenhuyse A, Bruno M, Phan-Ba R. et al. 2012. Interaction between spontaneous fluctuation and auditory evoked activity during wakefulness and loss of consciousness Presented at Eur. Neurol. Soc. Annu. Meet., Prague, Czech Repub. [Google Scholar]
  55. Gosseries O, Charland-Verville V, Thonnard M, Bodart O, Laureys S, Demertzi A. 2013. Amantadine, apomorphine and zolpidem in the treatment of disorders of consciousness. Curr. Pharm. Des. In press [Google Scholar]
  56. Gosseries O, Schnakers C, Ledoux D, Vanhaudenhuyse A, Bruno MA. et al. 2011. Automated EEG entropy measurements in coma, vegetative state/unresponsive wakefulness syndrome and minimally conscious state. Funct. Neurol. 26:25–30 [Google Scholar]
  57. Gosseries O, Zasler N, Laureys O. 2014. Recent advances in disorders of consciousness: focus on the diagnosis. Brain Inj. In press [Google Scholar]
  58. Greicius MD, Supekar K, Menon V, Dougherty RF. 2009. Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb. Cortex 19:72–78 [Google Scholar]
  59. Heinke W, Kenntner R, Gunter TC, Sammler D, Olthoff D, Koelsch S. 2004. Sequential effects of increasing propofol sedation on frontal and temporal cortices as indexed by auditory event-related potentials. Anesthesiology 100:617–25 [Google Scholar]
  60. Höller Y, Bergmann J, Kronbichler M, Crone JS, Schmid EV. et al. 2011. Preserved oscillatory response but lack of mismatch negativity in patients with disorders of consciousness. Clin. Neurophysiol. 122:1744–54 [Google Scholar]
  61. Horovitz SG, Fukunaga M, de Zwart JA, van Gelderen P, Fulton SC. et al. 2008. Low frequency BOLD fluctuations during resting wakefulness and light sleep: a simultaneous EEG-fMRI study. Hum. Brain Mapp. 29:671–82 [Google Scholar]
  62. Howell K, Grill E, Klein AM, Straube A, Bender A. 2013. Rehabilitation outcome of anoxic-ischaemic encephalopathy survivors with prolonged disorders of consciousness. Resuscitation 84:1409–15 [Google Scholar]
  63. Huang Z, Dai R, Wu X, Yang Z, Liu D. et al. 2013. The self and its resting state in consciousness: an investigation of the vegetative state. Hum. Brain Mapp. 351997–2008 [Google Scholar]
  64. Kitzinger C, Kitzinger J. 2014. Withdrawing artificial nutrition and hydration from minimally conscious and vegetative patients: family perspectives. J. Med. Ethics. In press [Google Scholar]
  65. Kiviniemi VJ, Haanpää H, Kantola JH, Jauhiainen J, Vainionpää V. et al. 2005. Midazolam sedation increases fluctuation and synchrony of the resting brain BOLD signal. Magn. Reson. Imaging 23:531–37 [Google Scholar]
  66. Kotchoubey B, Merz S, Lang S, Markl A, Müller F. et al. 2013. Global functional connectivity reveals highly significant differences between the vegetative and the minimally conscious state. J. Neurol. 260:975–83 [Google Scholar]
  67. Kroeger D, Amzica F. 2007. Hypersensitivity of the anesthesia-induced comatose brain. J. Neurosci. 27:10597–607 [Google Scholar]
  68. Lamme VA. 2006. Towards a true neural stance on consciousness. Trends Cogn. Sci. 10:494–501 [Google Scholar]
  69. Landsness E, Bruno M-A, Noirhomme Q, Riedner B, Gosseries O. et al. 2011. Electrophysiological correlates of behavioural changes in vigilance in vegetative state and minimally conscious state. Brain 134:2222–32 [Google Scholar]
  70. Langheim FJ, Murphy M, Riedner BA, Tononi G. 2011. Functional connectivity in slow-wave sleep: identification of synchronous cortical activity during wakefulness and sleep using time series analysis of electroencephalographic data. J. Sleep Res. 20:496–505 [Google Scholar]
  71. Lau H, Rosenthal D. 2011. Empirical support for higher-order theories of conscious awareness. Trends Cogn. Sci. 15:365–73 [Google Scholar]
  72. Laureys S, Celesia GG, Cohadon F, Lavrijsen J, Léon-Carrión J. et al. 2010. Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med. 8:68 [Google Scholar]
  73. Laureys S, Faymonville ME, Degueldre C, Fiore GD, Damas P. et al. 2000a. Auditory processing in the vegetative state. Brain 123:Pt. 81589–601 [Google Scholar]
  74. Laureys S, Faymonville ME, Luxen A, Lamy M, Franck G, Maquet P. 2000b. Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 355:1790–91 [Google Scholar]
  75. Laureys S, Faymonville ME, Peigneux P, Damas P, Lambermont B. et al. 2002. Cortical processing of noxious somatosensory stimuli in the persistent vegetative state. NeuroImage 17:732–41 [Google Scholar]
  76. Laureys S, Goldman S, Phillips C, Van Bogaert P, Aerts J. et al. 1999a. Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET. NeuroImage 9:377–82 [Google Scholar]
  77. Laureys S, Lemaire C, Maquet P, Phillips C, Franck G. 1999b. Cerebral metabolism during vegetative state and after recovery to consciousness. J. Neurol. Neurosurg. Psychiatry 67:121 [Google Scholar]
  78. Laureys S, Schiff ND. 2012. Coma and consciousness: paradigms (re)framed by neuroimaging. NeuroImage 61:478–91 [Google Scholar]
  79. Lee U, Ku S, Noh G, Baek S, Choi B, Mashour GA. 2013. Disruption of frontal-parietal communication by ketamine, propofol, and sevoflurane. Anesthesiology 118:1264–75 [Google Scholar]
  80. Lehembre R, Bruno M-A, Vanhaudenhuyse A, Chatelle C, Cologan V. et al. 2012. Resting state EEG study of comatose patients: a connectivity and frequency analysis to find differences between vegetative and minimally conscious states. Funct. Neurol. 27:41–47 [Google Scholar]
  81. Lempel A, Ziv J. 1976. On the complexity of finite sequences. IEEE Trans. Inf. Theory 22:75–81 [Google Scholar]
  82. Luauté J, Maucort-Boulch D, Tell L, Quelard F, Sarraf T. et al. 2010. Long-term outcomes of chronic minimally conscious and vegetative states. Neurology 75:246–52 [Google Scholar]
  83. Lulé D, Noirhomme Q, Kleih SC, Chatelle C, Halder S. et al. 2013. Probing command following in patients with disorders of consciousness using a brain-computer interface. Clin. Neurophysiol. 124:101–6 [Google Scholar]
  84. Manning J. 2012. Withdrawal of life-sustaining treatment from a patient in a minimally conscious state. J. Law Med. 19:430–35 [Google Scholar]
  85. Maquet P, Dive D, Salmon E, Sadzot B, Franco G. et al. 1990. Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-d-glucose method. Brain Res. 513:136–43 [Google Scholar]
  86. Martuzzi R, Ramani R, Qiu M, Shen X, Papademetris X, Constable RT. 2011. A whole-brain voxel based measure of intrinsic connectivity contrast reveals local changes in tissue connectivity with anesthetic without a priori assumptions on thresholds or regions of interest. NeuroImage 58:1044–50 [Google Scholar]
  87. Mascetti L, Foret A, Bourdiec AS, Muto V, Kussé C. et al. 2011. Spontaneous neural activity during human non-rapid eye movement sleep. Prog. Brain Res. 193:111–18 [Google Scholar]
  88. Massimini M, Boly M, Casali A, Rosanova M, Tononi G. 2009. A perturbational approach for evaluating the brain's capacity for consciousness. Prog. Brain Res. 177:201–14 [Google Scholar]
  89. Massimini M, Ferrarelli F, Huber R, Esser SK, Singh H, Tononi G. 2005. Breakdown of cortical effective connectivity during sleep. Science 309:2228–32 [Google Scholar]
  90. Massimini M, Ferrarelli F, Murphy M, Huber R, Riedner B. et al. 2010. Cortical reactivity and effective connectivity during REM sleep in humans. Cogn. Neurosci. 1:176–83 [Google Scholar]
  91. Monti MM, Vanhaudenhuyse A, Coleman MR, Boly M, Pickard JD. et al. 2010. Willful modulation of brain activity in disorders of consciousness. N. Engl. J. Med. 362:579–89 [Google Scholar]
  92. Multi-Society Task Force on PVS 1994a. Medical aspects of the persistent vegetative state (1). N. Engl. J. Med. 330:1499–508 [Google Scholar]
  93. Multi-Society Task Force on PVS 1994b. Medical aspects of the persistent vegetative state (2). N. Engl. J. Med. 330:1572–79 [Google Scholar]
  94. Murphy M, Bruno MA, Riedner BA, Boveroux P, Noirhomme Q. et al. 2011. Propofol anesthesia and sleep: a high-density EEG study. Sleep 34:283–91A [Google Scholar]
  95. Naci L, Cusack R, Jia VZ, Owen AM. 2013. The brain's silent messenger: using selective attention to decode human thought for brain-based communication. J. Neurosci. 33:9385–93 [Google Scholar]
  96. Naci L, Owen AM. 2013. Making every word count for nonresponsive patients. JAMA Neurol. 70:1235–41 [Google Scholar]
  97. Noé E, Olaya J, Navarro MD, Noguera P, Colomer C. et al. 2012. Behavioral recovery in disorders of consciousness: a prospective study with the Spanish version of the Coma Recovery Scale-Revised. Arch. Phys. Med. Rehabil. 93:428–33 [Google Scholar]
  98. Norton L, Hutchison RM, Young GB, Lee DH, Sharpe MD, Mirsattari SM. 2012. Disruptions of functional connectivity in the default mode network of comatose patients. Neurology 78:175–81 [Google Scholar]
  99. Ovadia-Caro S, Nir Y, Soddu A, Ramot M, Hesselmann G. et al. 2012. Reduction in inter-hemispheric connectivity in disorders of consciousness. PLoS ONE 7:e37238 [Google Scholar]
  100. Owen AM, Coleman MR, Boly M, Davis MH, Laureys S, Pickard JD. 2006. Detecting awareness in the vegetative state. Science 313:1402 [Google Scholar]
  101. Perrin F, Schnakers C, Schabus M, Degueldre C, Goldman S. et al. 2006. Brain response to one's own name in vegetative state, minimally conscious state, and locked-in syndrome. Arch. Neurol. 63:562–69 [Google Scholar]
  102. Picchioni D, Killgore WD, Balkin TJ, Braun AR. 2009. Positron emission tomography correlates of visually-scored electroencephalographic waveforms during non-rapid eye movement sleep. Int. J. Neurosci. 119:2074–99 [Google Scholar]
  103. Plum F, Posner JB. 1983. The Diagnosis of Stupor and Coma Philadelphia, PA: Davis [Google Scholar]
  104. Qin P, Di H, Liu Y, Yu S, Gong Q. et al. 2010. Anterior cingulate activity and the self in disorders of consciousness. Hum. Brain Mapp. 31:1993–2002 [Google Scholar]
  105. Qin P, Di H, Yan X, Yu S, Yu D. et al. 2008. Mismatch negativity to the patient's own name in chronic disorders of consciousness. Neurosci. Lett. 448:24–28 [Google Scholar]
  106. Rosanova M, Gosseries O, Casarotto S, Boly M, Casali AG. et al. 2012. Recovery of cortical effective connectivity and recovery of consciousness in vegetative patients. Brain 135:1308–20 [Google Scholar]
  107. Schiff ND, Giacino JT, Kalmar K, Victor JD, Baker K. et al. 2007. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 448:600–3 [Google Scholar]
  108. Schnakers C. 2012. Clinical assessment of patients with disorders of consciousness. Arch. Ital. Biol. 150:36–43 [Google Scholar]
  109. Schnakers C, Hustinx R, Vandewalle G, Majerus S, Moonen G. et al. 2008a. Measuring the effect of amantadine in chronic anoxic minimally conscious state. J. Neurol. Neurosurg. Psychiatry 79:225–27 [Google Scholar]
  110. Schnakers C, Ledoux D, Majerus S, Damas P, Damas F. et al. 2008b. Diagnostic and prognostic use of bispectral index in coma, vegetative state and related disorders. Brain Inj. 22:926–31 [Google Scholar]
  111. Schnakers C, Perrin F, Schabus M, Majerus S, Ledoux D. et al. 2008c. Voluntary brain processing in disorders of consciousness. Neurology 71:1614–20 [Google Scholar]
  112. Schnakers C, Vanhaudenhuyse A, Giacino JT, Ventura M, Boly M. et al. 2009. Diagnostic accuracy of the vegetative and minimally conscious state: clinical consensus versus standardized neurobehavioral assessment. BMC Neurol. 9:35 [Google Scholar]
  113. Schnakers C, Zasler ND. 2007. Pain assessment and management in disorders of consciousness. Curr. Opin. Neurol. 20:620–26 [Google Scholar]
  114. Seel RT, Douglas J, Dennison AC, Heaner S, Farris K, Rogers C. 2013. Specialized early treatment for persons with disorders of consciousness: program components and outcomes. Arch. Phys. Med. Rehabil. 94:1908–23 [Google Scholar]
  115. Seel RT, Sherer M, Whyte J, Katz DI, Giacino JT. et al. 2010. Assessment scales for disorders of consciousness: evidence-based recommendations for clinical practice and research. Arch. Phys. Med. Rehabil. 91:1795–813 [Google Scholar]
  116. Soddu A, Vanhaudenhuyse A, Bahri M, Bruno MA, Boly M. et al. 2011a. Identifying the default-mode component in spatial IC analyses of patients with disorders of consciousness. Hum. Brain Mapp. 33:778–96 [Google Scholar]
  117. Soddu A, Vanhaudenhuyse A, Demertzi A, Bruno MA, Tshibanda L. et al. 2011b. Resting state activity in patients with disorders of consciousness. Funct. Neurol. 26:37–43 [Google Scholar]
  118. Stender J, Gosseries O, Bruno M, Charland-Verville V, Vanhaudenhuyse A. et al. 2014. Diagnostic precision of multimodal neuroimaging methods in disorders of consciousness—a clinical validation study. Lancet. In press [Google Scholar]
  119. Steppacher I, Eickhoff S, Jordanov T, Kaps M, Witzke W, Kissler J. 2013. N400 predicts recovery from disorders of consciousness. Ann. Neurol. 73:594–602 [Google Scholar]
  120. Stoll J, Chatelle C, Carter O, Koch C, Laureys S, Einhäuser W. 2013. Pupil responses allow communication in locked-in syndrome patients. Curr. Biol. 23:R647–48 [Google Scholar]
  121. Thibaut A, Bruno MA, Chatelle C, Gosseries O, Vanhaudenhuyse A. et al. 2012. Metabolic activity in external and internal awareness networks in severely brain-damaged patients. J. Rehab. Med. 44:487–94 [Google Scholar]
  122. Thibaut A, Bruno MA, Ledoux D, Demertzi A, Laureys S. 2014. tDCS in patients with disorders of consciousness: Sham-controlled randomized double-blind study. Neurology. 821112–18 [Google Scholar]
  123. Thonnard M, Gosseries O, Demertzi A, Lugo Z, Vanhaudenhuyse A. et al. 2014. Effect of zolpidem in chronic disorders of consciousness: a prospective open-label study. Funct. Neurol. 11:1–6 [Google Scholar]
  124. Tononi G. 2008. Consciousness as integrated information: a provisional manifesto. Biol. Bull. 215:216–42 [Google Scholar]
  125. Tononi G. 2012. Integrated information theory of consciousness: an updated account. Arch. Ital. Biol. 150:56–90 [Google Scholar]
  126. Tononi G, Edelman GM. 1998. Consciousness and complexity. Science 282:1846–51 [Google Scholar]
  127. van Ommen J, Gosseries O, Bruno MA, Vanhaudenhuyse A, Thibaut A. et al. 2013. Resistance to eye opening in patients with disorders of consciousness: reflex or voluntary? Presented at Eur. Neurol. Soc. Annu. Meet., Barcelona [Google Scholar]
  128. Vanhaudenhuyse A, Boveroux P, Bruno M, Gosseries O, Noirhomme Q. et al. 2012. Does self-referential stimuli perception decrease with diminished level of consciousness? Presented at Eur. Neurol. Soc. Annu. Meet., Prague, Czech Repub. [Google Scholar]
  129. Vanhaudenhuyse A, Noirhomme Q, Tshibanda LJ, Bruno MA, Boveroux P. et al. 2010. Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain 133:161–71 [Google Scholar]
  130. Vanhaudenhuyse A, Schnakers C, Brédart S, Laureys S. 2008. Assessment of visual pursuit in post-comatose states: use a mirror. J. Neurol. Neurosurg. Psychiatry 79:223 [Google Scholar]
  131. Vogel D, Markl A, Yu T, Kotchoubey B, Lang S, Müller F. 2013. Can mental imagery functional magnetic resonance imaging predict recovery in patients with disorders of consciousness?. Arch. Phys. Med. Rehabil. 94:1891–98 [Google Scholar]
  132. Wang K, van Meer MP, van der Marel K, van der Toorn A, Xu L. et al. 2011. Temporal scaling properties and spatial synchronization of spontaneous blood oxygenation level-dependent (BOLD) signal fluctuations in rat sensorimotor network at different levels of isoflurane anesthesia. NMR Biomed. 24:61–67 [Google Scholar]
  133. White NS, Alkire MT. 2003. Impaired thalamocortical connectivity in humans during general-anesthetic-induced unconsciousness. NeuroImage 19:402–11 [Google Scholar]
  134. Whyte J, DiPasquale M, Vaccaro M. 1999. Assessment of command-following in minimally conscious brain injured patients. Arch. Phys. Med. Rehabil. 80:653–60 [Google Scholar]
  135. Whyte J, Gosseries O, Chervoneva I, DiPasquale MC, Giacino J. et al. 2009. Predictors of short-term outcome in brain-injured patients with disorders of consciousness. Prog. Brain Res. 177:63–72 [Google Scholar]
  136. Whyte J, Nordenbo AM, Kalmar K, Merges B, Bagiella E. et al. 2013. Medical complications during inpatient rehabilitation among patients with traumatic disorders of consciousness. Arch. Phys. Med. Rehabil. 94:1877–83 [Google Scholar]
  137. Whyte J, Rajan R, Rosenbaum A, Katz D, Kalmar K. et al. 2014. Zolpidem and restoration of consciousness. Am. J. Phys. Med. Rehabil. 93:101–13 [Google Scholar]
  138. Wijdicks EF, Bamlet WR, Maramattom BV, Manno EM, McClelland RL. 2005. Validation of a new coma scale: the FOUR score. Ann. Neurol. 58:585–93 [Google Scholar]
  139. Williams ST, Conte MM, Goldfine AM, Noirhomme Q, Gosseries O. et al. 2013. Common resting brain dynamics indicate a possible mechanism underlying zolpidem response in severe brain injury. eLife 2:e01157 [Google Scholar]
  140. Wu DY, Cai G, Zorowitz RD, Yuan Y, Wang J, Song WQ. 2011. Measuring interconnection of the residual cortical functional islands in persistent vegetative state and minimal conscious state with EEG nonlinear analysis. Clin. Neurophysiol. 122:1956–66 [Google Scholar]
  141. Xu W, Jiang G, Chen Y, Wang X, Jiang X. 2012. Prediction of minimally conscious state with somatosensory evoked potentials in long-term unconscious patients after traumatic brain injury. J. Trauma Acute Care Surg. 72:1024–29 [Google Scholar]
  142. Yamamoto T, Katayama Y, Obuchi T, Kobayashi K, Oshima H, Fukaya C. 2013. Deep brain stimulation and spinal cord stimulation for vegetative state and minimally conscious state. World Neurosurg. 80:S30.e1–9 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error