1932

Abstract

Brain tumors are the leading cause of cancer-related death in children, and medulloblastoma (MB) is the most common malignant pediatric brain tumor. Advances in surgery, radiation, and chemotherapy have improved the survival of MB patients. But despite these advances, 25–30% of patients still die from the disease, and survivors suffer severe long-term side effects from the aggressive therapies they receive. Although MB is often considered a single disease, molecular profiling has revealed a significant degree of heterogeneity, and there is a growing consensus that MB consists of multiple subgroups with distinct driver mutations, cells of origin, and prognosis. Here, we review recent progress in MB research, with a focus on the genes and pathways that drive tumorigenesis, the animal models that have been developed to study tumor biology, and the advances in conventional and targeted therapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070815-013838
2018-07-08
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/neuro/41/1/annurev-neuro-070815-013838.html?itemId=/content/journals/10.1146/annurev-neuro-070815-013838&mimeType=html&fmt=ahah

Literature Cited

  1. Ahronian LG, Lewis BC 2014. Using the RCAS-TVA system to model human cancer in mice. Cold Spring Harb. Protoc. 2014:1128–35
    [Google Scholar]
  2. Al-Wassia RK, Ghassal NM, Naga A, Awad NA, Bahadur YA, Constantinescu C 2015. Optimization of craniospinal irradiation for pediatric medulloblastoma using VMAT and IMRT. J. Pediatr. Hematol. Oncol. 37:e405–11
    [Google Scholar]
  3. Albright AL, Wisoff JH, Zeltzer PM, Boyett JM, Rorke LB, Stanley P 1996. Effects of medulloblastoma resections on outcome in children: a report from the Children's Cancer Group. Neurosurgery 38:265–71
    [Google Scholar]
  4. Allen CE, Laetsch TW, Mody R, Irwin MS, Lim MS et al. 2017. Target and agent prioritization for the Children's Oncology Group-National Cancer Institute Pediatric MATCH Trial. J. Natl. Cancer Inst. 109:djw274
    [Google Scholar]
  5. Altshuler C, Haley K, Dhall G, Vasquez L, Gardner SL et al. 2016. Decreased morbidity and mortality of autologous hematopoietic transplants for children with malignant central nervous system tumors: the ‘Head Start’ trials, 1991–2009. Bone Marrow Transplant 51:945–48
    [Google Scholar]
  6. Alvarez MJ, Shen Y, Giorgi FM, Lachmann A, Ding BB et al. 2016. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat. Genet. 48:838–47
    [Google Scholar]
  7. Alvarez-Breckenridge CA, Choi BD, Suryadevara CM, Chiocca EA 2015. Potentiating oncolytic viral therapy through an understanding of the initial immune responses to oncolytic viral infection. Curr. Opin. Virol. 13:25–32
    [Google Scholar]
  8. Andre N, Abed S, Orbach D, Alla CA, Padovani L et al. 2011. Pilot study of a pediatric metronomic 4-drug regimen. Oncotarget 2:960–65
    [Google Scholar]
  9. Bandopadhayay P, Bergthold G, Nguyen B, Schubert S, Gholamin S et al. 2014. BET bromodomain inhibition of MYC-amplified medulloblastoma. Clin. Cancer Res. 20:912–25
    [Google Scholar]
  10. Berman DM, Karhadkar SS, Hallahan AR, Pritchard JI, Eberhart CG et al. 2002. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297:1559–61
    [Google Scholar]
  11. Briscoe J, Thérond PP 2013. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14:416–29
    [Google Scholar]
  12. Brockmann M, Poon E, Berry T, Carstensen A, Deubzer HE et al. 2013. Small molecule inhibitors of Aurora-A induce proteasomal degradation of N-Myc in childhood neuroblastoma. Cancer Cell 24:75–89
    [Google Scholar]
  13. Brodin NP, Munck Af Rosenschöld P, Aznar MC, Kiil-Berthelsen A, Vogelius IR et al. 2011. Radiobiological risk estimates of adverse events and secondary cancer for proton and photon radiation therapy of pediatric medulloblastoma. Acta Oncol 50:806–16
    [Google Scholar]
  14. Browd SR, Kenney AM, Gottfried ON, Yoon JW, Walterhouse D et al. 2006. N-myc can substitute for insulin-like growth factor signaling in a mouse model of sonic hedgehog-induced medulloblastoma. Cancer Res 66:2666–72
    [Google Scholar]
  15. Brown MC, Gromeier M 2015. Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Curr. Opin. Virol. 13:81–85
    [Google Scholar]
  16. Brown MC, Holl EK, Boczkowski D, Dobrikova E, Mosaheb M et al. 2017. Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen-specific CTLs. Sci. Transl. Med. 9:eaan4220
    [Google Scholar]
  17. Buonamici S, Williams J, Morrissey M, Wang A, Guo R et al. 2010. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci. Transl. Med. 2:51ra70
    [Google Scholar]
  18. Câmara-Costa H, Resch A, Kieffer V, Lalande C, Poggi G et al. 2015. Neuropsychological outcome of children treated for standard risk medulloblastoma in the PNET4 European randomized controlled trial of hyperfractionated versus standard radiation therapy and maintenance chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 92:978–85
    [Google Scholar]
  19. Campbell M, Kiang AS, Kenna PF, Kerskens C, Blau C et al. 2008. RNAi-mediated reversible opening of the blood-brain barrier. J. Gene Med. 10:930–47
    [Google Scholar]
  20. Cavalli FMG, Remke M, Rampasek L, Peacock J, Shih DJH et al. 2017. Intertumoral heterogeneity within medulloblastoma subgroups. Cancer Cell 31:737–54.e6
    [Google Scholar]
  21. Cho YJ, Tsherniak A, Tamayo P, Santagata S, Ligon A et al. 2011. Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome. J. Clin. Oncol. 29:1424–30
    [Google Scholar]
  22. Choi LM, Rood B, Kamani N, La Fond D, Packer RJ et al. 2008. Feasibility of metronomic maintenance chemotherapy following high-dose chemotherapy for malignant central nervous system tumors. Pediatr. Blood Cancer 50:970–75
    [Google Scholar]
  23. Clifford SC, Lusher ME, Lindsey JC, Langdon JA, Gilbertson RJ et al. 2006. Wnt/Wingless pathway activation and chromosome 6 loss characterize a distinct molecular sub-group of medulloblastomas associated with a favorable prognosis. Cell Cycle 5:2666–70
    [Google Scholar]
  24. Cloughesy TF, Landolfi J, Hogan DJ, Bloomfield S, Carter B et al. 2016. Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci. Transl. Med. 8:341ra75
    [Google Scholar]
  25. Cohen KJ, Gibbs IC, Fisher PG, Hayashi RJ, Macy ME, Gore L 2013. A phase I trial of arsenic trioxide chemoradiotherapy for infiltrating astrocytomas of childhood. Neuro-Oncol 15:783–87
    [Google Scholar]
  26. Cook Sangar ML, Genovesi LA, Nakamoto MW, Davis MJ, Knoblaugh SE et al. 2017. Inhibition of CDK4/6 by palbociclib significantly extends survival in medulloblastoma patient-derived xenograft mouse models. Clin. Cancer Res. 23:5802–13
    [Google Scholar]
  27. Cosolo WC, Martinello P, Louis WJ, Christophidis N 1989. Blood-brain barrier disruption using mannitol: time course and electron microscopy studies. Am. J. Physiol. 256:R443–47
    [Google Scholar]
  28. Cox MC, Kusters JM, Gidding CE, Schieving JH, van Lindert EJ et al. 2015. Acute toxicity profile of craniospinal irradiation with intensity-modulated radiation therapy in children with medulloblastoma: a prospective analysis. Radiat. Oncol. 10:241
    [Google Scholar]
  29. Crawford JR, MacDonald TJ, Packer RJ 2007. Medulloblastoma in childhood: new biological advances. Lancet Neurol 6:1073–85
    [Google Scholar]
  30. Daniel VC, Marchionni L, Hierman JS, Rhodes JT, Devereux WL et al. 2009. A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro. Cancer Res 69:3364–73
    [Google Scholar]
  31. Debinski W, Tatter SB 2009. Convection-enhanced delivery for the treatment of brain tumors. Expert Rev. Neurother. 9:1519–27
    [Google Scholar]
  32. den Hollander J, Rimpi S, Doherty JR, Rudelius M, Buck A et al. 2010. Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood 116:1498–505
    [Google Scholar]
  33. Dhall G, Grodman H, Ji L, Sands S, Gardner S et al. 2008. Outcome of children less than three years old at diagnosis with non-metastatic medulloblastoma treated with chemotherapy on the “Head Start” I and II protocols. Pediatr. Blood Cancer 50:1169–75
    [Google Scholar]
  34. Diaz RJ, Golbourn B, Faria C, Picard D, Shih D et al. 2015. Mechanism of action and therapeutic efficacy of Aurora kinase B inhibition in MYC overexpressing medulloblastoma. Oncotarget 6:3359–74
    [Google Scholar]
  35. Dijkgraaf GJ, Alicke B, Weinmann L, Januario T, West K et al. 2011. Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance. Cancer Res 71:435–44
    [Google Scholar]
  36. Dorner L, Fritsch MJ, Stark AM, Mehdorn HM 2007. Posterior fossa tumors in children: How long does it take to establish the diagnosis. Childs Nerv. Syst. 23:887–90
    [Google Scholar]
  37. Doucette TA, Yang Y, Pedone C, Kim JY, Dubuc A et al. 2012. WIP1 enhances tumor formation in a Sonic hedgehog–dependent model of medulloblastoma. Neurosurgery 70:1003–10
    [Google Scholar]
  38. Drake AC, Chen Q, Chen J 2012. Engineering humanized mice for improved hematopoietic reconstitution. Cell Mol. Immunol. 9:215–24
    [Google Scholar]
  39. Duffner PK, Horowitz ME, Krischer JP, Friedman HS, Burger PC et al. 1993. Postoperative chemotherapy and delayed radiation in children less than three years of age with malignant brain tumors. N. Engl. J. Med. 328:1725–31
    [Google Scholar]
  40. Dunn-Pirio AM, Vlahovic G 2017. Immunotherapy approaches in the treatment of malignant brain tumors. Cancer 123:734–50
    [Google Scholar]
  41. Edwards AA, Keggin E, Plowman PN 2010. The developing role for intensity-modulated radiation therapy (IMRT) in the non-surgical treatment of brain metastases. Br. J. Radiol. 83:133–36
    [Google Scholar]
  42. Ellison DW, Onilude OE, Lindsey JC, Lusher ME, Weston CL et al. 2005. β-Catenin status predicts a favorable outcome in childhood medulloblastoma: the United Kingdom Children's Cancer Study Group Brain Tumour Committee. J. Clin. Oncol. 23:7951–57
    [Google Scholar]
  43. Esbenshade AJ, Kocak M, Hershon L, Rousseau P, Decarie JC et al. 2016. A Phase II feasibility study of oral etoposide given concurrently with radiotherapy followed by dose intensive adjuvant chemotherapy for children with newly diagnosed high-risk medulloblastoma (protocol POG 9631): a report from the Children's Oncology Group. Pediatr. Blood Cancer 64:e26373
    [Google Scholar]
  44. Etame AB, Diaz RJ, Smith CA, Mainprize TG, Hynynen K, Rutka JT 2012. Focused ultrasound disruption of the blood-brain barrier: a new frontier for therapeutic delivery in molecular neuro-oncology. Neurosurg. Focus 32:E3
    [Google Scholar]
  45. Filocamo G, Brunetti M, Colaceci F, Sasso R, Tanori M et al. 2016. MK-4101, a potent inhibitor of the Hedgehog pathway, is highly active against medulloblastoma and basal cell carcinoma. Mol. Cancer Ther. 15:1177–89
    [Google Scholar]
  46. Fossati P, Ricardi U, Orecchia R 2009. Pediatric medulloblastoma: toxicity of current treatment and potential role of protontherapy. Cancer Treat Rev 35:79–96
    [Google Scholar]
  47. Fouladi M, Gajjar A, Boyett JM, Walter AW, Thompson SJ et al. 1999. Comparison of CSF cytology and spinal magnetic resonance imaging in the detection of leptomeningeal disease in pediatric medulloblastoma or primitive neuroectodermal tumor. J. Clin. Oncol. 17:3234–37
    [Google Scholar]
  48. Friedman GK, Moore BP, Nan L, Kelly VM, Etminan T et al. 2016. Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses. Neuro-Oncol 18:227–35
    [Google Scholar]
  49. Fujiwara S 2017. Humanized mice: a brief overview on their diverse applications in biomedical research. J. Cell Physiol. 233:2889–901
    [Google Scholar]
  50. Gajjar A, Chintagumpala M, Ashley D, Kellie S, Kun LE et al. 2006. Risk-adapted craniospinal radiotherapy followed by high-dose chemotherapy and stem-cell rescue in children with newly diagnosed medulloblastoma (St Jude Medulloblastoma-96): long-term results from a prospective, multicentre trial. Lancet Oncol 7:813–20
    [Google Scholar]
  51. Gajjar A, Stewart CF, Ellison DW, Kaste S, Kun LE et al. 2013. Phase I study of vismodegib in children with recurrent or refractory medulloblastoma: a pediatric brain tumor consortium study. Clin. Cancer Res. 19:6305–12
    [Google Scholar]
  52. Gandola L, Massimino M, Cefalo G, Solero C, Spreafico F et al. 2008. Hyperfractionated accelerated radiotherapy in the Milan strategy for metastatic medulloblastoma. J. Clin. Oncol. 27:566–71
    [Google Scholar]
  53. Georgieva JV, Hoekstra D, Zuhorn IS 2014. Smuggling drugs into the brain: an overview of ligands targeting transcytosis for drug delivery across the blood-brain barrier. Pharmaceutics 6:557–83
    [Google Scholar]
  54. Gholamin S, Mitra SS, Feroze AH, Liu J, Kahn SA et al. 2017. Disrupting the CD47-SIRPα anti-phagocytic axis by a humanized anti-CD47 antibody is an efficacious treatment for malignant pediatric brain tumors. Sci. Transl. Med. 9:eaaf2968
    [Google Scholar]
  55. Gibson P, Tong Y, Robinson G, Thompson MC, Currle DS et al. 2010. Subtypes of medulloblastoma have distinct developmental origins. Nature 468:1095–99
    [Google Scholar]
  56. Goodrich LV, Milenkovic L, Higgins KM, Scott MP 1997. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277:1109–13
    [Google Scholar]
  57. Grammel D, Warmuth-Metz M, von Bueren AO, Kool M, Pietsch T et al. 2012. Sonic hedgehog-associated medulloblastoma arising from the cochlear nuclei of the brainstem. Acta Neuropathol 123:601–14
    [Google Scholar]
  58. Grill J, Sainte-Rose C, Jouvet A, Gentet J-C, Lejars O et al. 2005. Treatment of medulloblastoma with postoperative chemotherapy alone: an SFOP prospective trial in young children. Lancet Oncol 6:573–80
    [Google Scholar]
  59. Gustafson WC, Meyerowitz JG, Nekritz EA, Chen J, Benes C et al. 2014. Drugging MYCN through an allosteric transition in Aurora kinase A. Cancer Cell 26:414–27
    [Google Scholar]
  60. Hanaford AR, Archer TC, Price A, Kahlert UD, Maciaczyk J et al. 2016. DiSCoVERing innovative therapies for rare tumors: combining genetically accurate disease models with in silico analysis to identify novel therapeutic targets. Clin. Cancer Res. 22:3903–14
    [Google Scholar]
  61. Hardcastle J, Mills L, Malo CS, Jin F, Kurokawa C et al. 2017. Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment. Neuro-Oncol 19:493–502
    [Google Scholar]
  62. Henssen A, Thor T, Odersky A, Heukamp L, El-Hindy N et al. 2013. BET bromodomain protein inhibition is a therapeutic option for medulloblastoma. Oncotarget 4:2080–95
    [Google Scholar]
  63. Hill RM, Kuijper S, Lindsey JC, Petrie K, Schwalbe EC et al. 2015. Combined MYC and P53 defects emerge at medulloblastoma relapse and define rapidly progressive, therapeutically targetable disease. Cancer Cell 27:72–84
    [Google Scholar]
  64. Ho ESQ, Barrett SA, Mullaney LM 2017. A review of dosimetric and toxicity modeling of proton versus photon craniospinal irradiation for pediatrics medulloblastoma. Acta Oncol 56:1031–42
    [Google Scholar]
  65. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN 2000. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat. Genet. 25:55–57
    [Google Scholar]
  66. Holland EC, Hively WP, DePinho RA, Varmus HE 1998a. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 12:3675–85
    [Google Scholar]
  67. Holland EC, Hively WP, Gallo V, Varmus HE 1998b. Modeling mutations in the G1 arrest pathway in human gliomas: Overexpression of CDK4 but not loss of INK4a-ARF induces hyperploidy in cultured mouse astrocytes. Genes Dev 12:3644–49
    [Google Scholar]
  68. Hong CS, Ho W, Piazza MG, Ray-Chaudhury A, Zhuang Z, Heiss JD 2016. Characterization of the blood brain barrier in pediatric central nervous system neoplasms. J. Interdiscip Histopathol. 4:29–33
    [Google Scholar]
  69. Jakacki RI, Burger PC, Zhou T, Holmes EJ, Kocak M et al. 2012. Outcome of children with metastatic medulloblastoma treated with carboplatin during craniospinal radiotherapy: a Children's Oncology Group Phase I/II study. J. Clin. Oncol. 30:2648–53
    [Google Scholar]
  70. Janeway KA 2017. Molecular profiling in the clinic: moving from feasibility assessment to evaluating clinical impact. Pediatr. Blood Cancer 64:e26482
    [Google Scholar]
  71. Jenkins NC, Kalra RR, Dubuc A, Sivakumar W, Pedone CA et al. 2014. Genetic drivers of metastatic dissemination in Sonic hedgehog medulloblastoma. Acta Neuropathol. Commun. 2:85
    [Google Scholar]
  72. Jenkins NC, Rao G, Eberhart CG, Pedone CA, Dubuc AM, Fults DW 2016. Somatic cell transfer of c-Myc and Bcl-2 induces large-cell anaplastic medulloblastomas in mice. J. Neurooncol. 126:415–24
    [Google Scholar]
  73. Jones DT, Jager N, Kool M, Zichner T, Hutter B et al. 2012. Dissecting the genomic complexity underlying medulloblastoma. Nature 488:100–5
    [Google Scholar]
  74. Kawauchi D, Ogg RJ, Liu L, Shih DJH, Finkelstein D et al. 2017. Novel MYC-driven medulloblastoma models from multiple embryonic cerebellar cells. Oncogene 36:5231–42
    [Google Scholar]
  75. Kawauchi D, Robinson G, Uziel T, Gibson P, Rehg J et al. 2012. A mouse model of the most aggressive subgroup of human medulloblastoma. Cancer Cell 21:168–80
    [Google Scholar]
  76. Kim DG, Bynoe MS 2015. A2A adenosine receptor regulates the human blood-brain barrier permeability. Mol. Neurobiol. 52:664–78
    [Google Scholar]
  77. Kim J, Lee JJ, Kim J, Gardner D, Beachy PA 2010. Arsenic antagonizes the Hedgehog pathway by preventing ciliary accumulation and reducing stability of the Gli2 transcriptional effector. PNAS 107:13432–37
    [Google Scholar]
  78. Kool M, Jones DT, Jager N, Northcott PA, Pugh TJ et al. 2014. Genome sequencing of SHH medulloblastoma predicts genotype-related response to smoothened inhibition. Cancer Cell 25:393–405
    [Google Scholar]
  79. Kool M, Koster J, Bunt J, Hasselt NE, Lakeman A et al. 2008. Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features. PLOS ONE 3:e3088
    [Google Scholar]
  80. Lafay-Cousin L, Smith A, Chi SN, Wells E, Madden J et al. 2016. Clinical, pathological, and molecular characterization of infant medulloblastomas treated with sequential high-dose chemotherapy. Pediatr. Blood Cancer 63:1527–34
    [Google Scholar]
  81. Lannering B, Rutkowski S, Doz F, Pizer B, Gustafsson G et al. 2012. Hyperfractionated versus conventional radiotherapy followed by chemotherapy in standard-risk medulloblastoma: results from the randomized multicenter HIT-SIOP PNET 4 trial. J. Clin. Oncol. 30:3187–93
    [Google Scholar]
  82. Lauth M, Bergström A, Shimokawa T, Toftgård R 2007. Inhibition of GLI-mediated transcription and tumor cell growth by small-molecule antagonists. PNAS 104:8455–60
    [Google Scholar]
  83. Lee MJ, Hatton BA, Villavicencio EH, Khanna PC, Friedman SD et al. 2012. Hedgehog pathway inhibitor saridegib (IPI-926) increases lifespan in a mouse medulloblastoma model. PNAS 109:7859–64
    [Google Scholar]
  84. Li P, Du F, Yuelling LW, Lin T, Muradimova RE et al. 2013. A population of Nestin-expressing progenitors in the cerebellum exhibits increased tumorigenicity. Nat. Neurosci. 16:1737–44
    [Google Scholar]
  85. Lin CY, Erkek S, Tong Y, Yin L, Federation AJ et al. 2016. Active medulloblastoma enhancers reveal subgroup-specific cellular origins. Nature 530:57–62
    [Google Scholar]
  86. Lin Z, Li S, Sheng H, Cai M, Ma LY et al. 2016. Suppression of GLI sensitizes medulloblastoma cells to mitochondria-mediated apoptosis. J. Cancer Res. Clin. Oncol. 142:2469–78
    [Google Scholar]
  87. Lindsey JC, Schwalbe EC, Potluri S, Bailey S, Williamson D, Clifford SC 2014. TERT promoter mutation and aberrant hypermethylation are associated with elevated expression in medulloblastoma and characterise the majority of non-infant SHH subgroup tumours. Acta Neuropathol 127:307–9
    [Google Scholar]
  88. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D et al. 2016. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131:803–20
    [Google Scholar]
  89. Mack SC, Witt H, Piro RM, Gu L, Zuyderduyn S et al. 2014. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy. Nature 506:445–50
    [Google Scholar]
  90. Markant SL, Esparza LA, Sun J, Barton KL, McCoig LM et al. 2013. Targeting sonic hedgehog-associated medulloblastoma through inhibition of Aurora and Polo-like kinases. Cancer Res 73:6310–22
    [Google Scholar]
  91. Martin AM, Raabe E, Eberhart C, Cohen KJ 2014. Management of pediatric and adult patients with medulloblastoma. Curr. Treat. Options Oncol. 15:581–94
    [Google Scholar]
  92. McCall TD, Pedone CA, Fults DW 2007. Apoptosis suppression by somatic cell transfer of Bcl-2 promotes Sonic hedgehog-dependent medulloblastoma formation in mice. Cancer Res 67:5179–85
    [Google Scholar]
  93. Morfouace M, Shelat A, Jacus M, Freeman BB3rd, Turner D et al. 2014. Pemetrexed and gemcitabine as combination therapy for the treatment of Group3 medulloblastoma. Cancer Cell 25:516–29
    [Google Scholar]
  94. Morrissy AS, Garzia L, Shih DJ, Zuyderduyn S, Huang X et al. 2016. Divergent clonal selection dominates medulloblastoma at recurrence. Nature 529:351–57
    [Google Scholar]
  95. Mu X, Björk-Eriksson T, Nill S, Oelfke U, Johansson KA et al. 2005. Does electron and proton therapy reduce the risk of radiation induced cancer after spinal irradiation for childhood medulloblastoma? A comparative treatment planning study. Acta Oncol 44:554–62
    [Google Scholar]
  96. Mumert M, Dubuc A, Wu X, Northcott PA, Chin SS et al. 2012. Functional genomics identifies drivers of medulloblastoma dissemination. Cancer Res 72:4944–53
    [Google Scholar]
  97. Northcott PA, Buchhalter I, Morrissy AS, Hovestadt V, Weischenfeldt J et al. 2017. The whole-genome landscape of medulloblastoma subtypes. Nature 547:311–17
    [Google Scholar]
  98. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG et al. 2011. Medulloblastoma comprises four distinct molecular variants. J. Clin. Oncol. 29:1408–14
    [Google Scholar]
  99. Northcott PA, Lee C, Zichner T, Stütz AM, Erkek S et al. 2014. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511:428–34
    [Google Scholar]
  100. Northcott PA, Shih DJ, Peacock J, Garzia L, Morrissy AS et al. 2012. Subgroup-specific structural variation across 1,000 medulloblastoma genomes. Nature 488:49–56
    [Google Scholar]
  101. Oller-Salvia B, Sánchez-Navarro M, Giralt E, Teixidó M 2016. Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem. Soc. Rev. 45:4690–707
    [Google Scholar]
  102. Packer RJ, Gajjar A, Vezina G, Rorke-Adams L, Burger PC et al. 2006. Phase III study of craniospinal radiation therapy followed by adjuvant chemotherapy for newly diagnosed average-risk medulloblastoma. J. Clin. Oncol. 24:4202–8
    [Google Scholar]
  103. Packer RJ, Vezina G 2008. Management of and prognosis with medulloblastoma: therapy at a crossroads. Arch. Neurol. 65:1419–24
    [Google Scholar]
  104. Pajouhesh H, Lenz GR 2005. Medicinal chemical properties of successful central nervous system drugs. NeuroRx 2:541–53
    [Google Scholar]
  105. Pardridge WM 2002. Drug and gene targeting to the brain with molecular Trojan horses. Nat. Rev. Drug Discov. 1:131–39
    [Google Scholar]
  106. Parrish KE, Pokorny J, Mittapalli RK, Bakken K, Sarkaria JN, Elmquist WF 2015. Efflux transporters at the blood-brain barrier limit delivery and efficacy of cyclin-dependent kinase 4/6 inhibitor palbociclib (PD-0332991) in an orthotopic brain tumor model. J. Pharmacol. Exp. Ther. 355:264–71
    [Google Scholar]
  107. Pastori C, Daniel M, Penas C, Volmar CH, Johnstone AL et al. 2014. BET bromodomain proteins are required for glioblastoma cell proliferation. Epigenetics 9:611–20
    [Google Scholar]
  108. Paterson E, Farr RF 1953. Cerebellar medulloblastoma: treatment by irradiation of the whole central nervous system. Acta Radiol 39:323–36
    [Google Scholar]
  109. Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T et al. 2017. Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov 7:462–77
    [Google Scholar]
  110. Pei Y, Liu KW, Wang J, Garancher A, Tao R et al. 2016. HDAC and PI3K antagonists cooperate to inhibit growth of MYC-driven medulloblastoma. Cancer Cell 29:311–23
    [Google Scholar]
  111. Pei Y, Moore CE, Wang J, Tewari AK, Eroshkin A et al. 2012. An animal model of MYC-driven medulloblastoma. Cancer Cell 21:155–67
    [Google Scholar]
  112. Perez OD, Logg CR, Hiraoka K, Diago O, Burnett R et al. 2012. Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression. Mol. Ther. 20:1689–98
    [Google Scholar]
  113. Pérez-Martínez A, Fernández L, Díaz MA 2016. The therapeutic potential of natural killer cells to target medulloblastoma. Expert Rev. Anticancer Ther. 16:573–76
    [Google Scholar]
  114. Perreault S, Ramaswamy V, Achrol AS, Chao K, Liu TT et al. 2014. MRI surrogates for molecular subgroups of medulloblastoma. AJNR Am. J. Neuroradiol. 35:1263–69
    [Google Scholar]
  115. Peyrl A, Chocholous M, Kieran MW, Azizi AA, Prucker C et al. 2012. Antiangiogenic metronomic therapy for children with recurrent embryonal brain tumors. Pediatr. Blood Cancer 59:511–17
    [Google Scholar]
  116. Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO et al. 2016. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell 29:508–22
    [Google Scholar]
  117. Polkinghorn WR, Tarbell NJ 2007. Medulloblastoma: tumorigenesis, current clinical paradigm, and efforts to improve risk stratification. Nat. Clin. Pract. Oncol. 4:295–304
    [Google Scholar]
  118. Pugh TJ, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D et al. 2012. Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 488:106–10
    [Google Scholar]
  119. Ramaswamy V, Remke M, Adamski J, Bartels U, Tabori U et al. 2016a. Medulloblastoma subgroup-specific outcomes in irradiated children: Who are the true high-risk patients. Neuro-Oncol 18:291–97
    [Google Scholar]
  120. Ramaswamy V, Remke M, Bouffet E, Bailey S, Clifford SC et al. 2016b. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol 131:821–31
    [Google Scholar]
  121. Ramaswamy V, Remke M, Bouffet E, Faria CC, Perreault S et al. 2013. Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis. Lancet Oncol 14:1200–7
    [Google Scholar]
  122. Ramkissoon SH, Bandopadhayay P, Hwang J, Ramkissoon LA, Greenwald NF et al. 2017. Clinical targeted exome-based sequencing in combination with genome-wide copy number profiling: precision medicine analysis of 203 pediatric brain tumors. Neuro-Oncol 19:986–96
    [Google Scholar]
  123. Rao G, Pedone CA, Coffin CM, Holland EC, Fults DW 2003. c-Myc enhances Sonic hedgehog-induced medulloblastoma formation from nestin-expressing neural progenitors in mice. Neoplasia 5:198–204
    [Google Scholar]
  124. Rao G, Pedone CA, Del Valle L, Reiss K, Holland EC, Fults DW 2004. Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene 23:6156–62
    [Google Scholar]
  125. Raybaud C, Ramaswamy V, Taylor MD, Laughlin S 2015. Posterior fossa tumors in children: developmental anatomy and diagnostic imaging. Childs Nerv. Syst. 31:1661–76
    [Google Scholar]
  126. Richards MW, Burgess SG, Poon E, Carstensen A, Eilers M et al. 2016. Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. PNAS 113:13726–31
    [Google Scholar]
  127. Robinson G, Parker M, Kranenburg TA, Lu C, Chen X et al. 2012. Novel mutations target distinct subgroups of medulloblastoma. Nature 488:43–48
    [Google Scholar]
  128. Robinson GW, Orr BA, Wu G, Gururangan S, Lin T et al. 2015. Vismodegib exerts targeted efficacy against recurrent Sonic hedgehog-subgroup medulloblastoma: results from Phase II pediatric brain tumor consortium studies PBTC-025B and PBTC-032. J. Clin. Oncol. 33:2646–54
    [Google Scholar]
  129. Romer JT, Kimura H, Magdaleno S, Sasai K, Fuller C et al. 2004. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1+/− p53−/− mice. Cancer Cell 6:229–40
    [Google Scholar]
  130. Rutkowski S, Bode U, Deinlein F, Ottensmeier H, Warmuth-Metz M et al. 2005. Treatment of early childhood medulloblastoma by postoperative chemotherapy alone. N. Engl. J. Med. 352:978–86
    [Google Scholar]
  131. Rutkowski S, Cohen B, Finlay J, Luksch R, Ridola V et al. 2010. Medulloblastoma in young children. Pediatr. Blood Cancer 54:635–37
    [Google Scholar]
  132. Rutkowski S, Gerber NU, von Hoff K, Gnekow A, Bode U et al. 2009. Treatment of early childhood medulloblastoma by postoperative chemotherapy and deferred radiotherapy. Neuro-Oncol 11:201–10
    [Google Scholar]
  133. Saha D, Martuza RL, Rabkin SD 2017. Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell 32:253–67.e5
    [Google Scholar]
  134. Schroeder TM, Chintagumpala M, Okcu MF, Chiu JK, Teh BS et al. 2008. Intensity-modulated radiation therapy in childhood ependymoma. Int. J. Radiat. Oncol. Biol. Phys. 71:987–93
    [Google Scholar]
  135. Schüller U, Heine VM, Mao J, Kho AT, Dillon AK et al. 2008. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 14:123–34
    [Google Scholar]
  136. Schwalbe EC, Lindsey JC, Nakjang S, Crosier S, Smith AJ et al. 2017. Novel molecular subgroups for clinical classification and outcome prediction in childhood medulloblastoma: a cohort study. Lancet Oncol 18:958–71
    [Google Scholar]
  137. Seibel NL, Janeway K, Allen CE, Chi SN, Cho YJ et al. 2017. Pediatric oncology enters an era of precision medicine. Curr. Probl. Cancer 41:194–200
    [Google Scholar]
  138. Shih DJ, Northcott PA, Remke M, Korshunov A, Ramaswamy V et al. 2014. Cytogenetic prognostication within medulloblastoma subgroups. J. Clin. Oncol. 32:886–96
    [Google Scholar]
  139. St. Clair WH, Adams JA, Bues M, Fullerton BC, La Shell S et al. 2004. Advantage of protons compared to conventional X-ray or IMRT in the treatment of a pediatric patient with medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 58:727–34
    [Google Scholar]
  140. Studebaker AW, Hutzen B, Pierson CR, Russell SJ, Galanis E, Raffel C 2012. Oncolytic measles virus prolongs survival in a murine model of cerebral spinal fluid-disseminated medulloblastoma. Neuro-Oncol 14:459–70
    [Google Scholar]
  141. Studebaker AW, Hutzen BJ, Pierson CR, Haworth KB, Cripe TP et al. 2017. Oncolytic herpes virus rrp450 shows efficacy in orthotopic xenograft Group 3/4 medulloblastomas and atypical teratoid/rhabdoid tumors. Mol. Ther. Oncolyt. 6:22–30
    [Google Scholar]
  142. Studebaker AW, Kreofsky CR, Pierson CR, Russell SJ, Galanis E, Raffel C 2010. Treatment of medulloblastoma with a modified measles virus. Neuro-Oncol 12:1034–42
    [Google Scholar]
  143. Sun K, Atoyan R, Borek MA, Dellarocca S, Samson ME et al. 2017. Dual HDAC and PI3K inhibitor CUDC-907 downregulates MYC and suppresses growth of MYC-dependent cancers. Mol. Cancer Ther. 16:285–99
    [Google Scholar]
  144. Swartling FJ, Grimmer MR, Hackett CS, Northcott PA, Fan QW et al. 2010. Pleiotropic role for MYCN in medulloblastoma. Genes Dev 24:1059–72
    [Google Scholar]
  145. Swartling FJ, Savov V, Persson AI, Chen J, Hackett CS et al. 2012. Distinct neural stem cell populations give rise to disparate brain tumors in response to N-MYC. Cancer Cell 21:601–13
    [Google Scholar]
  146. Tang Y, Gholamin S, Schubert S, Willardson MI, Lee A et al. 2014. Epigenetic targeting of Hedgehog pathway transcriptional output through BET bromodomain inhibition. Nat. Med. 20:732–40
    [Google Scholar]
  147. Taylor MD, Northcott PA, Korshunov A, Remke M, Cho YJ et al. 2012. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol 123:465–72
    [Google Scholar]
  148. Thomas PR, Deutsch M, Kepner JL, Boyett JM, Krischer J et al. 2000. Low-stage medulloblastoma: final analysis of trial comparing standard-dose with reduced-dose neuraxis irradiation. J. Clin. Oncol. 18:3004–11
    [Google Scholar]
  149. Thompson EM, Hielscher T, Bouffet E, Remke M, Luu B et al. 2016. Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis. Lancet Oncol 17:484–95
    [Google Scholar]
  150. Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D et al. 2006. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J. Clin. Oncol. 24:1924–31
    [Google Scholar]
  151. Triscott J, Lee C, Foster C, Manoranjan B, Pambid MR et al. 2013. Personalizing the treatment of pediatric medulloblastoma: Polo-like kinase 1 as a molecular target in high-risk children. Cancer Res 73:6734–44
    [Google Scholar]
  152. Tseng YY, Moriarity BS, Gong W, Akiyama R, Tiwari A et al. 2014. PVT1 dependence in cancer with MYC copy-number increase. Nature 512:82–86
    [Google Scholar]
  153. Vieira DB, Gamarra LF 2016. Getting into the brain: liposome-based strategies for effective drug delivery across the blood-brain barrier. Int. J. Nanomed. 11:5381–414
    [Google Scholar]
  154. Vo BT, Li C, Morgan MA, Theurillat I, Finkelstein D et al. 2017. Inactivation of Ezh2 upregulates Gfi1 and drives aggressive Myc-driven Group 3 medulloblastoma. Cell Rep 18:2907–17
    [Google Scholar]
  155. Wallace VA 1999. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr. Biol. 9:445–48
    [Google Scholar]
  156. Wechsler-Reya RJ, Scott MP 1999. Control of neuronal precursor proliferation in the cerebellum by Sonic hedgehog. Neuron 22:103–14
    [Google Scholar]
  157. Wohlfart S, Gelperina S, Kreuter J 2012. Transport of drugs across the blood-brain barrier by nanoparticles. J. Control Release 161:264–73
    [Google Scholar]
  158. Yang D, Liu H, Goga A, Kim S, Yuneva M, Bishop JM 2010. Therapeutic potential of a synthetic lethal interaction between the MYC proto-oncogene and inhibition of Aurora-B kinase. PNAS 107:13836–41
    [Google Scholar]
  159. Yang ZJ, Ellis T, Markant SL, Read TA, Kessler JD et al. 2008. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 14:135–45
    [Google Scholar]
  160. Younes A, Berdeja JG, Patel MR, Flinn I, Gerecitano JF et al. 2016. Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial. Lancet Oncol 17:622–31
    [Google Scholar]
  161. Zeltzer PM, Boyett JM, Finlay JL, Albright AL, Rorke LB et al. 1999. Metastasis stage, adjuvant treatment, and residual tumor are prognostic factors for medulloblastoma in children: conclusions from the Children's Cancer Group 921 randomized Phase III study. J. Clin. Oncol. 17:832–45
    [Google Scholar]
  162. Zhao X, Liu Z, Yu L, Zhang Y, Baxter P et al. 2012. Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma. Neuro-Oncol 14:574–83
    [Google Scholar]
  163. Zhukova N, Ramaswamy V, Remke M, Pfaff E, Shih DJ et al. 2013. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J. Clin. Oncol. 31:2927–35
    [Google Scholar]
  164. Zuckermann M, Hovestadt V, Knobbe-Thomsen CB, Zapatka M, Northcott PA et al. 2015. Somatic CRISPR/Cas9-mediated tumour suppressor disruption enables versatile brain tumour modelling. Nat. Commun. 6:7391
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-070815-013838
Loading
/content/journals/10.1146/annurev-neuro-070815-013838
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error