Sleep and wake are fundamental behavioral states whose molecular regulation remains mysterious. Brain states and body functions change dramatically between sleep and wake, are regulated by circadian and homeostatic processes, and depend on the nutritional and emotional condition of the animal. Sleep-wake transitions require the coordination of several brain regions and engage multiple neurochemical systems, including neuropeptides. Neuropeptides serve two main functions in sleep-wake regulation. First, they represent physiological states such as energy level or stress in response to environmental and internal stimuli. Second, neuropeptides excite or inhibit their target neurons to induce, stabilize, or switch between sleep-wake states. Thus, neuropeptides integrate physiological subsystems such as circadian time, previous neuron usage, energy homeostasis, and stress and growth status to generate appropriate sleep-wake behaviors. We review the roles of more than 20 neuropeptides in sleep and wake to lay the foundation for future studies uncovering the mechanisms that underlie the initiation, maintenance, and exit of sleep and wake states.

Keyword(s): feedinghypocretinlocal sleepMCHNREMREMstress

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adamantidis A, de Lecea L. 2009. The hypocretins as sensors for metabolism and arousal. J. Physiol. 587:33–40 [Google Scholar]
  2. Adamantidis A, Salvert D, Goutagny R, Lakaye B, Gervasoni D. et al. 2008. Sleep architecture of the melanin-concentrating hormone receptor 1-knockout mice. Eur. J. Neurosci. 27:1793–800 [Google Scholar]
  3. Ahnaou A, Basille M, Gonzalez B, Vaudry H, Hamon M. et al. 1999. Long-term enhancement of REM sleep by the pituitary adenylyl cyclase-activating polypeptide (PACAP) in the pontine reticular formation of the rat. Eur. J. Neurosci. 11:4051–58 [Google Scholar]
  4. Ahnaou A, Yon L, Arluison M, Vaudry H, Hannibal J. et al. 2006. Immunocytochemical distribution of VIP and PACAP in the rat brain stem: implications for REM sleep physiology. Ann. N. Y. Acad. Sci. 1070:135–42 [Google Scholar]
  5. Allada R, Siegel JM. 2008. Unearthing the phylogenetic roots of sleep. Curr. Biol. 18:R670–79 [Google Scholar]
  6. Anaclet C, Lin JS, Vetrivelan R, Krenzer M, Vong L. et al. 2012. Identification and characterization of a sleep-active cell group in the rostral medullary brainstem. J. Neurosci. 32:17970–76 [Google Scholar]
  7. Antin J, Gibbs J, Holt J, Young RC, Smith GP. 1975. Cholecystokinin elicits the complete behavioral sequence of satiety in rats. J. Comp. Physiol. Psychol. 89:784–90 [Google Scholar]
  8. Bachmann V, Klein C, Bodenmann S, Schäfer N, Berger W. et al. 2012. The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. Sleep 35:335–44 [Google Scholar]
  9. Bargmann CI. 2012. Beyond the connectome: how neuromodulators shape neural circuits. Bioessays 34:458–65 [Google Scholar]
  10. Benedetto L, Rodriguez-Servetti Z, Lagos P, D'Almeida V, Monti JM, Torterolo P. 2013. Microinjection of melanin concentrating hormone into the lateral preoptic area promotes non-REM sleep in the rat. Peptides 39:11–15 [Google Scholar]
  11. Borbély AA. 1977. Sleep in the rat during food deprivation and subsequent restitution of food. Brain Res. 124:457–71 [Google Scholar]
  12. Broberger C. 1999. Hypothalamic cocaine- and amphetamine-regulated transcript (CART) neurons: histochemical relationship to thyrotropin-releasing hormone, melanin-concentrating hormone, orexin/hypocretin and neuropeptide Y. Brain Res. 848:101–13 [Google Scholar]
  13. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. 2012. Control of sleep and wakefulness. Physiol. Rev. 92:1087–187 [Google Scholar]
  14. Burbach JPH. 2011. What are neuropeptides?. Neuropeptides: Methods and Protocols A Merighi 1–36 New York: Springer Sci.-Bus. Media [Google Scholar]
  15. Burgess CR, Oishi Y, Mochizuki T, Peever JH, Scammell TE. 2013. Amygdala lesions reduce cataplexy in orexin knock-out mice. J. Neurosci. 33:9734–42 [Google Scholar]
  16. Campbell SS, Tobler I. 1984. Animal sleep: a review of sleep duration across phylogeny. Neurosci. Biobehav. Rev. 8:269–300 [Google Scholar]
  17. Cape EG, Manns ID, Alonso A, Beaudet A, Jones BE. 2000. Neurotensin-induced bursting of cholinergic basal forebrain neurons promotes gamma and theta cortical activity together with waking and paradoxical sleep. J. Neurosci. 20:8452–61 [Google Scholar]
  18. Carroll SB. 2008. Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36 [Google Scholar]
  19. Carter ME, de Lecea L, Adamantidis A. 2013. Functional wiring of hypocretin and LC-NE neurons: implications for arousal. Front. Behav. Neurosci. 7:43 [Google Scholar]
  20. Chaki S, Kawashima N, Suzuki Y, Shimazaki T, Okuyama S. 2003. Cocaine- and amphetamine-regulated transcript peptide produces anxiety-like behavior in rodents. Eur. J. Pharmacol. 464:49–54 [Google Scholar]
  21. Chastrette N, Cespuglio R, Jouvet M. 1990. Proopiomelanocortin (POMC)-derived peptides and sleep in the rat. Part 1—Hypnogenic properties of ACTH derivatives. Neuropeptides 15:61–74 [Google Scholar]
  22. Chee MJ, Pissios P, Maratos-Flier E. 2013. Neurochemical characterization of neurons expressing melanin-concentrating hormone receptor 1 in the mouse hypothalamus. J. Comp. Neurol. 521:2208–34 [Google Scholar]
  23. Chiu CN, Prober DA. 2013. Regulation of zebrafish sleep and arousal states: current and prospective approaches. Front. Neural Circuits 7:58 [Google Scholar]
  24. Cho JY, Sternberg PW. 2014. Multilevel modulation of a sensory motor circuit during C. elegans sleep and arousal. Cell 156:249–60 [Google Scholar]
  25. Chou TC, Lee CE, Lu J, Elmquist JK, Hara J. et al. 2001. Orexin (hypocretin) neurons contain dynorphin. J. Neurosci. 21:RC168 [Google Scholar]
  26. Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J. 2003. Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci. 23:10691–702 [Google Scholar]
  27. Clow A, Hucklebridge F, Stalder T, Evans P, Thorn L. 2010. The cortisol awakening response: more than a measure of HPA axis function. Neurosci. Biobehav. Rev. 35:97–103 [Google Scholar]
  28. Colten HR, Altevogt BM. 2006. Sleep Disorders and Sleep Deprivation: An Unmet Public Health Problem Washington, DC: Natl. Acad. Press [Google Scholar]
  29. Coltro Campi C, Clarke GD. 1995. Effects of highly selective κ-opioid agonists on EEG power spectra and behavioural correlates in conscious rats. Pharmacol. Biochem. Behav. 51:611–16 [Google Scholar]
  30. Colwell CS. 2011. Linking neural activity and molecular oscillations in the SCN. Nat. Rev. Neurosci. 12:553–69 [Google Scholar]
  31. Crocker A, Sehgal A. 2010. Genetic analysis of sleep. Genes Dev. 24:1220–35 [Google Scholar]
  32. Dalal J, Roh JH, Maloney SE, Akuffo A, Shah S. et al. 2013. Translational profiling of hypocretin neurons identifies candidate molecules for sleep regulation. Genes Dev. 27:565–78 [Google Scholar]
  33. de Lecea L. 2008. Cortistatin—functions in the central nervous system. Mol. Cell Endocrinol. 286:88–95 [Google Scholar]
  34. Devine DP, Taylor L, Reinscheid RK, Monsma FJJ, Civelli O, Akil H. 1996. Rats rapidly develop tolerance to the locomotor-inhibiting effects of the novel neuropeptide orphanin FQ. Neurochem. Res. 21:1387–96 [Google Scholar]
  35. Dyzma M, Boudjeltia KZ, Faraut B, Kerkhofs M. 2010. Neuropeptide Y and sleep. Sleep Med. Rev. 14:161–65 [Google Scholar]
  36. Elias CF, Lee CE, Kelly JF, Ahima RS, Kuhar M. et al. 2001. Characterization of CART neurons in the rat and human hypothalamus. J. Comp. Neurol. 432:1–19 [Google Scholar]
  37. Elmquist JK, Bjørbaek C, Ahima RS, Flier JS, Saper CB. 1998. Distributions of leptin receptor mRNA isoforms in the rat brain. J. Comp. Neurol. 395:535–47 [Google Scholar]
  38. Erickson JC, Clegg KE, Palmiter RD. 1996. Sensitivity to leptin and susceptibility to seizures of mice lacking neuropeptide Y. Nature 381:415–21 [Google Scholar]
  39. Eriksson KS, Sergeeva OA, Selbach O, Haas HL. 2004. Orexin (hypocretin)/dynorphin neurons control GABAergic inputs to tuberomammillary neurons. Eur. J. Neurosci. 19:1278–84 [Google Scholar]
  40. España RA, Scammell TE. 2011. Sleep neurobiology from a clinical perspective. Sleep 34:845–58 [Google Scholar]
  41. Esposito M, Pellinen J, Kapás L, Szentirmai É. 2012. Impaired wake-promoting mechanisms in ghrelin receptor-deficient mice. Eur. J. Neurosci. 35:233–43 [Google Scholar]
  42. Feng P, Liu X, Vurbic D, Fan H, Wang S. 2007. Neonatal REM sleep is regulated by corticotropin releasing factor. Behav. Brain Res. 182:95–102 [Google Scholar]
  43. Fitzpatrick K, Winrow CJ, Gotter AL, Millstein J, Arbuzova J. et al. 2012. Altered sleep and affect in the neurotensin receptor 1 knockout mouse. Sleep 35:949–56 [Google Scholar]
  44. Flavell SW, Pokala N, Macosko EZ, Albrecht DR, Larsch J, Bargmann CI. 2013. Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Cell 154:1023–35 [Google Scholar]
  45. Friedman LF, Zeitzer JM, Lin L, Hoff D, Mignot E. et al. 2007. In Alzheimer disease, increased wake fragmentation found in those with lower hypocretin-1. Neurology 68:793–94 [Google Scholar]
  46. Fu LY, Acuna-Goycolea C, van den Pol AN. 2004. Neuropeptide Y inhibits hypocretin/orexin neurons by multiple presynaptic and postsynaptic mechanisms: tonic depression of the hypothalamic arousal system. J. Neurosci. 24:8741–51 [Google Scholar]
  47. Fuller PM, Sherman D, Pedersen NP, Saper CB, Lu J. 2011. Reassessment of the structural basis of the ascending arousal system. J. Comp. Neurol. 519:933–56 [Google Scholar]
  48. Furness JB, Hunne B, Matsuda N, Yin L, Russo D. et al. 2011. Investigation of the presence of ghrelin in the central nervous system of the rat and mouse. Neuroscience 193:1–9 [Google Scholar]
  49. Furutani N, Hondo M, Kageyama H, Tsujino N, Mieda M. et al. 2013. Neurotensin co-expressed in orexin-producing neurons in the lateral hypothalamus plays an important role in regulation of sleep/wakefulness states. PLoS ONE 8:e62391 [Google Scholar]
  50. Gan EH, Quinton R. 2010. Physiological significance of the rhythmic secretion of hypothalamic and pituitary hormones. Prog. Brain Res. 181:111–26 [Google Scholar]
  51. Gao X-B, Horvath T. 2014. Function and dysfunction of hypocretin/orexin: an energetics point of view. Annu. Rev. Neurosci. 37:101–16 [Google Scholar]
  52. García-García F, Acosta-Peña E, Venebra-Muñoz A, Murillo-Rodríguez E. 2009. Sleep-inducing factors. CNS Neurol. Disord. Drug Targets 8:235–44 [Google Scholar]
  53. García-García F, Juárez-Aguilar E, Santiago-García J, Cardinali DP. 2014. Ghrelin and its interactions with growth hormone, leptin and orexins: implications for the sleep-wake cycle and metabolism. Sleep Med. Rev. 18:89–97 [Google Scholar]
  54. Gaus SE, Strecker RE, Tate BA, Parker RA, Saper CB. 2002. Ventrolateral preoptic nucleus contains sleep-active, galaninergic neurons in multiple mammalian species. Neuroscience 115:285–94 [Google Scholar]
  55. Gilbert J, Davis FC. 2009. Behavioral effects of systemic transforming growth factor-alpha in Syrian hamsters. Behav. Brain Res. 198:440–48 [Google Scholar]
  56. Greco MA, Fuller PM, Jhou TC, Martin-Schild S, Zadina JE. et al. 2008. Opioidergic projections to sleep-active neurons in the ventrolateral preoptic nucleus. Brain Res.124596–107 [Google Scholar]
  57. Hallberg M, Nyberg F. 2012. Growth hormone receptors in the brain and their potential as therapeutic targets in central nervous system disorders. Open Endocrinol. J. 6:27–33 [Google Scholar]
  58. Hanriot L, Camargo N, Courau AC, Leger L, Luppi PH, Peyron C. 2007. Characterization of the melanin-concentrating hormone neurons activated during paradoxical sleep hypersomnia in rats. J. Comp. Neurol. 505:147–57 [Google Scholar]
  59. Harris KD, Thiele A. 2011. Cortical state and attention. Nat. Rev. Neurosci. 12:509–23 [Google Scholar]
  60. Harvey J. 2007. Leptin: a diverse regulator of neuronal function. J. Neurochem. 100:307–13 [Google Scholar]
  61. Hashimoto H, Shintani N, Tanaka K, Mori W, Hirose M. et al. 2001. Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc. Natl. Acad. Sci. USA 98:13355–60 [Google Scholar]
  62. Hashimoto H, Shintani N, Tanida M, Hayata A, Hashimoto R, Baba A. 2011. PACAP is implicated in the stress axes. Curr. Pharm. Des. 17:985–89 [Google Scholar]
  63. Hirashima N, Tsunematsu T, Ichiki K, Tanaka H, Kilduff TS, Yamanaka A. 2011. Neuropeptide B induces slow wave sleep in mice. Sleep 34:1–37 [Google Scholar]
  64. Hobson SA, Bacon A, Elliot-Hunt CR, Holmes FE, Kerr NC. et al. 2008. Galanin acts as a trophic factor to the central and peripheral nervous systems. Cell. Mol. Life Sci. 65:1806–12 [Google Scholar]
  65. Hokfelt T, Broberger C, Xu ZQ, Sergeyev V, Ubink R, Diez M. 2000. Neuropeptides—an overview. Neuropharmacology 39:1337–56 [Google Scholar]
  66. Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang SR. 2008. Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu. Rev. Pharmacol. Toxicol. 48:393–423 [Google Scholar]
  67. Hu WP, Li JD, Colwell CS, Zhou QY. 2011. Decreased REM sleep and altered circadian sleep regulation in mice lacking vasoactive intestinal polypeptide. Sleep 34:49–56 [Google Scholar]
  68. Huang ZL, Urade Y, Hayaishi O. 2007. Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr. Opin. Pharmacol. 7:33–38 [Google Scholar]
  69. Jego S, Glasgow SD, Herrera CG, Ekstrand M, Reed SJ. et al. 2013. Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat. Neurosci. 16:1637–43 [Google Scholar]
  70. Jewett KA, Krueger JM. 2012. Humoral sleep regulation; interleukin-1 and tumor necrosis factor. Vitam. Horm. 89:241–57 [Google Scholar]
  71. Kageyama H, Takenoya F, Shiba K, Shioda S. 2010. Neuronal circuits involving ghrelin in the hypothalamus-mediated regulation of feeding. Neuropeptides 44:133–38 [Google Scholar]
  72. Kalsbeek A, Yi CX, la Fleur SE, Buijs RM, Fliers E. 2010. Suprachiasmatic nucleus and autonomic nervous system influences on awakening from sleep. Int. Rev. Neurobiol. 93:91–107 [Google Scholar]
  73. Kang JE, Lim MM, Bateman RJ, Lee JJ, Smyth LP. et al. 2009. Amyloid-β dynamics are regulated by orexin and the sleep-wake cycle. Science 326:1005–7 [Google Scholar]
  74. Kapás L, Bohnet SG, Traynor TR, Majde JA, Szentirmai E. et al. 2008. Spontaneous and influenza virus-induced sleep are altered in TNF-α double-receptor deficient mice. J. Appl. Physiol. 105:1187–98 [Google Scholar]
  75. Kastenberger I, Lutsch C, Herzog H, Schwarzer C. 2012. Influence of sex and genetic background on anxiety-related and stress-induced behaviour of prodynorphin-deficient mice. PLoS ONE 7:e34251 [Google Scholar]
  76. Keating GL, Kuhar MJ, Bliwise DL, Rye DB. 2010. Wake promoting effects of cocaine and amphetamine-regulated transcript (CART). Neuropeptides 44:241–46 [Google Scholar]
  77. Khachaturian H, Watson SJ, Lewis ME, Coy D, Goldstein A, Akil H. 1982. Dynorphin immunocytochemistry in the rat central nervous system. Peptides 3:941–54 [Google Scholar]
  78. Kimura M, Muller-Preuss P, Lu A, Wiesner E, Flachskamm C. et al. 2010. Conditional corticotropin-releasing hormone overexpression in the mouse forebrain enhances rapid eye movement sleep. Mol. Psychiatry 15:154–65 [Google Scholar]
  79. Kishi T, Aschkenasi CJ, Choi BJ, Lopez ME, Lee CE. et al. 2005. Neuropeptide Y Y1 receptor mRNA in rodent brain: distribution and colocalization with melanocortin-4 receptor. J. Comp. Neurol. 482:217–43 [Google Scholar]
  80. Kojima M, Kangawa K. 2010. Ghrelin: more than endogenous growth hormone secretagogue. Ann. N. Y. Acad. Sci. 1200:140–48 [Google Scholar]
  81. Konadhode RR, Pelluru D, Blanco-Centurion C, Zayachkivsky A, Liu M. et al. 2013. Optogenetic stimulation of MCH neurons increases sleep. J. Neurosci. 33:10257–63 [Google Scholar]
  82. Koylu EO, Couceyro PR, Lambert PD, Kuhar MJ. 1998. Cocaine- and amphetamine-regulated transcript peptide immunohistochemical localization in the rat brain. J. Comp. Neurol. 391:115–32 [Google Scholar]
  83. Koylu EO, Couceyro PR, Lambert PD, Ling NC, DeSouza EB, Kuhar MJ. 1997. Immunohistochemical localization of novel CART peptides in rat hypothalamus, pituitary and adrenal gland. J. Neuroendocrinol. 9:823–33 [Google Scholar]
  84. Kramer A, Yang FC, Snodgrass P, Li X, Scammell TE. et al. 2001. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294:2511–15 [Google Scholar]
  85. Krueger JM. 2008. The role of cytokines in sleep regulation. Curr. Pharm. Des. 14:3408–16 [Google Scholar]
  86. Krueger JM, Rector DM, Roy S, Van Dongen HPA, Belenky G, Panksepp J. 2008. Sleep as a fundamental property of neuronal assemblies. Nat. Rev. Neurosci. 9:910–19 [Google Scholar]
  87. Kryger MH, Roth T, Dement WC, Siegel JM. 2011. Principles and Practice of Sleep Medicine Philadelphia, PA: Saunders/Elsevier, 5th ed.. [Google Scholar]
  88. Kushikata T, Fang J, Chen Z, Wang Y, Krueger JM. 1998. Epidermal growth factor enhances spontaneous sleep in rabbits. Am. J. Physiol. 275:R509–14 [Google Scholar]
  89. Laposky AD, Shelton J, Bass J, Dugovic C, Perrino N, Turek FW. 2006. Altered sleep regulation in leptin-deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:R894–903 [Google Scholar]
  90. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–76 [Google Scholar]
  91. Leinninger GM. 2011. Lateral thinking about leptin: a review of leptin action via the lateral hypothalamus. Physiol. Behav. 104:572–81 [Google Scholar]
  92. Lester HA, Mager S, Quick MW, Corey JL. 1994. Permeation properties of neurotransmitter transporters. Annu. Rev. Pharmacol. Toxicol. 34:219–49 [Google Scholar]
  93. Li H, Ohta H, Izumi H, Matsuda Y, Seki M. et al. 2013. Behavioral and cortical EEG evaluations confirm the roles of both CCKA and CCKB receptors in mouse CCK-induced anxiety. Behav. Brain Res. 237:325–32 [Google Scholar]
  94. Li Y, van den Pol AN. 2006. Differential target-dependent actions of coexpressed inhibitory dynorphin and excitatory hypocretin/orexin neuropeptides. J. Neurosci. 26:13037–47 [Google Scholar]
  95. Liao F, Taishi P, Churchill L, Urza MJ, Krueger JM. 2010. Localized suppression of cortical growth hormone-releasing hormone receptors state-specifically attenuates electroencephalographic delta waves. J. Neurosci. 30:4151–59 [Google Scholar]
  96. Lin JS, Anaclet C, Sergeeva OA, Haas HL. 2011. The waking brain: an update. Cell. Mol. Life Sci. 68:2499–512 [Google Scholar]
  97. Ludwig M, Leng G. 2006. Dendritic peptide release and peptide-dependent behaviours. Nat. Rev. Neurosci. 7:126–36 [Google Scholar]
  98. Majde JA, Krueger JM. 2005. Links between the innate immune system and sleep. J. Allergy Clin. Immunol. 116:1188–98 [Google Scholar]
  99. Marder E. 2012. Neuromodulation of neuronal circuits: back to the future. Neuron 76:1–11 [Google Scholar]
  100. Martel G, Dutar P, Epelbaum J, Viollet C. 2012. Somatostatinergic systems: an update on brain functions in normal and pathological aging. Front. Endocrinol. 3:154 [Google Scholar]
  101. Martínez GS, Smale L, Nunez AA. 2002. Diurnal and nocturnal rodents show rhythms in orexinergic neurons. Brain Res. 955:1–7 [Google Scholar]
  102. Masuo Y, Noguchi J, Morita S, Matsumoto Y. 1995. Effects of intracerebroventricular administration of pituitary adenylate cyclase-activating polypeptide (PACAP) on the motor activity and reserpine-induced hypothermia in murines. Brain Res. 700:219–26 [Google Scholar]
  103. McCarley RW. 2011. Neurobiology of REM sleep. Handb. Clin. Neurol. 98:151–71 [Google Scholar]
  104. McCoy MK, Tansey MG. 2008. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J. Neuroinflamm. 5:45 [Google Scholar]
  105. Mennicken F, Hoffert C, Pelletier M, Ahmad S, O'Donnell D. 2002. Restricted distribution of galanin receptor 3 (GalR3) mRNA in the adult rat central nervous system. J. Chem. Neuroanat. 24:257–68 [Google Scholar]
  106. Moffett M, Stanek L, Harley J, Rogge G, Asnicar M. et al. 2006. Studies of cocaine- and amphetamine-regulated transcript (CART) knockout mice. Peptides 27:2037–45 [Google Scholar]
  107. Monti JM, Torterolo P, Lagos P. 2013. Melanin-concentrating hormone control of sleep-wake behavior. Sleep Med. Rev. 17:293–98 [Google Scholar]
  108. Mrosovsky N, Redlin U, Roberts RB, Threadgill DW. 2005. Masking in waved-2 mice: EGF receptor control of locomotion questioned. Chronobiol. Int. 22:963–74 [Google Scholar]
  109. Mulder AH, Wardeh G, Hogenboom F, Frankhuyzen AL. 1984. Kappa- and delta-opioid receptor agonists differentially inhibit striatal dopamine and acetylcholine release. Nature 308:278–80 [Google Scholar]
  110. Murck H, Held K, Ziegenbein M, Künzel H, Holsboer F, Steiger A. 2004. Intravenous administration of the neuropeptide galanin has fast antidepressant efficacy and affects the sleep EEG. Psychoneuroendocrinology 29:1205–11 [Google Scholar]
  111. Nelson MD, Raizen DM. 2013. A sleep state during C. elegans development. Curr. Opin. Neurobiol. 23:824–30 [Google Scholar]
  112. Nelson MD, Trojanowski NF, George-Raizen JB, Smith CJ, Yu CC. et al. 2013. The neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans. Nat. Commun. 4:2846 [Google Scholar]
  113. O'Malley MW, Fishman RL, Ciraulo DA, Datta S. 2013. Effect of five-consecutive-day exposure to an anxiogenic stressor on sleep-wake activity in rats. Front. Neurol. 4:15 [Google Scholar]
  114. Obal F Jr,, Alt J, Taishi P, Gardi J, Krueger JM. 2003. Sleep in mice with nonfunctional growth hormone-releasing hormone receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284:R131–39 [Google Scholar]
  115. Obal F Jr,, Krueger JM. 2003. Biochemical regulation of non-rapid-eye-movement sleep. Front. Biosci. 8:d520–50 [Google Scholar]
  116. O'Donnell D, Ahmad S, Wahlestedt C, Walker P. 1999. Expression of the novel galanin receptor subtype GALR2 in the adult rat CNS: distinct distribution from GALR1. J. Comp. Neurol. 409:469–81 [Google Scholar]
  117. Oishi Y, Williams RH, Agostinelli L, Arrigoni E, Fuller PM. et al. 2013. Role of the medial prefrontal cortex in cataplexy. J. Neurosci. 33:9743–51 [Google Scholar]
  118. Otto C, Martin M, Wolfer DP, Lipp HP, Maldonado R, Schütz G. 2001. Altered emotional behavior in PACAP-type-I-receptor-deficient mice. Brain Res. Mol. Brain Res. 92:78–84 [Google Scholar]
  119. Patterson CM, Leshan RL, Jones JC, Myers MGJ. 2011. Molecular mapping of mouse brain regions innervated by leptin receptor-expressing cells. Brain Res. 1378:18–28 [Google Scholar]
  120. Paut-Pagano L, Roky R, Valatx JL, Kitahama K, Jouvet M. 1993. Anatomical distribution of prolactin-like immunoreactivity in the rat brain. Neuroendocrinology 58:682–95 [Google Scholar]
  121. Peterfi Z, McGinty D, Sarai E, Szymusiak R. 2010. Growth hormone-releasing hormone activates sleep regulatory neurons of the rat preoptic hypothalamus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298:R147–56 [Google Scholar]
  122. Peterfi Z, Obal F Jr, Taishi P, Gardi J, Kacsoh B. et al. 2006. Sleep in spontaneous dwarf rats. Brain Res. 1108:133–46 [Google Scholar]
  123. Pieribone VA, Xu ZQ, Zhang X, Grillner S, Bartfai T, Hökfelt T. 1995. Galanin induces a hyperpolarization of norepinephrine-containing locus coeruleus neurons in the brainstem slice. Neuroscience 64:861–74 [Google Scholar]
  124. Prober DA, Rihel J, Onah AA, Sung RJ, Schier AF. 2006. Hypocretin/orexin overexpression induces an insomnia-like phenotype in zebrafish. J. Neurosci. 26:13400–10 [Google Scholar]
  125. Rihel J, Prober DA, Arvanites A, Lam K, Zimmerman S. et al. 2010. Zebrafish behavioral profiling links drugs to biological targets and rest/wake regulation. Science 327:348–51 [Google Scholar]
  126. Rihel J, Schier AF. 2013. Sites of action of sleep and wake drugs: insights from model organisms. Curr. Opin. Neurobiol. 23:831–40 [Google Scholar]
  127. Rios M, Fan G, Fekete C, Kelly J, Bates B. et al. 2001. Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity. Mol. Endocrinol. 15:1748–57 [Google Scholar]
  128. Riou F, Cespuglio R, Jouvet M. 1982. Endogenous peptides and sleep in the rat: III. The hypnogenic properties of vasoactive intestinal polypeptide. Neuropeptides 2:265–77 [Google Scholar]
  129. Rizzi A, Molinari S, Marti M, Marzola G, Calo' G. 2011. Nociceptin/orphanin FQ receptor knockout rats: in vitro and in vivo studies. Neuropharmacology 60:572–79 [Google Scholar]
  130. Romanowski CP, Fenzl T, Flachskamm C, Wurst W, Holsboer F. et al. 2010. Central deficiency of corticotropin-releasing hormone receptor type 1 (CRH-R1) abolishes effects of CRH on NREM but not on REM sleep in mice. Sleep 33:427–36 [Google Scholar]
  131. Sakurai T. 2007. The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat. Rev. Neurosci. 8:171–81 [Google Scholar]
  132. Sakurai T, Mieda M. 2011. Connectomics of orexin-producing neurons: interface of systems of emotion, energy homeostasis and arousal. Trends Pharmacol. Sci. 32:451–62 [Google Scholar]
  133. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. 2010. Sleep state switching. Neuron 68:1023–42 [Google Scholar]
  134. Saper CB, Lu J, Chou TC, Gooley J. 2005. The hypothalamic integrator for circadian rhythms. Trends Neurosci. 28:152–57 [Google Scholar]
  135. Sauvage M, Steckler T. 2001. Detection of corticotropin-releasing hormone receptor 1 immunoreactivity in cholinergic, dopaminergic and noradrenergic neurons of the murine basal forebrain and brainstem nuclei—potential implication for arousal and attention. Neuroscience 104:643–52 [Google Scholar]
  136. Schier AF. 2013. Should I stay or should I go: neuromodulators of behavioral states. Cell 154:955–56 [Google Scholar]
  137. Schöne C, Burdakov D. 2012. Glutamate and GABA as rapid effectors of hypothalamic “peptidergic” neurons. Front. Behav. Neurosci. 6:81 [Google Scholar]
  138. Scott MM, Lachey JL, Sternson SM, Lee CE, Elias CF. et al. 2009. Leptin targets in the mouse brain. J. Comp. Neurol. 514:518–32 [Google Scholar]
  139. Sehgal A, Mignot E. 2011. Genetics of sleep and sleep disorders. Cell 146:194–207 [Google Scholar]
  140. Sei M, Sei H, Shima K. 1999. Spontaneous activity, sleep, and body temperature in rats lacking the CCK-A receptor. Physiol. Behav. 68:25–29 [Google Scholar]
  141. Seutin V, Verbanck P, Massotte L, Dresse A. 1989. Galanin decreases the activity of locus coeruleus neurons in vitro. Eur. J. Pharmacol. 164:373–76 [Google Scholar]
  142. Shaw PJ, Cirelli C, Greenspan RJ, Tononi G. 2000. Correlates of sleep and waking in Drosophila melanogaster. Science 287:1834–37 [Google Scholar]
  143. Shemyakin A, Kapás L. 2001. L-364,718, a cholecystokinin-A receptor antagonist, suppresses feeding-induced sleep in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280:R1420–26 [Google Scholar]
  144. Sherin JE, Elmquist JK, Torrealba F, Saper CB. 1998. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J. Neurosci. 18:4705–21 [Google Scholar]
  145. Siaud P, Manzoni O, Balmefrezol M, Barbanel G, Assenmacher I, Alonso G. 1989. The organization of prolactin-like-immunoreactive neurons in the rat central nervous system. Light- and electron-microscopic immunocytochemical studies. Cell Tissue Res. 255:107–15 [Google Scholar]
  146. Siegel JM. 2005. Clues to the functions of mammalian sleep. Nature 437:1264–71 [Google Scholar]
  147. Siegel JM. 2009. Sleep viewed as a state of adaptive inactivity. Nat. Rev. Neurosci. 10:747–53 [Google Scholar]
  148. Siegel JM. 2011. Sleep in animals: a state of adaptive inactivity. See Kryger et al. 2011 126–38
  149. Signore AP, Zhang F, Weng Z, Gao Y, Chen J. 2008. Leptin neuroprotection in the CNS: mechanisms and therapeutic potentials. J. Neurochem. 106:1977–90 [Google Scholar]
  150. Sinton CM, Fitch TE, Gershenfeld HK. 1999. The effects of leptin on REM sleep and slow wave delta in rats are reversed by food deprivation. J. Sleep Res. 8:197–203 [Google Scholar]
  151. Smith PM, Ferguson AV. 2008. Neurophysiology of hunger and satiety. Dev. Disabil. Res. Rev. 14:96–104 [Google Scholar]
  152. Snodgrass-Belt P, Gilbert JL, Davis FC. 2005. Central administration of transforming growth factor-alpha and neuregulin-1 suppress active behaviors and cause weight loss in hamsters. Brain Res. 1038:171–82 [Google Scholar]
  153. Steiger A. 2007. Neurochemical regulation of sleep. J. Psychiatr. Res. 41:537–52 [Google Scholar]
  154. Sternson SM. 2013. Hypothalamic survival circuits: blueprints for purposive behaviors. Neuron 77:810–24 [Google Scholar]
  155. Szentirmai E. 2012. Central but not systemic administration of ghrelin induces wakefulness in mice. PLoS ONE 7:e41172 [Google Scholar]
  156. Szentirmai E, Kapás L, Sun Y, Smith RG, Krueger JM. 2007. Spontaneous sleep and homeostatic sleep regulation in ghrelin knockout mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293:R510–17 [Google Scholar]
  157. Szentirmai E, Krueger JM. 2006. Obestatin alters sleep in rats. Neurosci. Lett. 404:222–26 [Google Scholar]
  158. Tafti M. 2007. Quantitative genetics of sleep in inbred mice. Dialogues Clin. Neurosci. 9:273–78 [Google Scholar]
  159. Tobler I. 2011. Phylogeny of sleep regulation. See Kryger et al. 2011 76–91
  160. Tononi G, Cirelli C. 2012. Time to be SHY? Some comments on sleep and synaptic homeostasis. Neural Plast. 2012:415250 [Google Scholar]
  161. Torterolo P, Lagos P, Monti JM. 2011. Melanin-concentrating hormone: a new sleep factor?. Front. Neurol. 2:14 [Google Scholar]
  162. Tsujino N, Sakurai T. 2013. Role of orexin in modulating arousal, feeding, and motivation. Front. Behav. Neurosci. 7:28 [Google Scholar]
  163. Tsujino N, Yamanaka A, Ichiki K, Muraki Y, Kilduff TS. et al. 2005. Cholecystokinin activates orexin/hypocretin neurons through the cholecystokinin A receptor. J. Neurosci. 25:7459–69 [Google Scholar]
  164. Urade Y, Hayaishi O. 2011. Prostaglandin D2 and sleep/wake regulation. Sleep Med. Rev. 15:411–18 [Google Scholar]
  165. van den Pol AN. 2012. Neuropeptide transmission in brain circuits. Neuron 76:98–115 [Google Scholar]
  166. Varela L, Horvath TL. 2012. Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep. 13:1079–86 [Google Scholar]
  167. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D. et al. 2009. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol. Rev. 61:283–357 [Google Scholar]
  168. Venner A, Karnani MM, Gonzalez JA, Jensen LT, Fugger L, Burdakov D. 2011. Orexin neurons as conditional glucosensors: paradoxical regulation of sugar sensing by intracellular fuels. J. Physiol. 589:5701–8 [Google Scholar]
  169. Wang Q, Shin EJ, Nguyen XK, Li Q, Bach JH. et al. 2012. Endogenous dynorphin protects against neurotoxin-elicited nigrostriatal dopaminergic neuron damage and motor deficits in mice. J. Neuroinflamm. 9:124 [Google Scholar]
  170. Welsh DK, Takahashi JS, Kay SA. 2010. Suprachiasmatic nucleus: cell autonomy and network properties. Annu. Rev. Physiol. 72:551–77 [Google Scholar]
  171. Williams KS, Behn CG. 2011. Dynamic interactions between orexin and dynorphin may delay onset of functional orexin effects: a modeling study. J. Biol. Rhythms 26:171–81 [Google Scholar]
  172. Willie JT, Sinton CM, Maratos-Flier E, Yanagisawa M. 2008. Abnormal response of melanin-concentrating hormone deficient mice to fasting: hyperactivity and rapid eye movement sleep suppression. Neuroscience 156:819–29 [Google Scholar]
  173. Winsky-Sommerer R, Yamanaka A, Diano S, Borok E, Roberts AJ. et al. 2004. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J. Neurosci. 24:11439–48 [Google Scholar]
  174. Woods IG, Schoppik D, Shi V, Zimmerman S, Coleman HA. et al. 2014. Neuropeptidergic signaling partitions arousal behaviors in zebrafish. J. Neurosci. 34:3142–60 [Google Scholar]
  175. Xie X, Wisor JP, Hara J, Crowder TL, LeWinter R. et al. 2008. Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. J. Clin. Invest. 118:2471–81 [Google Scholar]
  176. Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N. et al. 2003. Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron 38:701–13 [Google Scholar]
  177. Zager A, Andersen ML, Ruiz FS, Antunes IB, Tufik S. 2007. Effects of acute and chronic sleep loss on immune modulation of rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293:R504–9 [Google Scholar]
  178. Zeitzer JM. 2013. Control of sleep and wakefulness in health and disease. Prog. Mol. Biol. Transl. Sci. 119:137–54 [Google Scholar]
  179. Zhang G, Wang L, Liu H, Zhang J. 2004. Substance P promotes sleep in the ventrolateral preoptic area of rats. Brain Res. 1028:225–32 [Google Scholar]
  180. Zielinski MR, Krueger JM. 2011. Sleep and innate immunity. Front. Biosci. 3:632–42 [Google Scholar]
  181. Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. 2006. Expression of ghrelin receptor mRNA in the rat and the mouse brain. J. Comp. Neurol. 494:528–48 [Google Scholar]

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error