Facial muscles drive whisker movements, which are important for active tactile sensory perception in mice and rats. These whisker muscles are innervated by cholinergic motor neurons located in the lateral facial nucleus. The whisker motor neurons receive synaptic inputs from premotor neurons, which are located within the brain stem, the midbrain, and the neocortex. Complex, distributed neural circuits therefore regulate whisker movement during behavior. This review focuses specifically on cortical whisker motor control. The whisker primary motor cortex (M1) strongly innervates brain stem reticular nuclei containing whisker premotor neurons, which might form a central pattern generator for rhythmic whisker protraction. In a parallel analogous pathway, the whisker primary somatosensory cortex (S1) strongly projects to the brain stem spinal trigeminal interpolaris nucleus, which contains whisker premotor neurons innervating muscles for whisker retraction. These anatomical pathways may play important functional roles, since stimulation of M1 drives exploratory rhythmic whisking, whereas stimulation of S1 drives whisker retraction.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aronoff R, Matyas F, Mateo C, Ciron C, Schneider B, Petersen CCH. 2010. Long-range connectivity of mouse primary somatosensory barrel cortex. Eur. J. Neurosci. 31:2221–33 [Google Scholar]
  2. Bosman LW, Houweling AR, Owens CB, Tanke N, Shevchouk OT. et al. 2011. Anatomical pathways involved in generating and sensing rhythmic whisker movements. Front. Integr. Neurosci. 5:53 [Google Scholar]
  3. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8:1263–68 [Google Scholar]
  4. Brecht M. 2007. Barrel cortex and whisker-mediated behaviors. Curr. Opin. Neurobiol. 17:408–16 [Google Scholar]
  5. Brecht M. 2011. Movement, confusion, and orienting in frontal cortices. Neuron 72:193–96 [Google Scholar]
  6. Brecht M, Krauss A, Muhammad S, Sinai-Esfahani L, Bellanca S, Margrie TW. 2004a. Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells. J. Comp. Neurol. 479:360–73 [Google Scholar]
  7. Brecht M, Schneider M, Sakmann B, Margrie TW. 2004b. Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature 427:704–10 [Google Scholar]
  8. Carvell GE, Miller SA, Simons DJ. 1996. The relationship of vibrissal motor cortex unit activity to whisking in the awake rat. Somatosens. Mot. Res. 13:115–27 [Google Scholar]
  9. Chow BY, Han X, Dobry AS, Qian X, Chuong AS. et al. 2010. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463:98–102 [Google Scholar]
  10. Cohen JD, Hirata A, Castro-Alamancos MA. 2008. Vibrissa sensation in superior colliculus: wide-field sensitivity and state-dependent cortical feedback. J. Neurosci. 28:11205–20 [Google Scholar]
  11. Cooke DF, Taylor CSR, Moore T, Graziano MSA. 2003. Complex movements evoked by microstimulation of the ventral intraparietal area. Proc. Natl. Acad. Sci. USA 100:6163–68 [Google Scholar]
  12. Coulter JD, Jones EG. 1977. Differential distribution of corticospinal projections from individual cytoarchitectonic fields in the monkey. Brain Res. 129:335–40 [Google Scholar]
  13. Cramer NP, Keller A. 2006. Cortical control of a whisking central pattern generator. J. Neurophysiol. 96:209–17 [Google Scholar]
  14. Crochet S, Petersen CCH. 2006. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nat. Neurosci. 9:608–10 [Google Scholar]
  15. Crochet S, Poulet JFA, Kremer Y, Petersen CCH. 2011. Synaptic mechanisms underlying sparse coding of active touch. Neuron 69:1160–75 [Google Scholar]
  16. Curtis JC, Kleinfeld D. 2009. Phase-to-rate transformations encode touch in cortical neurons of a scanning sensorimotor system. Nat. Neurosci. 12:492–501 [Google Scholar]
  17. de Kock CP, Sakmann B. 2009. Spiking in primary somatosensory cortex during natural whisking in awake head-restrained rats is cell-type specific. Proc. Natl. Acad. Sci. USA 106:16446–50 [Google Scholar]
  18. Diamond ME, von Heimendahl M, Knutsen PM, Kleinfeld D, Ahissar E. 2008. ‘Where’ and ‘what’ in the whisker sensorimotor system. Nat. Rev. Neurosci. 9:601–12 [Google Scholar]
  19. Donoghue JP, Wise SP. 1982. The motor cortex of the rat: cytoarchitecture and microstimulation mapping. J. Comp. Neurol. 212:76–88 [Google Scholar]
  20. Dörfl J. 1982. The musculature of the mystacial vibrissae of the white mouse. J. Anat. 135:147–54 [Google Scholar]
  21. Erlich JC, Bialek M, Brody CD. 2011. A cortical substrate for memory-guided orienting in the rat. Neuron 72:330–43 [Google Scholar]
  22. Fee MS, Mitra PP, Kleinfeld D. 1997. Central versus peripheral determinants of patterned spike activity in rat vibrissa cortex during whisking. J. Neurophysiol. 78:1144–49 [Google Scholar]
  23. Feldmeyer D, Brecht M, Helmchen F, Petersen CCH, Poulet JFA. et al. 2013. Barrel cortex function. Prog. Neurobiol. 103:3–27 [Google Scholar]
  24. Ferezou I, Haiss F, Gentet LJ, Aronoff R, Weber B, Petersen CCH. 2007. Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56:907–23 [Google Scholar]
  25. Ferrier D. 1874. Experiments on the brain of monkeys—No. 1. Proc. R. Soc. Lond. 23:409–30 [Google Scholar]
  26. Friedman WA, Zeigler HP, Keller A. 2012. Vibrissae motor cortex unit activity during whisking. J. Neurophysiol. 107:551–63 [Google Scholar]
  27. Fritsch G, Hitzig E. 1870. Über die elektrische Erregbarkeit des Grosshirns. Arch. Anat. Physiol. Wiss. Med. 37:300–32 [Google Scholar]
  28. Gao P, Hattox AM, Jones LM, Keller A, Zeigler HP. 2003. Whisker motor cortex ablation and whisker movement patterns. Somatosens. Mot. Res. 20:191–98 [Google Scholar]
  29. Gentet LJ, Avermann M, Matyas F, Staiger JF, Petersen CCH. 2010. Membrane potential dynamics of GABAergic neurons in the barrel cortex of behaving mice. Neuron 65:422–35 [Google Scholar]
  30. Gentet LJ, Kremer Y, Taniguchi H, Huang ZJ, Staiger JF, Petersen CCH. 2012. Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex. Nat. Neurosci. 15:607–12 [Google Scholar]
  31. Gioanni Y, Lamarche M. 1985. A reappraisal of rat motor cortex organization by intracortical microstimulation. Brain Res. 344:49–61 [Google Scholar]
  32. Grant RA, Mitchinson B, Fox CW, Prescott TJ. 2009. Active touch sensing in the rat: anticipatory and regulatory control of whisker movements during surface exploration. J. Neurophysiol. 101:862–74 [Google Scholar]
  33. Graziano MS, Aflalo TN. 2007. Mapping behavioral repertoire onto the cortex. Neuron 56:239–51 [Google Scholar]
  34. Graziano MS, Taylor CS, Moore T, Cooke DF. 2002. The cortical control of movement revisited. Neuron 36:349–62 [Google Scholar]
  35. Grinevich V, Brecht M, Osten P. 2005. Monosynaptic pathway from rat vibrissa motor cortex to facial motor neurons revealed by lentivirus-based axonal tracing. J. Neurosci. 25:8250–58 [Google Scholar]
  36. Grinvald A, Hildesheim R. 2004. VSDI: a new era in functional imaging of cortical dynamics. Nat. Rev. Neurosci. 5:874–85 [Google Scholar]
  37. Haidarliu S, Golomb D, Kleinfeld D, Ahissar E. 2012. Dorsorostral snout muscles in the rat subserve coordinated movement for whisking and sniffing. Anat. Rec. 295:1181–91 [Google Scholar]
  38. Haiss F, Schwarz C. 2005. Spatial segregation of different modes of movement control in the whisker representation of rat primary motor cortex. J. Neurosci. 25:1579–87 [Google Scholar]
  39. Hall RD, Lindholm EP. 1974. Organization of motor and somatosensory neocortex in the albino rat. Brain Res. 66:23–38 [Google Scholar]
  40. Harrison TC, Ayling OG, Murphy TH. 2012. Distinct cortical circuit mechanisms for complex forelimb movement and motor map topography. Neuron 74:397–409 [Google Scholar]
  41. Hattox A, Li Y, Keller A. 2003. Serotonin regulates rhythmic whisking. Neuron 39:343–52 [Google Scholar]
  42. Hattox AM, Priest CA, Keller A. 2002. Functional circuitry involved in the regulation of whisker movements. J. Comp. Neurol. 442:266–76 [Google Scholar]
  43. Hemelt ME, Keller A. 2008. Superior colliculus control of vibrissa movements. J. Neurophysiol. 100:1245–54 [Google Scholar]
  44. Herfst LJ, Brecht M. 2008. Whisker movements evoked by stimulation of single motor neurons in the facial nucleus of the rat. J. Neurophysiol. 99:2821–32 [Google Scholar]
  45. Hill DN, Bermejo R, Zeigler HP, Kleinfeld D. 2008. Biomechanics of the vibrissa motor plant in rat: rhythmic whisking consists of triphasic neuromuscular activity. J. Neurosci. 28:3438–55 [Google Scholar]
  46. Hill DN, Curtis JC, Moore JD, Kleinfeld D. 2011. Primary motor cortex reports efferent control of vibrissa motion on multiple timescales. Neuron 72:344–56 [Google Scholar]
  47. Huber D, Gutnisky DA, Peron S, O'Connor DH, Wiegert JS. et al. 2012. Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484:473–78 [Google Scholar]
  48. Jin TE, Witzemann V, Brecht M. 2004. Fiber types of the intrinsic whisker muscle and whisking behavior. J. Neurosci. 24:3386–93 [Google Scholar]
  49. Keller GB, Bonhoeffer T, Hübener M. 2012. Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. Neuron 74:809–15 [Google Scholar]
  50. Kelly RM, Strick PL. 2000. Rabies as a transneuronal tracer of circuits in the central nervous system. J. Neurosci. Methods 103:63–71 [Google Scholar]
  51. Knutsen PM, Biess A, Ahissar E. 2008. Vibrissal kinematics in 3D: tight coupling of azimuth, elevation, and torsion across different whisking modes. Neuron 59:35–42 [Google Scholar]
  52. Lee S-H, Dan Y. 2012. Neuromodulation of brain states. Neuron 76:209–22 [Google Scholar]
  53. Legg CR, Mercier B, Glickstein M. 1989. Corticopontine projection in the rat: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J. Comp. Neurol. 286:427–41 [Google Scholar]
  54. Mao T, Kusefoglu D, Hooks BM, Huber D, Petreanu L, Svoboda K. 2011. Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron 72:111–23 [Google Scholar]
  55. Mateo C, Avermann M, Gentet LJ, Zhang F, Deisseroth K, Petersen CCH. 2011. In vivo optogenetic stimulation of neocortical excitatory neurons drives brain-state-dependent inhibition. Curr. Biol. 21:1593–602 [Google Scholar]
  56. Matyas F, Sreenivasan V, Marbach F, Wacongne C, Barsy B. et al. 2010. Motor control by sensory cortex. Science 330:1240–43 [Google Scholar]
  57. Mitchinson B, Martin CJ, Grant RA, Prescott TJ. 2007. Feedback control in active sensing: Rat exploratory whisking is modulated by environmental contact. Proc. Biol. Sci. 274:1035–41 [Google Scholar]
  58. Miyashita E, Keller A, Asanuma H. 1994. Input–output organization of the rat vibrissal motor cortex. Exp. Brain Res. 99:223–32 [Google Scholar]
  59. Molinari HH, Schultze KE, Strominger NL. 1996. Gracile, cuneate, and spinal trigeminal projections to inferior olive in rat and monkey. J. Comp. Neurol. 375:467–80 [Google Scholar]
  60. Moore JD, Deschênes M, Furuta T, Huber D, Smear MC. et al. 2013. Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature 497:205–10 [Google Scholar]
  61. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N. et al. 2003. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100:13940–45 [Google Scholar]
  62. Neafsey EJ, Bold EL, Haas G, Hurley-Gius KM, Quirk G. et al. 1986. The organization of the rat motor cortex: a microstimulation mapping study. Brain Res. 396:77–96 [Google Scholar]
  63. Niell CM, Stryker MP. 2010. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65:472–79 [Google Scholar]
  64. Nguyen QT, Kleinfeld D. 2005. Positive feedback in a brainstem tactile sensorimotor loop. Neuron 45:447–57 [Google Scholar]
  65. Okun M, Naim A, Lampl I. 2010. The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. J. Neurosci. 30:4440–48 [Google Scholar]
  66. Osakada F, Mori T, Cetin AH, Marshel JH, Virgen B, Callaway EM. 2011. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 71:617–31 [Google Scholar]
  67. Paxinos G, Franklin KBJ. 2001. The Mouse Brain in Stereotaxic Coordinates San Diego: Academic, 2nd ed..
  68. Penfield W, Boldrey E. 1937. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443 [Google Scholar]
  69. Petersen CCH. 2007. The functional organization of the barrel cortex. Neuron 56:339–55 [Google Scholar]
  70. Petersen CCH, Crochet S. 2013. Synaptic computation and sensory processing in neocortical layer 2/3. Neuron 78:28–48 [Google Scholar]
  71. Petersen CCH, Hahn TTG, Mehta M, Grinvald A, Sakmann B. 2003. Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc. Natl. Acad. Sci. USA 100:13638–43 [Google Scholar]
  72. Porter LL, White EL. 1983. Afferent and efferent pathways of the vibrissal region of primary motor cortex in the mouse. J. Comp. Neurol. 214:279–89 [Google Scholar]
  73. Poulet JFA, Fernandez LM, Crochet S, Petersen CCH. 2012. Thalamic control of cortical states. Nat. Neurosci. 15:370–72 [Google Scholar]
  74. Poulet JFA, Petersen CCH. 2008. Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454:881–85 [Google Scholar]
  75. Rathelot JA, Strick PL. 2006. Muscle representation in the macaque motor cortex: an anatomical perspective. Proc. Natl. Acad. Sci. USA 103:8257–62 [Google Scholar]
  76. Rice FL, Fundin BT, Arvidsson J, Aldskogius H, Johansson O. 1997. Comprehensive immunofluorescence and lectin binding analysis of vibrissal follicle sinus complex innervation in the mystacial pad of the rat. J. Comp. Neurol. 385:149–84 [Google Scholar]
  77. Sachdev RN, Sato T, Ebner FF. 2002. Divergent movement of adjacent whiskers. J. Neurophysiol. 87:1440–48 [Google Scholar]
  78. Semba K, Komisaruk BR. 1984. Neural substrates of two different rhythmical vibrissal movements in the rat. Neuroscience 12:761–74 [Google Scholar]
  79. Sherrington CS. 1906. The Integrative Action of the Nervous System New Haven, CT: Yale Univ. Press
  80. Smith JB, Alloway KD. 2013. Rat whisker motor cortex is subdivided into sensory-input and motor-output areas. Front. Neural Circuits 7:4 [Google Scholar]
  81. Steindler DA. 1985. Trigeminocerebellar, trigeminotectal, and trigeminothalamic projections: a double retrograde axonal tracing study in the mouse. J. Comp. Neurol. 237:155–75 [Google Scholar]
  82. Stepien AE, Tripodi M, Arber S. 2010. Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells. Neuron 68:456–72 [Google Scholar]
  83. Swenson RS, Kosinski RJ, Castro AJ. 1984. Topography of spinal, dorsal column nuclear, and spinal trigeminal projections to the pontine gray in rats. J. Comp. Neurol. 222:301–11 [Google Scholar]
  84. Takatoh J, Nelson A, Zhou X, Bolton MM, Ehlers MD. et al. 2013. New modules are added to vibrissal premotor circuitry with the emergence of exploratory whisking. Neuron 77:346–60 [Google Scholar]
  85. Tandon S, Kambi N, Jain N. 2008. Overlapping representations of the neck and whiskers in the rat motor cortex revealed by mapping at different anaesthetic depths. Eur. J. Neurosci. 27:228–37 [Google Scholar]
  86. Ugolini G. 1995. Specificity of rabies virus as a transneuronal tracer of motor networks: transfer from hypoglossal motoneurons to connected second-order and higher order central nervous system cell groups. J. Comp. Neurol. 356:457–80 [Google Scholar]
  87. Welker E, Hoogland PV, Van der Loos H. 1988. Organization of feedback and feedforward projections of the barrel cortex: a PHA-L study in the mouse. Exp. Brain Res. 73:411–35 [Google Scholar]
  88. Welker WI. 1964. Analysis of sniffing of the albino rat. Behaviour 22:223–44 [Google Scholar]
  89. White EL, DeAmicis RA. 1977. Afferent and efferent projections of the region of mouse SmI cortex which contains the posteromedial barrel subfield. J. Comp. Neurol. 175:455–82 [Google Scholar]
  90. Wickersham IR, Lyon DC, Barnard RJ, Mori T, Finke S. et al. 2007. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53:639–47 [Google Scholar]
  91. Wise SP, Jones EG. 1977. Cells of origin and terminal distribution of descending projections of the rat somatic sensory cortex. J. Comp. Neurol. 175:129–57 [Google Scholar]
  92. Woolsey CN. 1958. Organization of somatic sensory and motor areas of the cerebral cortex. Biological and Biochemical Bases of Behavior HF Harlow, CN Woolsy 63–81 Madison: Univ. Wis. Press [Google Scholar]
  93. Yatim N, Billig I, Compoint C, Buisseret P, Buisseret-Delmas C. 1996. Trigeminocerebellar and trigemino-olivary projections in rats. Neurosci. Res. 25:267–83 [Google Scholar]
  94. Zagha E, Casale AE, Sachdev RNS, McGinley MJ, McCormick DA. 2013. Motor cortex feedback influences sensory processing by modulating network state. Neuron 79:567–78 [Google Scholar]
  95. Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S. et al. 2011. The microbial opsin family of optogenetic tools. Cell 147:1446–57 [Google Scholar]
  96. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K. et al. 2007. Multimodal fast optical interrogation of neural circuitry. Nature 446:633–39 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error