1932

Abstract

The cochlear implant (CI) is considered the most successful neuroprosthesis as it enables speech comprehension in the majority of the million otherwise deaf patients. In hearing by electrical stimulation of the auditory nerve, the broad spread of current from each electrode acts as a bottleneck that limits the transfer of sound frequency information. Hence, there remains a major unmet medical need for improving the quality of hearing with CIs. Recently, optogenetic stimulation of the cochlea has been suggested as an alternative approach for hearing restoration. Cochlear optogenetics promises to transfer more sound frequency information, hence improving hearing, as light can conveniently be confined in space to activate the auditory nerve within smaller tonotopic ranges. In this review, we discuss the latest experimental and technological developments of optogenetic hearing restoration and outline remaining challenges en route to clinical translation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070623-103247
2024-08-08
2025-04-22
Loading full text...

Full text loading...

/deliver/fulltext/neuro/47/1/annurev-neuro-070623-103247.html?itemId=/content/journals/10.1146/annurev-neuro-070623-103247&mimeType=html&fmt=ahah

Literature Cited

  1. Ajay EA, Trang EP, Thompson AC, Wise AK, Grayden DB, et al. 2023.. Auditory nerve responses to combined optogenetic and electrical stimulation in chronically deaf mice. . J. Neural Eng. 20:(2):026035
    [Crossref] [Google Scholar]
  2. Akil O, Dyka F, Calvet C, Emptoz A, Lahlou G, et al. 2019.. Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. . PNAS 116:(10):4496501
    [Crossref] [Google Scholar]
  3. Al-Moyed H, Cepeda AP, Jung S, Moser T, Kügler S, Reisinger E. 2019.. A dual-AAV approach restores fast exocytosis and partially rescues auditory function in deaf otoferlin knock-out mice. . EMBO Mol. Med. 11:(1):e9396
    [Crossref] [Google Scholar]
  4. Arrenberg AB, Stainier DYR, Baier H, Huisken J. 2010.. Optogenetic control of cardiac function. . Science 330:(6006):97174
    [Crossref] [Google Scholar]
  5. Ashmore J. 2008.. Cochlear outer hair cell motility. . Physiol. Rev. 88:(1):173210
    [Crossref] [Google Scholar]
  6. Bali B, Lopez de la Morena D, Mittring A, Mager T, Rankovic V, et al. 2021.. Utility of red-light ultrafast optogenetic stimulation of the auditory pathway. . EMBO Mol. Med. 13:(6):e13391
    [Crossref] [Google Scholar]
  7. Bartel MA, Weinstein JR, Schaffer DV. 2012.. Directed evolution of novel adeno-associated viruses for therapeutic gene delivery. . Gene Ther. 19:(6):694700
    [Crossref] [Google Scholar]
  8. Berndt A, Schoenenberger P, Mattis J, Tye KM, Deisseroth K, et al. 2011.. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. . PNAS 108:(18):7595600
    [Crossref] [Google Scholar]
  9. Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K. 2009.. Bi-stable neural state switches. . Nat. Neurosci. 12::22934
    [Crossref] [Google Scholar]
  10. Bi A, Cui J, Ma Y-P, Olshevskaya E, Pu M, et al. 2006.. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. . Neuron 50:(1):2333
    [Crossref] [Google Scholar]
  11. Bierer JA, Bierer SM, Middlebrooks JC. 2010.. Partial tripolar cochlear implant stimulation: spread of excitation and forward masking in the inferior colliculus. . Hear. Res. 270:(1–2):13442
    [Crossref] [Google Scholar]
  12. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. 2005.. Millisecond-timescale, genetically targeted optical control of neural activity. . Nat. Neurosci. 8:(9):126368
    [Crossref] [Google Scholar]
  13. Bruegmann T, Malan D, Hesse M, Beiert T, Fuegemann CJ, et al. 2010.. Optogenetic control of heart muscle in vitro and in vivo. . Nat. Methods 7:(11):897900
    [Crossref] [Google Scholar]
  14. Bruegmann T, van Bremen T, Vogt CC, Send T, Fleischmann BK, Sasse P. 2015.. Optogenetic control of contractile function in skeletal muscle. . Nat. Commun. 6::7153
    [Crossref] [Google Scholar]
  15. Cords SM, Reuter G, Issing PR, Sommer A, Kuzma J, Lenarz T. 2000.. A silastic positioner for a modiolus-hugging position of intracochlear electrodes: electrophysiologic effects. . Am. J. Otol. 21:(2):21217
    [Crossref] [Google Scholar]
  16. Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, et al. 2013.. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. . Sci. Transl. Med. 5:(189):189ra76
    [Crossref] [Google Scholar]
  17. Dieter A, Duque-Afonso CJ, Rankovic V, Jeschke M, Moser T. 2019.. Near physiological spectral selectivity of cochlear optogenetics. . Nat. Commun. 10:(1):1962
    [Crossref] [Google Scholar]
  18. Dieter A, Klein E, Keppeler D, Jablonski L, Harczos T, et al. 2020.. μLED-based optical cochlear implants for spectrally selective activation of the auditory nerve. . EMBO Mol. Med. 12:(8):e12387
    [Crossref] [Google Scholar]
  19. Duarte MJ, Kanumuri VV, Landegger LD, Tarabichi O, Sinha S, et al. 2018.. Ancestral adeno-associated virus vector delivery of opsins to spiral ganglion neurons: implications for optogenetic cochlear implants. . Mol. Ther. 26:(8):193139
    [Crossref] [Google Scholar]
  20. Emiliani V, Entcheva E, Hedrich R, Hegemann P, Konrad KR, et al. 2022.. Optogenetics for light control of biological systems. . Nat. Rev. Methods Primers 2:(1):55
    [Crossref] [Google Scholar]
  21. Eriksson D, Schneider A, Thirumalai A, Alyahyay M, de la Crompe B, et al. 2022.. Multichannel optogenetics combined with laminar recordings for ultra-controlled neuronal interrogation. . Nat. Commun. 13:(1):985
    [Crossref] [Google Scholar]
  22. Fastl H, Zwicker E. 2007.. Psychoacoustics: Facts and Models. New York:: Springer-Verlag
    [Google Scholar]
  23. Feldbauer K, Zimmermann D, Pintschovius V, Spitz J, Bamann C, Bamberg E. 2009.. Channelrhodopsin-2 is a leaky proton pump. . PNAS 106::1231722
    [Crossref] [Google Scholar]
  24. Fettiplace R. 2017.. Hair cell transduction, tuning, and synaptic transmission in the mammalian cochlea. . Compr. Physiol. 7:(4):1197227
    [Crossref] [Google Scholar]
  25. Friesen LM, Shannon RV, Cruz RJ. 2005.. Effects of stimulation rate on speech recognition with cochlear implants. . Audiol. Neurootol. 10:(3):16984
    [Crossref] [Google Scholar]
  26. Gaub BM, Berry MH, Holt AE, Isacoff EY, Flannery JG. 2015.. Optogenetic vision restoration using rhodopsin for enhanced sensitivity. . Mol. Ther. 23::156271
    [Crossref] [Google Scholar]
  27. Gauvain G, Akolkar H, Chaffiol A, Arcizet F, Khoei MA, et al. 2021.. Optogenetic therapy: high spatiotemporal resolution and pattern discrimination compatible with vision restoration in non-human primates. . Commun. Biol. 4:(1):125
    [Crossref] [Google Scholar]
  28. Gossler C, Bierbrauer C, Moser R, Kunzer M, Holc K, et al. 2014.. GaN-based micro-LED arrays on flexible substrates for optical cochlear implants. . J. Phys. Appl. Phys. 47:(20):205401
    [Crossref] [Google Scholar]
  29. Gradinaru V, Zhang F, Ramakrishnan C, Mattis J, Prakash R, et al. 2010.. Molecular and cellular approaches for diversifying and extending optogenetics. . Cell 141::15465
    [Crossref] [Google Scholar]
  30. Gunaydin LA, Yizhar O, Berndt A, Sohal VS, Deisseroth K, Hegemann P. 2010.. Ultrafast optogenetic control. . Nat. Neurosci. 13:(3):38792
    [Crossref] [Google Scholar]
  31. Guo W, Hight AE, Chen JX, Klapoetke NC, Hancock KE, et al. 2015.. Hearing the light: neural and perceptual encoding of optogenetic stimulation in the central auditory pathway. . Sci. Rep. 5:(1):10319
    [Crossref] [Google Scholar]
  32. Hart WL, Richardson RT, Kameneva T, Thompson AC, Wise AK, et al. 2020.. Combined optogenetic and electrical stimulation of auditory neurons increases effective stimulation frequency—an in vitro study. . J. Neural Eng. 17:(1):016069
    [Crossref] [Google Scholar]
  33. Helke C, Reinhardt M, Arnold M, Schwenzer F, Haase M, et al. 2023.. On the fabrication and characterization of polymer-based waveguide probes for use in future optical cochlear implants. . Materials 16:(1):106
    [Crossref] [Google Scholar]
  34. Herman AM, Huang L, Murphey DK, Garcia I, Arenkiel BR. 2014.. Cell type-specific and time-dependent light exposure contribute to silencing in neurons expressing Channelrhodopsin-2. . eLife 3::e01481
    [Crossref] [Google Scholar]
  35. Hernandez VH, Gehrt A, Reuter K, Jing Z, Jeschke M, et al. 2014.. Optogenetic stimulation of the auditory pathway. . J. Clin. Investig. 124:(3):111429
    [Crossref] [Google Scholar]
  36. Hight AE, Kozin ED, Darrow K, Lehmann A, Boyden E, Brown MC, Lee DJ. 2015.. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant. . Hear. Res. 322::23541
    [Crossref] [Google Scholar]
  37. Huet AT, Dombrowski T, Rankovic V, Thirumalai A, Moser T. 2021.. Developing fast, red-light optogenetic stimulation of spiral ganglion neurons for future optical cochlear implants. . Front. Mol. Neurosci. 14::635897
    [Crossref] [Google Scholar]
  38. Hunniford V, Kühler R, Wolf B, Keppeler D, Strenzke N, Moser T. 2023.. Patient perspectives on the need for improved hearing rehabilitation: a qualitative survey study of German cochlear implant users. . Front. Neurosci. 17::1105562
    [Crossref] [Google Scholar]
  39. Izzo AD, Richter C-P, Jansen ED, Walsh JT Jr. 2006.. Laser stimulation of the auditory nerve. . Lasers Surg. Med. 38:(8):74553
    [Crossref] [Google Scholar]
  40. Jablonski L, Harczos T, Wolf B, Hoch G, Dieter A, et al. 2020.. Hearing restoration by a low-weight power-efficient multichannel optogenetic cochlear implant system. . bioRxiv 2020.05.25.114868. https://doi.org/10.1101/2020.05.25.114868
  41. Jeschke M, Moser T. 2015.. Considering optogenetic stimulation for cochlear implants. . Hear. Res. 322::22434
    [Crossref] [Google Scholar]
  42. Jüttner J, Szabo A, Gross-Scherf B, Morikawa RK, Rompani SB, et al. 2019.. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. . Nat. Neurosci. 22:(8):134556
    [Crossref] [Google Scholar]
  43. Kallweit N, Tomanek M, Heinemann D, Krüger A, Heister A. 2016.. Macrobending losses of glass fibers for optical cochlear stimulation. . In Proceedings of the International Conference on Applied Optics and Photonics. Ilmenau, Ger:.: DGaO
    [Google Scholar]
  44. Keppeler D, Kampshoff CA, Thirumalai A, Duque-Afonso CJ, Schaeper JJ, et al. 2021.. Multiscale photonic imaging of the native and implanted cochlea. . PNAS 118:(18):e2014472118
    [Crossref] [Google Scholar]
  45. Keppeler D, Merino RM, Lopez de la Morena D, Bali B, Huet AT, et al. 2018.. Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized Chronos. . EMBO J. 37:(24):e99649
    [Crossref] [Google Scholar]
  46. Keppeler D, Schwaerzle M, Harczos T, Jablonski L, Dieter A, et al. 2020.. Multichannel optogenetic stimulation of the auditory pathway using microfabricated LED cochlear implants in rodents. . Sci. Transl. Med. 12:(553):eabb8086
    [Crossref] [Google Scholar]
  47. Khurana L, Keppeler D, Jablonski L, Moser T. 2022.. Model-based prediction of optogenetic sound encoding in the human cochlea by future optical cochlear implants. . Comput. Struct. Biotechnol. J. 20::362129
    [Crossref] [Google Scholar]
  48. Kim CK, Adhikari A, Deisseroth K. 2017.. Integration of optogenetics with complementary methodologies in systems neuroscience. . Nat. Rev. Neurosci. 18:(4):22235
    [Crossref] [Google Scholar]
  49. Kim WS, Hong S, Park SI. 2021.. Robust, wireless gastric optogenetic implants for the study of peripheral pathways and applications in obesity. . Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2021::574246
    [Google Scholar]
  50. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, et al. 2014.. Independent optical excitation of distinct neural populations. . Nat. Methods 11:(3):33846
    [Crossref] [Google Scholar]
  51. Klapper SD, Swiersy A, Bamberg E, Busskamp V. 2016.. Biophysical properties of optogenetic tools and their application for vision restoration approaches. . Front. Syst. Neurosci. 10::74
    [Crossref] [Google Scholar]
  52. Klein E, Gossler C, Paul O, Ruther P. 2018.. High-density μLED-based optical cochlear implant with improved thermomechanical behavior. . Front. Neurosci. 12::659
    [Crossref] [Google Scholar]
  53. Kleinlogel S, Feldbauer K, Dempski RE, Fotis H, Wood PG, et al. 2011.. Ultra light-sensitive and fast neuronal activation with the Ca2+-permeable channelrhodopsin CatCh. . Nat. Neurosci. 14::51318
    [Crossref] [Google Scholar]
  54. Kleinlogel S, Vogl C, Jeschke M, Neef J, Moser T. 2020.. Emerging approaches for restoration of hearing and vision. . Physiol. Rev. 100:(4):1467525
    [Google Scholar]
  55. Kral A, Hartmann R, Mortazavi D, Klinke R. 1998.. Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents. . Hear. Res. 121:(1–2):1128
    [Crossref] [Google Scholar]
  56. Lagali PS, Balya D, Awatramani GB, Münch TA, Kim DS, et al. 2008.. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. . Nat. Neurosci. 11:(6):66775
    [Crossref] [Google Scholar]
  57. Lenarz T. 2017.. Cochlear implant—state of the art. . Laryngorhinootologie 96:(S01):S12351
    [Google Scholar]
  58. Liberman MC. 1978.. Auditory-nerve response from cats raised in a low-noise chamber. . J. Acoust. Soc. Am. 63:(2):44255
    [Crossref] [Google Scholar]
  59. Lin B, Koizumi A, Tanaka N, Panda S, Masland RH. 2008.. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. . PNAS 105::1600914
    [Crossref] [Google Scholar]
  60. Lv J, Wang H, Cheng X, Chen Y, Wang D, . 2024.. AAV1-hOTOF gene therapy for autosomal recessive deafness 9: a single-arm trial. . Lancet 403:(10441):231725
    [Crossref] [Google Scholar]
  61. Mager T, Lopez de la Morena D, Senn V, Schlotte J, D'Errico A, et al. 2018.. High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. . Nat. Commun. 9:(1):1750
    [Crossref] [Google Scholar]
  62. Meng X, Murali S, Cheng Y-F, Lu J, Hight AE, et al. 2019.. Increasing the expression level of ChR2 enhances the optogenetic excitability of cochlear neurons. . J. Neurophysiol. 122:(5):196274
    [Crossref] [Google Scholar]
  63. Michael M, Wolf BJ, Klinge-Strahl A, Jeschke M, Moser T, Dieter A. 2023.. Devising a framework of optogenetic coding in the auditory pathway: Insights from auditory midbrain recordings. . Brain Stimul. 16:(5):1486500
    [Crossref] [Google Scholar]
  64. Middlebrooks JC, Snyder RL. 2007.. Auditory prosthesis with a penetrating nerve array. . J. Assoc. Res. Otolaryngol. 8:(2):25879
    [Crossref] [Google Scholar]
  65. Mittring A, Moser T, Huet AT. 2023.. Graded optogenetic activation of the auditory pathway for hearing restoration. . Brain Stimul. 16:(2):46683
    [Crossref] [Google Scholar]
  66. Moser T. 2020.. Presynaptic physiology of cochlear inner hair cells. . In The Senses: A Comprehensive Reference, ed. B Fritzsch , pp. 44167. Berlin:: Elsevier
    [Google Scholar]
  67. Moser T, Dieter A. 2022.. Towards optogenetic approaches for hearing restoration. . Biochem. Biophys. Res. Commun. 527:(2):33742
    [Crossref] [Google Scholar]
  68. Moser T, Grabner CP, Schmitz F. 2019.. Sensory processing at ribbon synapses in the retina and the cochlea. . Physiol. Rev. 100:(1):10344
    [Crossref] [Google Scholar]
  69. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, et al. 2002.. Channelrhodopsin-1: a light-gated proton channel in green algae. . Science 296:(5577):239598
    [Crossref] [Google Scholar]
  70. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, et al. 2003.. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. . PNAS 100:(24):1394045
    [Crossref] [Google Scholar]
  71. Ohn T-L, Rutherford MA, Jing Z, Jung S, Duque-Afonso CJ, et al. 2016.. Hair cells use active zones with different voltage dependence of Ca2+ influx to decompose sounds into complementary neural codes. . PNAS 113:(32):E471625
    [Crossref] [Google Scholar]
  72. Özçete ÖD, Moser T. 2021.. A sensory cell diversifies its output by varying Ca2+ influx-release coupling among active zones. . EMBO J. 40:(5):e106010
    [Crossref] [Google Scholar]
  73. Pinyon JL, Tadros SF, Froud KE, Wong ACY, Tompson IT, et al. 2014.. Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear. . Sci. Transl. Med. 6:(233):233ra54
    [Crossref] [Google Scholar]
  74. Qi J, Tan F, Zhang L, Lu L, Zhang S, . 2024.. AAV-mediated gene therapy restores hearing in patients with DFNB9 deafness. . Adv. Sci. 11:(11):e2306788
    [Crossref] [Google Scholar]
  75. Rankovic V, Vogl C, Dörje NM, Bahader I, Duque-Afonso CJ, et al. 2021.. Overloaded adeno-associated virus as a novel gene therapeutic tool for otoferlin-related deafness. . Front. Mol. Neurosci. 13::600051
    [Crossref] [Google Scholar]
  76. Reddy JW, Lassiter M, Chamanzar M. 2020.. Parylene photonics: a flexible, broadband optical waveguide platform with integrated micromirrors for biointerfaces. . Microsyst. Nanoeng. 6:(1):85
    [Crossref] [Google Scholar]
  77. Richardson RT, Thompson AC, Wise AK, Ajay EA, Gunewardene N, et al. 2021.. Viral-mediated transduction of auditory neurons with opsins for optical and hybrid activation. . Sci. Rep. 11:(1):11229
    [Crossref] [Google Scholar]
  78. Rubinstein JT. 2004.. How cochlear implants encode speech. . Curr. Opin. Otolaryngol. Head Neck Surg. 12:(5):44448
    [Crossref] [Google Scholar]
  79. Rutherford MA, von Gersdorff H, Goutman JD. 2021.. Encoding sound in the cochlea: from receptor potential to afferent discharge. . J. Physiol. 599:(10):252757
    [Crossref] [Google Scholar]
  80. Sachs MB, Abbas PJ. 1974.. Rate versus level functions for auditory-nerve fibers in cats: tone-burst stimuli. . J. Acoust. Soc. Am. 56:(6):183547
    [Crossref] [Google Scholar]
  81. Sahel J-A, Boulanger-Scemama E, Pagot C, Arleo A, Galluppi F, et al. 2021.. Partial recovery of visual function in a blind patient after optogenetic therapy. . Nat. Med. 27:(7):122329
    [Crossref] [Google Scholar]
  82. Shannon RV, Cruz RJ, Galvin JJ. 2011.. Effect of stimulation rate on cochlear implant users’ phoneme, word and sentence recognition in quiet and in noise. . Audiol. Neurotol. 16:(2):11323
    [Crossref] [Google Scholar]
  83. Shapiro MG, Homma K, Villarreal S, Richter C-P, Bezanilla F. 2012.. Infrared light excites cells by changing their electrical capacitance. . Nat. Commun. 3::736
    [Crossref] [Google Scholar]
  84. Shimano T, Fyk-Kolodziej B, Mirza N, Asako M, Tomoda K, et al. 2013.. Assessment of the AAV-mediated expression of channelrhodopsin-2 and halorhodopsin in brainstem neurons mediating auditory signaling. . Brain Res. 1511::13852
    [Crossref] [Google Scholar]
  85. Shrestha BR, Chia C, Wu L, Kujawa SG, Liberman MC, Goodrich LV. 2018.. Sensory neuron diversity in the inner ear is shaped by activity. . Cell 174:(5):122946.e17
    [Crossref] [Google Scholar]
  86. Thompson AC, Wise AK, Hart WL, Needham K, Fallon JB, et al. 2020.. Hybrid optogenetic and electrical stimulation for greater spatial resolution and temporal fidelity of cochlear activation. . J. Neural Eng. 17:(5):056046
    [Crossref] [Google Scholar]
  87. Vedam-Mai V, Deisseroth K, Giordano J, Lazaro-Munoz G, Chiong W, et al. 2021.. Proceedings of the Eighth Annual Deep Brain Stimulation Think Tank: advances in optogenetics, ethical issues affecting DBS research, neuromodulatory approaches for depression, adaptive neurostimulation, and emerging DBS technologies. . Front. Hum. Neurosci. 15::644593
    [Crossref] [Google Scholar]
  88. Vogt M, Schulz B, Wagdi A, Lebert J, van Belle GJ, et al. 2021.. Direct optogenetic stimulation of smooth muscle cells to control gastric contractility. . Theranostics 11:(11):556984
    [Crossref] [Google Scholar]
  89. Walsh JJ, Christoffel DJ, Heifets BD, Ben-Dor GA, Selimbeyoglu A, et al. 2018.. 5-HT release in nucleus accumbens rescues social deficits in mouse autism model. . Nature 560:(7720):58994
    [Crossref] [Google Scholar]
  90. WHO (World Health Organ.). 2021.. Deafness and hearing loss. Fact Sheet, WHO, Geneva, Switz:. https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss
    [Google Scholar]
  91. Wilson BS. 2015.. Getting a decent (but sparse) signal to the brain for users of cochlear implants. . Hear. Res. 322::2438
    [Crossref] [Google Scholar]
  92. Winter IM, Robertson D, Yates GK. 1990.. Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres. . Hear. Res. 45:(3):191202
    [Crossref] [Google Scholar]
  93. Wolf BJ, Kusch K, Hunniford V, Vona B, Kühler R, et al. 2022.. Is there an unmet medical need for improved hearing restoration?. EMBO Mol. Med. 14:(8):e15798
    [Crossref] [Google Scholar]
  94. Wrobel C, Dieter A, Huet A, Keppeler D, Duque-Afonso CJ, et al. 2018.. Optogenetic stimulation of cochlear neurons activates the auditory pathway and restores auditory-driven behavior in deaf adult gerbils. . Sci. Transl. Med. 10:(449):eaao0540
    [Crossref] [Google Scholar]
  95. Wykes RC, Heeroma JH, Mantoan L, Zheng K, MacDonald DC, et al. 2012.. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. . Sci. Transl. Med. 4:(161):161ra152
    [Crossref] [Google Scholar]
  96. Yates GK, Winter IM, Robertson D. 1990.. Basilar membrane nonlinearity determines auditory nerve rate-intensity functions and cochlear dynamic range. . Hear. Res. 45:(3):20319
    [Crossref] [Google Scholar]
  97. Zemelman BV, Lee GA, Ng M, Miesenbock G. 2002.. Selective photostimulation of genetically chARGed neurons. . Neuron 33::1522
    [Crossref] [Google Scholar]
  98. Zeng F-G. 2004.. Trends in cochlear implants. . Trends Amplif. 8:(1):134
    [Crossref] [Google Scholar]
  99. Zeng F-G. 2017.. Challenges in improving cochlear implant performance and accessibility. . IEEE Trans. Biomed. Eng. 64:(8):166264
    [Crossref] [Google Scholar]
  100. Zerche M, Wrobel C, Kusch K, Moser T, Mager T. 2023.. Channelrhodopsin fluorescent tag replacement for clinical translation of optogenetic hearing restoration. . Mol. Ther. Methods Clin. Dev. 29::20212
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-neuro-070623-103247
Loading
/content/journals/10.1146/annurev-neuro-070623-103247
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error