1932

Abstract

In this review, we discuss the emerging field of computational behavioral analysis—the use of modern methods from computer science and engineering to quantitatively measure animal behavior. We discuss aspects of experiment design important to both obtaining biologically relevant behavioral data and enabling the use of machine vision and learning techniques for automation. These two goals are often in conflict. Restraining or restricting the environment of the animal can simplify automatic behavior quantification, but it can also degrade the quality or alter important aspects of behavior. To enable biologists to design experiments to obtain better behavioral measurements, and computer scientists to pinpoint fruitful directions for algorithm improvement, we review known effects of artificial manipulation of the animal on behavior. We also review machine vision and learning techniques for tracking, feature extraction, automated behavior classification, and automated behavior discovery, the assumptions they make, and the types of data they work best with.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070815-013845
2016-07-08
2024-09-08
Loading full text...

Full text loading...

/deliver/fulltext/neuro/39/1/annurev-neuro-070815-013845.html?itemId=/content/journals/10.1146/annurev-neuro-070815-013845&mimeType=html&fmt=ahah

Literature Cited

  1. Aggarwal JK, Ryoo MS. 2011. Human activity analysis: a review. ACM Comput. Surv. 43:16 [Google Scholar]
  2. Agrawal S, Safarik S, Dickinson M. 2014. The relative roles of vision and chemosensation in mate recognition of Drosophila melanogaster. J. Exp. Biol. 217:2796–805 [Google Scholar]
  3. Altmann J. 1974. Observational study of behavior: sampling methods. Behaviour 49:227–67 [Google Scholar]
  4. Anderson DJ, Perona P. 2014. Toward a science of computational ethology. Neuron 84:18–31 [Google Scholar]
  5. Arrington RE. 1943. Time sampling in studies of social behavior: a critical review of techniques and results with research suggestions. Psychol. Bull. 40:81–124 [Google Scholar]
  6. Bender JA, Simpson EM, Tietz BR, Daltorio KA, Quinn RD, Ritzmann RE. 2011. Kinematic and behavioral evidence for a distinction between trotting and ambling gaits in the cockroach Blaberus discoidalis. J. Exp. Biol. 214:2057–64 [Google Scholar]
  7. Benjamini Y, Lipkind D, Horev G, Fonio E, Kafkafi N, Golani I. 2010. Ten ways to improve the quality of descriptions of whole-animal movement. Neurosci. Biobehav. Rev. 34:1351–65 [Google Scholar]
  8. Berclaz J, Fleuret F, Turetken E, Fua P. 2011. Multiple object tracking using k-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33:1806–19 [Google Scholar]
  9. Berman GJ, Choi DM, Bialek W, Shaevitz JW. 2014. Mapping the stereotyped behaviour of freely moving fruit flies. J. R. Soc. Interface 11:20140672 [Google Scholar]
  10. Bermejo R, Houben D, Zeigler HP. 1994. Dissecting the conditioned pecking response: an integrated system for the analysis of pecking response parameters. J. Exp. Anal. Behav. 61:517–27 [Google Scholar]
  11. Blevins J. 1995. The syllable in phonological theory. The Handbook of Phonological Theory JA Goldsmith 206–44 London: Blackwell [Google Scholar]
  12. Bradbury JW, Vehrencamp SL. 2011. Principles of Animal Communication Sunderland, MA: Sinauer [Google Scholar]
  13. Branson K, Robie AA, Bender J, Perona P, Dickinson MH. 2009. High-throughput ethomics in large groups of Drosophila. Nat. Methods 6:451–57 [Google Scholar]
  14. Brown AEX, Yemini EI, Grundy LJ, Jucikas T, Schafer WR. 2013. A dictionary of behavioral motifs reveals clusters of genes affecting Caenorhabditis elegans locomotion. PNAS 110:791–96 [Google Scholar]
  15. Buchner E. 1976. Elementary movement detectors in an insect visual system. Biol. Cybern. 24:85–101 [Google Scholar]
  16. Buelthoff H, Poggio T, Wehrhahn C. 1980. 3-D analysis of the flight trajectories of flies (Drosophila melanogaster). Z. Naturforschung C 35:811–15 [Google Scholar]
  17. Bulling A, Blanke U, Schiele B. 2014. A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. 46:33 [Google Scholar]
  18. Burgos-Artizzu XP, Dollár P, Lin D, Anderson DJ, Perona P. 2012. Social behavior recognition in continuous video. Presented at 2012 IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Providence, RI [Google Scholar]
  19. Burns JG, Svetec N, Rowe L, Mery F, Dolan MJ. et al. 2012. Gene-environment interplay in Drosophila melanogaster: Chronic food deprivation in early life affects adult exploratory and fitness traits. PNAS 109:Suppl. 217239–44 [Google Scholar]
  20. Chalfin L, Dayan M, Levy DR, Austad SN, Miller RA. et al. 2014. Mapping ecologically relevant social behaviours by gene knockout in wild mice. Nat. Commun. 5:4569 [Google Scholar]
  21. Chapelle O, Schölkopf B, Zien A. 2006. Semi-Supervised Learning Cambridge, MA: MIT Press [Google Scholar]
  22. Chen S, Lee AY, Bowens NM, Huber R, Kravitz EA. 2002. Fighting fruit flies: a model system for the study of aggression. PNAS 99:5664–68 [Google Scholar]
  23. Chomsky N. 1956. Three models for the description of language. IRE Trans. Inf. Theory 2:113–34 [Google Scholar]
  24. Clark CW, Marler P, Beeman K. 1987. Quantitative-analysis of animal vocal phonology: an application to swamp sparrow song. Ethology 76:101–15 [Google Scholar]
  25. Coe CL, Mendoza SP, Smotherman WP, Levine S. 1978. Mother-infant attachment in the squirrel monkey: adrenal response to separation. Behav. Biol. 22:256–63 [Google Scholar]
  26. Dalal N, Triggs B. 2005. Histograms of oriented gradients for human detection. Presented at 2005 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., San Diego [Google Scholar]
  27. Dankert H, Wang L, Hoopfer ED, Anderson DJ, Perona P. 2009. Automated monitoring and analysis of social behavior in Drosophila. Nat. Methods 6:297–303 [Google Scholar]
  28. de Chaumont F, Coura RD, Serreau P, Cressant A, Chabout J. et al. 2012. Computerized video analysis of social interactions in mice. Nat. Methods 9:410–17 [Google Scholar]
  29. Dell AI, Bender JA, Branson K, Couzin ID, de Polavieja GG. et al. 2014. Automated image-based tracking and its application in ecology. Trends Ecol. Evol. 29:417–28 [Google Scholar]
  30. Dolen G, Darvishzadeh A, Huang KW, Malenka RC. 2013. Social reward requires coordinated activity of nucleus accumbens oxytocin and serotonin. Nature 501:179–84 [Google Scholar]
  31. Dollár P, Rabaud V, Cottrell G, Belongie S. 2005. Behavior recognition via sparse spatio-temporal features. Presented at 2nd Joint IEEE Int. Workshop Vis. Surveill. Perform. Eval. Track. Surveill., Beijing [Google Scholar]
  32. Dombeck DA, Reiser MB. 2012. Real neuroscience in virtual worlds. Curr. Opin. Neurobiol. 22:3–10 [Google Scholar]
  33. Ebrahimi CM, Rankin CH. 2007. Early patterned stimulation leads to changes in adult behavior and gene expression in C. elegans. Genes Brain Behav. 6:517–28 [Google Scholar]
  34. Efros AA, Berg AC, Mori G, Malik J. 2003. Recognizing action at a distance. Presented at 9th IEEE Int. Conf. Comput. Vis., Nice, France [Google Scholar]
  35. Elias DO, Mason AC, Maddison WP, Hoy RR. 2003. Seismic signals in a courting male jumping spider (Araneae: Salticidae). J. Exp. Biol. 206:4029–39 [Google Scholar]
  36. Eyjolfsdottir E, Branson S, Burgos-Artizzu XP, Hoopfer ED, Schor J. et al. 2014. Detecting social actions of fruit flies. Presented at 13th Eur. Conf. Comput. Vis. (ECCV), Zurich [Google Scholar]
  37. Feher O, Wang H, Saar S, Mitra PP, Tchernichovski O. 2009. De novo establishment of wild-type song culture in the zebra finch. Nature 459:564–68 [Google Scholar]
  38. Fentress JC, Stilwell FP. 1973. Letter: grammar of a movement sequence in inbred mice. Nature 244:52–53 [Google Scholar]
  39. Ferland CL, Schrader LA. 2011. Cage mate separation in pair-housed male rats evokes an acute stress corticosterone response. Neurosci. Lett. 489:154–58 [Google Scholar]
  40. Fonio E, Golani I, Benjamini Y. 2012. Measuring behavior of animal models: faults and remedies. Nat. Methods 9:1167–70 [Google Scholar]
  41. Forsyth DA, Arikan O, Ikemoto L, O'Brien J, Ramanan D. 2005. Computational studies of human motion: part 1, tracking and motion synthesis. Found. Trends Comput. Graph. Vis. 1:77–254 [Google Scholar]
  42. Frénay B, Verleysen M. 2014. Classification in the presence of label noise: a survey. IEEE Trans. Neural Netw. Learn. Syst. 25:845–69 [Google Scholar]
  43. Friedman D, Haim A, Zisapel N. 1997. Temporal segregation in coexisting spiny mice (genus Acomys): role of photoperiod and heterospecific odor. Physiol. Behav. 62:407–11 [Google Scholar]
  44. Frisch KV. 1967. The Dance Language and Orientation of Bees Cambridge, MA: Belknap [Google Scholar]
  45. Gomez-Marin A, Partoune N, Stephens GJ, Louis M, Brembs B. 2012. Automated tracking of animal posture and movement during exploration and sensory orientation behaviors. PLOS ONE 7:e41642 [Google Scholar]
  46. Goncalves L, di Bernardo E, Perona P. 2004. Movemes for modeling biological motion perception. Seeing, Thinking and Knowing: Meaning and Self-Organisation in Visual Cognition and Thought A Carsetti 143–70 Ser. A: Philos. Methodol. Soc. Sci New York: Kluwer Acad. [Google Scholar]
  47. Goulding EH, Schenk AK, Juneja P, MacKay AW, Wade JM, Tecott LH. 2008. A robust automated system elucidates mouse home cage behavioral structure. PNAS 105:20575–82 [Google Scholar]
  48. Harvey CD, Collman F, Dombeck DA, Tank DW. 2009. Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461:941–46 [Google Scholar]
  49. Hennessy MB, Moorman L. 1989. Factors influencing cortisol and behavioral responses to maternal separation in guinea pigs. Behav. Neurosci. 103:378–85 [Google Scholar]
  50. Hirsch HVB, Barth M, Luo S, Sambaziotis H, Huber M. et al. 1995. Early visual experience affects mate choice of Drosophila melanogaster. Anim. Behav. 50:1211–17 [Google Scholar]
  51. Hirsch HVB, Tompkins L. 1994. The flexible fly: experience-dependent development of complex behaviors in Drosophila melanogaster. J. Exp. Biol. 195:1–18 [Google Scholar]
  52. Holscher C, Schnee A, Dahmen H, Setia L, Mallot HA. 2005. Rats are able to navigate in virtual environments. J. Exp. Biol. 208:561–69 [Google Scholar]
  53. Holy TE, Guo Z. 2005. Ultrasonic songs of male mice. PLOS Biol. 3:e386 [Google Scholar]
  54. Huang KM, Cosman P, Schafer WR. 2008. Automated detection and analysis of foraging behavior in Caenorhabditis elegans. J. Neurosci. Methods 171:153–64 [Google Scholar]
  55. Huber R, Kravitz EA. 1995. A quantitative-analysis of agonistic behavior in juvenile American lobsters (Homarus americanus L.). Brain Behav. Evolu. 46:72–83 [Google Scholar]
  56. Ikizler-Cinbis N, Sclaroff S. 2010. Object, scene and actions: combining multiple features for human action recognition. Presented at 11th Eur. Conf. Comput. Vis. (ECCV), Crete, Greece [Google Scholar]
  57. Ivanov YA, Bobick AF. 2000. Recognition of visual activities and interactions by stochastic parsing. IEEE Trans. Pattern Anal. Mach. Intell. 22:852–72 [Google Scholar]
  58. Jhuang H, Garrote E, Yu XL, Khilnani V, Poggio T. et al. 2010. Automated home-cage behavioural phenotyping of mice. Nat. Commun. 1:68 [Google Scholar]
  59. Johansson G. 1973. Visual-perception of biological motion and a model for its analysis. Percept. Psychophys. 14:201–11 [Google Scholar]
  60. Kabra M, Robie AA, Rivera-Alba M, Branson S, Branson K. 2013. JAABA: interactive machine learning for automatic annotation of animal behavior. Nat. Methods 10:64–67 [Google Scholar]
  61. Kain JS, Stokes C, de Bivort BL. 2012. Phototactic personality in fruit flies and its suppression by serotonin and white. PNAS 109:19834–39 [Google Scholar]
  62. Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L. 2014. Large-scale video classification with convolution neural networks Presented at 2014 IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Columbus, OH [Google Scholar]
  63. Kendon A. 1975. Some functions of the face in a kissing round. Semiotica 15:99–334 [Google Scholar]
  64. Kerfoot W. 1968. Orientometer for study of insect behavior. Science 162:477 [Google Scholar]
  65. Kim YK, Ehrman L. 1999. Developmental isolation and subsequent adult behavior of Drosophila paulistorum. V. Survey of six sibling species. Behav. Genet. 29:65–73 [Google Scholar]
  66. Kläser A, Marszałek M, Schmid C. 2008. A spatio-temporal descriptor based on 3D-gradients. Presented at Br. Mach. Vis. Conf., Leeds, UK [Google Scholar]
  67. Knudsen EI, Blasdel GG, Konishi M. 1979. Sound localization by the barn owl (Tyto alba) measured with the search coil technique. J. Comp. Physiol. A 133:1–11 [Google Scholar]
  68. Kojima S, Kao MH, Doupe AJ. 2013. Task-related “cortical” bursting depends critically on basal ganglia input and is linked to vocal plasticity. PNAS 110:4756–61 [Google Scholar]
  69. Konishi M. 1989. Birdsong for neurobiologists. Neuron 3:541–49 [Google Scholar]
  70. Kravitz EA. 2000. Serotonin and aggression: insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior. J. Comp. Physiol. A 186:221–38 [Google Scholar]
  71. Krizhevsky A, Sutskever I, Hinton GE. 2012. mageNet classification with deep convolutional neural networks. Presented at NIPS 2012 Neural Inf. Process. Syst., Lake Tahoe, NV [Google Scholar]
  72. Lahvis G. 2016. Animal models of autism, epigenetics, and the inescapable problem of animal constraint. Animal Models of Behavior Genetics Research JC Gewirtz, Y-K Kim New York: Springer. In press [Google Scholar]
  73. Laptev I, Lindeberg T. 2003. Space-time interest points. Presented at 9th IEEE Int. Conf. Comput. Vis., Nice, France [Google Scholar]
  74. Laptev I, Marszalek M, Schmid C, Rozenfeld B. 2008. Learning realistic human actions from movies. Presented at IEEE Conf. Comput. Vis. Pattern Recognit., Anchorage, AK [Google Scholar]
  75. Li X, Hu W, Shen C, Zhang Z, Dick A, Van Den Hengel A. 2013. A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. 4:58 [Google Scholar]
  76. Lindzey G, Manosevitz M, Winston H. 1966. Social dominance in the mouse. Psychon. Sci. 5:451–52 [Google Scholar]
  77. Lindzey G, Winston H, Manosevitz M. 1961. Social dominance in inbred mouse strains. Nature 191:474–76 [Google Scholar]
  78. Lipkind D, Marcus GF, Bemis DK, Sasahara K, Jacoby N. et al. 2013. Stepwise acquisition of vocal combinatorial capacity in songbirds and human infants. Nature 498:104–8 [Google Scholar]
  79. Lou X, Hamprecht FA. 2012. Structured learning from partial annotations. Presented at Int. Conf. Mach. Learn., Edinburgh, Scotl. [Google Scholar]
  80. Ludvig N, Tang HM, Eichenbaum H, Gohil BC. 2003. Spatial memory performance of freely-moving squirrel monkeys. Behav. Brain Res. 140:175–83 [Google Scholar]
  81. Marler P. 1970. A comparative approach to vocal learning—song development in white-crowned sparrows. J. Comp. Physiol. Psych. 71:1–25 [Google Scholar]
  82. Martin J-R. 2004. A portrait of locomotor behaviour in Drosophila determined by a video-tracking paradigm. Behav. Processes 67:207–19 [Google Scholar]
  83. Mays LE, Sparks DL. 1980. Saccades are spatially, not retinocentrically, coded. Science 208:1163–65 [Google Scholar]
  84. McGill TE. 1962. Sexual behavior in three inbred strains of mice. Behaviour 19:341–50 [Google Scholar]
  85. Mendes CS, Bartos I, Akay T, Marka S, Mann RS. 2013. Quantification of gait parameters in freely walking wild type and sensory deprived Drosophila melanogaster. eLife 2:e00231 [Google Scholar]
  86. Michael RP, Saayman G. 1967. Sexual performance index of male rhesus monkeys. Nature 214:425 [Google Scholar]
  87. Mirat O, Sternberg JR, Severi KE, Wyart C. 2013. ZebraZoom: an automated program for high-throughput behavioral analysis and categorization. Front. Neural Circuits 7:107 [Google Scholar]
  88. Mischiati M, Lin HT, Herold P, Imler E, Olberg R, Leonardo A. 2015. Internal models direct dragonfly interception steering. Nature 517:333–38 [Google Scholar]
  89. Moran G, Fentress JC, Golani I. 1981. A description of relational patterns of movement during ritualized fighting in wolves. Anim. Behav. 29:1146–65 [Google Scholar]
  90. Murphy KP. 2012. Machine Learning: A Probabilistic Perspective Cambridge, MA: MIT Press [Google Scholar]
  91. Naguib M, Kipper S. 2006. Effects of different levels of song overlapping on singing behaviour in male territorial nightingales (Luscinia megarhynchos). Behav. Ecol. Sociobiol. 59:419–26 [Google Scholar]
  92. Neunuebel JP, Taylor AL, Arthur BJ, Egnor SER. 2015. Female mice ultrasonically interact with males during courtship displays. eLife 4:e06203 [Google Scholar]
  93. Niebles JC, Wang H, Fei-Fei L. 2008. Unsupervised learning of human action categories using spatial-temporal words. Int. J. Comput. Vis. 79:299–318 [Google Scholar]
  94. Noldus LPJJ, Spink AJ, Tegelenbosch RAJ. 2002. Computerised video tracking, movement analysis and behaviour recognition in insects. Comput. Electron. Agric. 35:201–27 [Google Scholar]
  95. Ohayon S, Avni O, Taylor AL, Perona P, Egnor SER. 2013. Automated multi-day tracking of marked mice for the analysis of social behaviour. J. Neurosci. Methods 219:10–19 [Google Scholar]
  96. O'Keefe J, Dostrovsky J. 1971. Hippocampus as a spatial map. Preliminary evidence from unit activity in freely-moving rat. Brain Res. 34:171–75 [Google Scholar]
  97. Oliva AM, Salcedo E, Hellier JL, Ly X, Koka K. et al. 2010. Toward a mouse neuroethology in the laboratory environment. PLOS ONE 5:e11359 [Google Scholar]
  98. Overduin SA, d'Avella A, Carmena JM, Bizzi E. 2012. Microstimulation activates a handful of muscle synergies. Neuron 76:1071–77 [Google Scholar]
  99. Packer B, Saenko K, Koller D. 2012. A combined pose, object, and feature model for action understanding. Presented at 2012 IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Providence, RI [Google Scholar]
  100. Paylor R. 2008. Simultaneous behavioral characterizations: embracing complexity. PNAS 105:20563–64 [Google Scholar]
  101. Pérez-Escudero A, Vicente-Page J, Hinz RC, Arganda S, de Polavieja GG. 2014. idTracker: tracking individuals in a group by automatic identification of unmarked animals. Nat. Methods 11:743–48 [Google Scholar]
  102. Picardo M, Merel J, Katlowitz K, Vallentin D, Okobi D. et al. 2016. Population-level representation of a temporal sequence underlying skilled behavior. Neuron. In press [Google Scholar]
  103. Piccardi M. 2004. Background subtraction techniques: a review. Presented at IEEE Int. Conf. Syst. Man Cybern., The Hague, Neth. [Google Scholar]
  104. Pirsiavash H, Ramanan D. 2014. Parsing videos of actions with segmental grammars. Presented at IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Columbus, OH [Google Scholar]
  105. Pirsiavash H, Ramanan D, Fowlkes CC. 2011. Globally-optimal greedy algorithms for tracking a variable number of objects. Presented at IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Colorado Springs, CO [Google Scholar]
  106. Poppe R. 2007. Vision-based human motion analysis: an overview. Comput. Vis. Image Underst. 108:4–18 [Google Scholar]
  107. Raina R, Battle A, Lee H, Packer B, Ng AY. 2007. Self-taught learning: transfer learning from unlabeled data. Presented at 24th Annu. Int. Conf. Mach. Learn., Corvallis, OR [Google Scholar]
  108. Ramanan D, Forsyth DA. 2003. Automatic annotation of everyday movements. Presented at 24th Annu. Conf. Neural Inf. Process. Syst. (NIPS), Vancouver, Canada [Google Scholar]
  109. Rao C, Yilmaz A, Shah M. 2002. View-invariant representation and recognition of actions. Int. J. Comput. Vis. 50:203–26 [Google Scholar]
  110. Riede T. 2014. Rat ultrasonic vocalization shows features of a modular behavior. J. Neurosci. 34:6874–78 [Google Scholar]
  111. Robie AA, Straw AD, Dickinson MH. 2010. Object preference by walking fruit flies, Drosophila melanogaster, is mediated by vision and graviperception. J. Exp. Biol. 213:2494–506 [Google Scholar]
  112. Roeder KD. 1962. The behaviour of free flying moths in the presence of artificial ultrasonic pulses. Anim. Behav. 10:300–4 [Google Scholar]
  113. Rohrbach M, Amin S, Andriluka M, Schiele B. 2012. A database for fine grained activity detection of cooking activities Presented at. 2012 IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Providence, RI [Google Scholar]
  114. Ryoo MS, Aggarwal JK. 2009. Spatio-temporal relationship match: video structure comparison for recognition of complex human activities. Presented at Int. Conf. Comput. Vis. (ICCV), Kyoto, Japan [Google Scholar]
  115. Sacrey LA, Alaverdashvili M, Whishaw IQ. 2009. Similar hand shaping in reaching-for-food (skilled reaching) in rats and humans provides evidence of homology in release, collection, and manipulation movements. Behav. Brain Res. 204:153–61 [Google Scholar]
  116. Schiegg M, Hanslovsky P, Kausler BX, Hufnage L, Hamprecht F. 2013. Conservation tracking. Presented at IEEE Int. Conf. Comput. Vis. (ICCV 2013), Sydney [Google Scholar]
  117. Schnee A. 2008. Rats in virtual reality: the development of an advanced method to study animal behaviour PhD Thesis, Eberhard Karls Univ., Tübingen, Ger. [Google Scholar]
  118. Schwarz RF, Branicky R, Grundy LJ, Schafer WR, Brown AE. 2015. Changes in postural syntax characterize sensory modulation and natural variation of C. elegans locomotion. PLOS Comput. Biol. 11:e1004322 [Google Scholar]
  119. Seeds AM, Ravbar P, Chung P, Hampel S, Midgley FM Jr.. 2014. A suppression hierarchy among competing motor programs drives sequential grooming in Drosophila. eLife 3:e02951 [Google Scholar]
  120. Seelig JD, Chiappe ME, Lott GK, Dutta A, Osborne JE. et al. 2010. Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nat. Methods 7:535–40 [Google Scholar]
  121. Sewell GD. 1967. Ultrasound in adult rodents. Nature 215:512 [Google Scholar]
  122. Shemesh Y, Sztainberg Y, Forkosh O, Shlapobersky T, Chen A, Schneidman E. 2013. High-order social interactions in groups of mice. eLife 2:e00759 [Google Scholar]
  123. Sokolowski MB. 2001. Drosophila: genetics meets behaviour. Nat. Genet. 2:879–90 [Google Scholar]
  124. Song Y, Goncalves L, Perona P. 2003. Unsupervised learning of human motion. IEEE Trans. Pattern Anal. Mach. Intell. 25:814–27 [Google Scholar]
  125. Spence AJ, Revzen S, Seipel J, Mullens C, Full RJ. 2010. Insects running on elastic surfaces. J. Exp. Biol. 213:1907–20 [Google Scholar]
  126. Spieth HT. 1974. Courtship behavior in Drosophila. Annu. Rev. Entomol. 19:385–405 [Google Scholar]
  127. Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS. 2008. Dimensionality and dynamics in the behavior of C. elegans. PLOS Comput. Biol. 4:e1000028 [Google Scholar]
  128. Stikic M, Laerhoven KV, Schiele B. 2008. Exploring semi-supervised and active learning for activity recognition. Presented at 12th IEEE Int. Symp. Wearable Comput., Newcastle, UK [Google Scholar]
  129. Stikic M, Larlus D, Ebert S. 2011. Weakly supervised recognition of daily life activities with wearable sensors. IEEE Trans. Pattern Anal. Mach. Intell. 3:2521–37 [Google Scholar]
  130. Stonehouse B. 1978. Animal Marking: Recognition Marking of Animals in Research. Baltimore, MD: Univ. Park [Google Scholar]
  131. Straw AD, Branson K, Neumann TR, Dickinson MH. 2011. Multi-camera real-time three-dimensional tracking of multiple flying animals. J. R. Soc. Interface 8:56395–409 [Google Scholar]
  132. Swierczek NA, Giles AC, Rankin CH, Kerr RA. 2011. High-throughput behavioral analysis in C. elegans. Nat. Methods 8:592–98 [Google Scholar]
  133. Takahashi DY, Fenley AR, Teramoto Y, Narayanan DZ, Borjon JI. et al. 2015. The developmental dynamics of marmoset monkey vocal production. Science 349:734–38 [Google Scholar]
  134. Tchernichovski O, Nottebohm F, Ho CE, Pesaran B, Mitra PP. 2000. A procedure for an automated measurement of song similarity. Anim. Behav. 59:1167–76 [Google Scholar]
  135. Thorpe WH. 1954. The process of song-learning in the chaffinch as studied by means of the sound spectrograph. Nature 173:465–69 [Google Scholar]
  136. Thorpe WH. 1961. Bird Song Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  137. Tompson J, Goroshin R, Jain A, LeCun Y, Bregler C. 2015. Efficient object localization using convolutional networks. arXiv:1411.4280 [cs.CV]
  138. Tsochantaridis I, Joachims T, Hofmann T, Altun Y. 2005. Large margin methods for structured and interdependent output variables. J. Mach. Learn. Res. 6:1453–84 [Google Scholar]
  139. Valente D, Golani I, Mitra PP. 2007. Analysis of the trajectory of Drosophila melanogaster in a circular open field arena. PLOS ONE 2:e1083 [Google Scholar]
  140. Vogelstein JT, Park Y, Ohyama T, Kerr RA, Truman JW. et al. 2014. Discovery of brainwide neural-behavioral maps via multiscale unsupervised structure learning. Science 344:386–92 [Google Scholar]
  141. Wang H, Kläser A, Schmid C, Liu C-L. 2013. Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vis. 103:60–79 [Google Scholar]
  142. Wang H, Ullah MM, Kläser A, Laptev I, Schmid C. 2009. Evaluation of local spatio-temporal features for action recognition Presented at Br. Mach. Vis. Conf., London [Google Scholar]
  143. Wehner R. 2003. Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A 189:579–88 [Google Scholar]
  144. Weissbrod A, Shapiro A, Vasserman G, Edry L, Dayan M. et al. 2013. Automated long-term tracking and social behavioural phenotyping of animal colonies within a semi-natural environment. Nat. Commun. 4:2018 [Google Scholar]
  145. Whishaw IQ, Pellis SM. 1990. The structure of skilled forelimb reaching in the rat: a proximally driven movement with a single distal rotatory component. Behav. Brain Res. 41:49–59 [Google Scholar]
  146. Wiesel TN, Hubel DH. 1963. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26:1003–17 [Google Scholar]
  147. Willems G, Tuytelaars T, Van Gool L. 2008. An efficient dense and scale-invariant spatio-temporal interest point detector. Presented at Eur. Conf. Comput. Vis., Marseille, France [Google Scholar]
  148. Yamato J, Ohya J, Ishii K. 1992. Recognizing human action in time-sequential images using hidden Markov model Presented at IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Champaign, IL [Google Scholar]
  149. Yang B, Huang C, Nevatia R. 2011. Learning affinities and dependencies for multi-target tracking using a CRF model. Presented at IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Colorado Springs, CO [Google Scholar]
  150. Zelnik-Manor L, Irani M. 2001. Event-based analysis of video. Presented at IEEE Comput. Vis. Pattern Recognit. (CVPR 2001), Kauai, HI [Google Scholar]
  151. Zhong H, Shi J, Visontai M. 2004. Detecting unusual activity in video. Presented at IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR 2004), Washington, DC [Google Scholar]
/content/journals/10.1146/annurev-neuro-070815-013845
Loading
/content/journals/10.1146/annurev-neuro-070815-013845
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error