1932

Abstract

Despite being regarded as a hippie science for decades, cannabinoid research has finally found its well-deserved position in mainstream neuroscience. A series of groundbreaking discoveries revealed that endocannabinoid molecules are as widespread and important as conventional neurotransmitters such as glutamate or GABA, yet they act in profoundly unconventional ways. We aim to illustrate how uncovering the molecular, anatomical, and physiological characteristics of endocannabinoid signaling has revealed new mechanistic insights into several fundamental phenomena in synaptic physiology. First, we summarize unexpected advances in the molecular complexity of biogenesis and inactivation of the two endocannabinoids, anandamide and 2-arachidonoylglycerol. Then, we show how these new metabolic routes are integrated into well-known intracellular signaling pathways. These endocannabinoid-producing signalosomes operate in phasic and tonic modes, thereby differentially governing homeostatic, short-term, and long-term synaptic plasticity throughout the brain. Finally, we discuss how cell type– and synapse-specific refinement of endocannabinoid signaling may explain the characteristic behavioral effects of cannabinoids.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-062111-150420
2012-07-21
2024-12-07
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-neuro-062111-150420
Loading
/content/journals/10.1146/annurev-neuro-062111-150420
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error