
Full text loading...
Sleep is known to support memory consolidation. Here we review evidence for an active system consolidation occurring during sleep. At the beginning of this process is sleep's ability to preserve episodic experiences preferentially encoded in hippocampal networks. Repeated neuronal reactivation of these representations during slow-wave sleep transforms episodic representations into long-term memories, redistributes them toward extrahippocampal networks, and qualitatively changes them to decontextualized schema-like representations. Electroencephalographic (EEG) oscillations regulate the underlying communication: Hippocampal sharp-wave ripples coalescing with thalamic spindles mediate the bottom-up transfer of reactivated memory information to extrahippocampal regions. Neocortical slow oscillations exert a supraordinate top-down control to synchronize hippocampal reactivations of specific memories to their excitable up-phase, thus allowing plastic changes in extrahippocampal regions. We propose that reactivations during sleep are a general mechanism underlying the abstraction of temporally stable invariants from a flow of input that is solely structured in time, thus representing a basic mechanism of memory formation.
Article metrics loading...
Full text loading...
Data & Media loading...