1932

Abstract

Modern functional neurosurgery for movement disorders such as Parkinson's disease, tremor, and dystonia involves the placement of focal lesions or the application of deep brain stimulation (DBS) within circuits that modulate motor function. Precise targeting of these motor structures can be further refined by the use of electrophysiological approaches. In particular, microelectrode recordings enable the delineation of neuroanatomic structures. In the course of these operations, there is an opportunity not only to map basal ganglia structures but also to gain insights into how disturbances in neural activity produce movement disorders. In this review, we aim to highlight what the field has uncovered thus far about movement disorders through DBS. The work to date lays the foundation for future studies that will shed further light on dysfunctional circuits mediating diseases of the nervous system and how we might modulate these circuits therapeutically.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070815-013906
2017-07-25
2024-07-22
Loading full text...

Full text loading...

/deliver/fulltext/neuro/40/1/annurev-neuro-070815-013906.html?itemId=/content/journals/10.1146/annurev-neuro-070815-013906&mimeType=html&fmt=ahah

Literature Cited

  1. Abosch A, Hutchison WD, Saint-Cyr JA, Dostrovsky JO, Lozano AM. 2002. Movement-related neurons of the subthalamic nucleus in patients with Parkinson disease. J. Neurosurg. 97:1167–72 [Google Scholar]
  2. Alavi M, Dostrovsky JO, Hodaie M, Lozano AM, Hutchison WD. 2013. Spatial extent of beta oscillatory activity in and between the subthalamic nucleus and substantia nigra pars reticulata of Parkinson's disease patients. Exp. Neurol. 245:60–71 [Google Scholar]
  3. Alegre M, Lopez-Azcarate J, Obeso I, Wilkinson L, Rodriguez-Oroz MC. et al. 2013. The subthalamic nucleus is involved in successful inhibition in the stop-signal task: a local field potential study in Parkinson's disease. Exp. Neurol. 239:1–12 [Google Scholar]
  4. Alonso-Frech F, Zamarbide I, Alegre M, Rodriguez-Oroz MC, Guridi J. et al. 2006. Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson's disease. Brain 129:1748–57 [Google Scholar]
  5. Aron AR, Poldrack RA. 2006. Cortical and subcortical contributions to Stop signal response inhibition: role of the subthalamic nucleus. J. Neurosci. 26:2424–33 [Google Scholar]
  6. Aziz TZ, Peggs D, Sambrook MA, Crossman AR. 1991. Lesion of the subthalamic nucleus for the alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate. Mov. Disord. 6:288–92 [Google Scholar]
  7. Basha D, Dostrovsky JO, Lopez Rios AL, Hodaie M, Lozano AM, Hutchison WD. 2014. Beta oscillatory neurons in the motor thalamus of movement disorder and pain patients. Exp. Neurol. 261:782–90 [Google Scholar]
  8. Bastin J, Polosan M, Benis D, Goetz L, Bhattacharjee M. et al. 2014. Inhibitory control and error monitoring by human subthalamic neurons. Transl. Psychiatry 4:e439 [Google Scholar]
  9. Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM. et al. 1991. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet 337:403–6 [Google Scholar]
  10. Benabid AL, Pollak P, Louveau A, Henry S, de Rougemont J. 1987. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral Parkinson disease. Appl. Neurophysiol. 50:344–46 [Google Scholar]
  11. Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B. 1993. Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur. J. Neurosci. 5:382–89 [Google Scholar]
  12. Benis D, David O, Lachaux JP, Seigneuret E, Krack P. et al. 2014. Subthalamic nucleus activity dissociates proactive and reactive inhibition in patients with Parkinson's disease. NeuroImage 91:273–81 [Google Scholar]
  13. Bergman H, Wichmann T, DeLong MR. 1990. Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–38 [Google Scholar]
  14. Beudel M, Little S, Pogosyan A, Ashkan K, Foltynie T. et al. 2015. Tremor reduction by deep brain stimulation is associated with gamma power suppression in Parkinson's disease. Neuromodulation 18:349–54 [Google Scholar]
  15. Beurrier C, Bioulac B, Audin J, Hammond C. 2001. High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J. Neurophysiol. 85:1351–56 [Google Scholar]
  16. Blomstedt P, Hariz GM, Hariz MI, Koskinen LO. 2007. Thalamic deep brain stimulation in the treatment of essential tremor: a long-term follow-up. Br. J. Neurosurg. 21:504–9 [Google Scholar]
  17. Blomstedt P, Sandvik U, Fytagoridis A, Tisch S. 2009. The posterior subthalamic area in the treatment of movement disorders: past, present, and future. Neurosurgery 64:1029–38 [Google Scholar]
  18. Bosboom JL, Stoffers D, Stam CJ, van Dijk BW, Verbunt J. et al. 2006. Resting state oscillatory brain dynamics in Parkinson's disease: an MEG study. Clin. Neurophysiol. 117:2521–31 [Google Scholar]
  19. Brittain JS, Brown P. 2013. The many roads to tremor. Exp. Neurol. 250:104–7 [Google Scholar]
  20. Brittain JS, Watkins KE, Joundi RA, Ray NJ, Holland P. et al. 2012. A role for the subthalamic nucleus in response inhibition during conflict. J. Neurosci. 32:13396–401 [Google Scholar]
  21. Bronte-Stewart H, Barberini C, Koop MM, Hill BC, Henderson JM, Wingeier B. 2009. The STN beta-band profile in Parkinson's disease is stationary and shows prolonged attenuation after deep brain stimulation. Exp. Neurol. 215:20–28 [Google Scholar]
  22. Brown P. 2003. Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson's disease. Mov. Disord. 18:357–63 [Google Scholar]
  23. Brown P, Mazzone P, Oliviero A, Altibrandi MG, Pilato F. et al. 2004. Effects of stimulation of the subthalamic area on oscillatory pallidal activity in Parkinson's disease. Exp. Neurol. 188:480–90 [Google Scholar]
  24. Brown P, Oliviero A, Mazzone P, Insola A, Tonali P, Di Lazzaro V. 2001. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson's disease. J. Neurosci. 21:1033–38 [Google Scholar]
  25. Brüggemann N, Kühn A, Schneider SA, Kamm C, Wolters A. et al. 2015. Short-and long-term outcome of chronic pallidal neurostimulation in monogenic isolated dystonia. Neurology 84:895–903 [Google Scholar]
  26. Burchiel KJ, Anderson VC, Favre J, Hammerstad JP. 1999. Comparison of pallidal and subthalamic nucleus deep brain stimulation for advanced Parkinson's disease: results of a randomized, blinded pilot study. Neurosurgery 45:1375–82 [Google Scholar]
  27. Cacciola F, Farah JO, Eldridge PR, Byrne P, Varma TK. 2010. Bilateral deep brain stimulation for cervical dystonia: long-term outcome in a series of 10 patients. Neurosurgery 67:957–63 [Google Scholar]
  28. Cassidy M, Mazzone P, Oliviero A, Insola A, Tonali P. et al. 2002. Movement-related changes in synchronization in the human basal ganglia. Brain 125:1235–46 [Google Scholar]
  29. Cavanagh JF, Wiecki TV, Cohen MX, Figueroa CM, Samanta J. et al. 2011. Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nat. Neurosci. 14:1462–67 [Google Scholar]
  30. Charles D, Konrad PE, Neimat JS, Molinari AL, Tramontana MG. et al. 2014. Subthalamic nucleus deep brain stimulation in early stage Parkinson's disease. Parkinsonism Relat. Disord. 20:731–37 [Google Scholar]
  31. Chen CC, Brücke C, Kempf F, Kupsch A, Lu CS. et al. 2006. Deep brain stimulation of the subthalamic nucleus: a two-edged sword. Curr. Biol. 16:R952–53 [Google Scholar]
  32. Contarino MF, Bour LJ, Verhagen R, Lourens MA, de Bie RM. et al. 2014. Directional steering: a novel approach to deep brain stimulation. Neurology 83:1163–69 [Google Scholar]
  33. Cooper IS, Amin I, Riklan M, Waltz JM, Poon TP. 1976. Chronic cerebellar stimulation in epilepsy. Clinical and anatomical studies. Arch. Neurol. 33:559–70 [Google Scholar]
  34. Crowell AL, Ryapolova-Webb ES, Ostrem JL, Galifianakis NB, Shimamoto S. et al. 2012. Oscillations in sensorimotor cortex in movement disorders: an electrocorticography study. Brain 135:615–30 [Google Scholar]
  35. de Hemptinne C, Ryapolova-Webb ES, Air EL, Garcia PA, Miller KJ. et al. 2013. Exaggerated phase-amplitude coupling in the primary motor cortex in Parkinson disease. PNAS 110:4780–85 [Google Scholar]
  36. de Hemptinne C, Swann NC, Ostrem JL, Ryapolova-Webb ES, San Luciano M. et al. 2015. Therapeutic deep brain stimulation reduces cortical phase-amplitude coupling in Parkinson's disease. Nat. Neurosci. 18:779–86 [Google Scholar]
  37. Deep-Brain Stimul. Parkinson's Dis. Study Group. 2001. Deep-brain stimulation of the subthalamic nucleus or the pars interna of the globus pallidus in Parkinson's disease. N. Engl. J. Med. 345:956–63 [Google Scholar]
  38. Dostrovsky JO, Lozano AM. 2002. Mechanisms of deep brain stimulation. Mov. Disord. 17:Suppl. 3S63–68 [Google Scholar]
  39. Duval C, Daneault JF, Hutchison WD, Sadikot AF. 2016. A brain network model explaining tremor in Parkinson's disease. Neurobiol. Dis. 85:49–59 [Google Scholar]
  40. El-Tahawy H, Lozano AM, Dostrovsky JO. 2004. Electrophysiological findings in Vim and Vc. Microelectrode Recording in Movement Disorder Surgery Z Israel, KJ Burchiel 63–71 New York: Thieme [Google Scholar]
  41. Fawcett AP, Dostrovsky JO, Lozano AM, Hutchison WD. 2005. Eye movement-related responses of neurons in human subthalamic nucleus. Exp. Brain Res. 162:357–65 [Google Scholar]
  42. Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO. 2004. Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp. Brain Res. 156:274–81 [Google Scholar]
  43. Foffani G, Priori A, Egidi M, Rampini P, Tamma F. et al. 2003. 300-Hz subthalamic oscillations in Parkinson's disease. Brain 126:2153–63 [Google Scholar]
  44. Fogelson N, Williams D, Tijssen M, van Bruggen G, Speelman H, Brown P. 2006. Different functional loops between cerebral cortex and the subthalmic area in Parkinson's disease. Cereb. Cortex 16:64–75 [Google Scholar]
  45. Follett KA, Weaver FM, Stern M, Hur K, Harris CL. et al. 2010. Pallidal versus subthalamic deep-brain stimulation for Parkinson's disease. N. Engl. J. Med. 362:2077–91 [Google Scholar]
  46. Frank MJ, Samanta J, Moustafa AA, Sherman SJ. 2007. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 318:1309–12 [Google Scholar]
  47. Giannicola G, Marceglia S, Rossi L, Mrakic-Sposta S, Rampini P. et al. 2010. The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson's disease. Exp. Neurol. 226:120–27 [Google Scholar]
  48. Gondard E, Chau HN, Mann A, Tierney TS, Hamani C. et al. 2015. Rapid modulation of protein expression in the rat hippocampus following deep brain stimulation of the fornix. Brain Stimul 8:1058–64 [Google Scholar]
  49. Hamani C, Dostrovsky JO, Lozano AM. 2006. The motor thalamus in neurosurgery. Neurosurgery 58:146–58 [Google Scholar]
  50. Hamani C, Moro E, Lozano AM. 2011. The pedunculopontine nucleus as a target for deep brain stimulation. J. Neural Transm. 118:1461–68 [Google Scholar]
  51. Hamani C, Saint-Cyr JA, Fraser J, Kaplitt M, Lozano AM. 2004. The subthalamic nucleus in the context of movement disorders. Brain 127:4–20 [Google Scholar]
  52. Hammond C, Bergman H, Brown P. 2007. Pathological synchronization in Parkinson's disease: networks, models and treatments. Trends Neurosci 30:357–64 [Google Scholar]
  53. Hariz MI, Krack P, Alesch F, Augustinsson LE, Bosch A. et al. 2008. Multicentre European study of thalamic stimulation for parkinsonian tremor: a 6 year follow-up. J. Neurol. Neurosurg. Psychiatry 79:694–99 [Google Scholar]
  54. Herrington TM, Cheng JJ, Eskandar EN. 2016. Mechanisms of deep brain stimulation. J. Neurophysiol. 115:19–38 [Google Scholar]
  55. Hirschmann J, Butz M, Hartmann CJ, Hoogenboom N, Ozkurt TE. et al. 2016. Parkinsonian rest tremor is associated with modulations of subthalamic high-frequency oscillations. Mov. Disord. 31:1551–59 [Google Scholar]
  56. Hirschmann J, Ozkurt TE, Butz M, Homburger M, Elben S. et al. 2011. Distinct oscillatory STN-cortical loops revealed by simultaneous MEG and local field potential recordings in patients with Parkinson's disease. NeuroImage 55:1159–68 [Google Scholar]
  57. Holsheimer J, Dijkstra EA, Demeulemeester H, Nuttin B. 2000. Chronaxie calculated from current-duration and voltage-duration data. J. Neurosci. Methods 97:45–50 [Google Scholar]
  58. Honey CR, Hamani C, Kalia SK, Sankar T, Picillo M. et al. 2016. Deep brain stimulation target selection for Parkinson's disease. Can. J. Neurol. Sci. 2016:1–6 [Google Scholar]
  59. Hosobuchi Y, Adams JE, Linchitz R. 1977. Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science 197:183–86 [Google Scholar]
  60. Hung SW, Hamani C, Lozano AM, Poon YY, Piboolnurak P. et al. 2007. Long-term outcome of bilateral pallidal deep brain stimulation for primary cervical dystonia. Neurology 68:457–59 [Google Scholar]
  61. Hurtado JM, Gray CM, Tamas LB, Sigvardt KA. 1999. Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. PNAS 96:1674–79 [Google Scholar]
  62. Hutchison WD, Allan RJ, Opitz H, Levy R, Dostrovsky JO. et al. 1998. Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson's disease. Ann. Neurol. 44:622–28 [Google Scholar]
  63. Hutchison WD, Levy R, Dostrovsky JO, Lozano AM, Lang AE. 1997. Effects of apomorphine on globus pallidus neurons in parkinsonian patients. Ann. Neurol. 42:767–75 [Google Scholar]
  64. Hutchison WD, Lozano AM. 2000. Microelectrode recordings in movement disorder surgery. Movement Disorder Surgery AM Lozano 103–17 Basel: Karger [Google Scholar]
  65. Hutchison WD, Lozano AM, Tasker RR, Lang AE, Dostrovsky JO. 1997. Identification and characterization of neurons with tremor-frequency activity in human globus pallidus. Exp. Brain Res. 113:557–63 [Google Scholar]
  66. Kalia LV, Lang AE. 2015. Parkinson's disease. Lancet 386:896–912 [Google Scholar]
  67. Kalia SK, Sankar T, Lozano AM. 2013. Deep brain stimulation for Parkinson's disease and other movement disorders. Curr. Opin. Neurol. 26:374–80 [Google Scholar]
  68. Kane A, Hutchison WD, Hodaie M, Lozano AM, Dostrovsky JO. 2009. Dopamine-dependent high-frequency oscillatory activity in thalamus and subthalamic nucleus of patients with Parkinson's disease. NeuroReport 20:1549–53 [Google Scholar]
  69. Karas PJ, Mikell CB, Christian E, Liker MA, Sheth SA. 2013. Deep brain stimulation: a mechanistic and clinical update. Neurosurg. Focus 35:E1 [Google Scholar]
  70. Kato K, Yokochi F, Taniguchi M, Okiyama R, Kawasaki T. et al. 2015. Bilateral coherence between motor cortices and subthalamic nuclei in patients with Parkinson's disease. Clin. Neurophysiol. 126:1941–50 [Google Scholar]
  71. Khan S, Gill SS, Mooney L, White P, Whone A. et al. 2012. Combined pedunculopontine-subthalamic stimulation in Parkinson disease. Neurology 78:1090–95 [Google Scholar]
  72. King NKK, Krishna V, Basha D, Elias G, Sammartino F. et al. 2017. Microelectrode recording findings within the tractography-defined ventral intermediate nucleus. J. Neurosurg. 126:51669–75 [Google Scholar]
  73. Kiss ZH, Doig-Beyaert K, Eliasziw M, Tsui J, Haffenden A. et al. 2007. The Canadian multicentre study of deep brain stimulation for cervical dystonia. Brain 130:2879–86 [Google Scholar]
  74. Koller WC, Lyons KE, Wilkinson SB, Troster AI, Pahwa R. 2001. Long-term safety and efficacy of unilateral deep brain stimulation of the thalamus in essential tremor. Mov. Disord. 16:464–68 [Google Scholar]
  75. Kühn AA, Kempf F, Brücke C, Gaynor Doyle L, Martinez-Torres I. et al. 2008. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson's disease in parallel with improvement in motor performance. J. Neurosci. 28:6165–73 [Google Scholar]
  76. Kühn AA, Kupsch A, Schneider GH, Brown P. 2006. Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson's disease. Eur. J. Neurosci. 23:1956–60 [Google Scholar]
  77. Kühn AA, Williams D, Kupsch A, Limousin P, Hariz M. et al. 2004. Event-related beta desynchronization in human subthalamic nucleus correlates with motor performance. Brain 127:735–46 [Google Scholar]
  78. Kumar R, Lozano AM, Kim YJ, Hutchison WD, Sime E. et al. 1998. Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson's disease. Neurology 51:850–55 [Google Scholar]
  79. Kupsch A, Benecke R, Muller J, Trottenberg T, Schneider GH. et al. 2006. Pallidal deep-brain stimulation in primary generalized or segmental dystonia. N. Engl. J. Med. 355:1978–90 [Google Scholar]
  80. Lafreniere-Roula M, Hutchison WD, Lozano AM, Hodaie M, Dostrovsky JO. 2009. Microstimulation-induced inhibition as a tool to aid targeting the ventral border of the subthalamic nucleus. J. Neurosurg. 111:724–28 [Google Scholar]
  81. Lang AE, Lozano AM. 1998. Parkinson's disease: second of two parts. N. Engl. J. Med. 339:1130–43 [Google Scholar]
  82. Lemstra AW, Verhagen Metman L, Lee JI, Dougherty PM, Lenz FA. 1999. Tremor-frequency (3–6 Hz) activity in the sensorimotor arm representation of the internal segment of the globus pallidus in patients with Parkinson's disease. Neurosci. Lett. 267:129–32 [Google Scholar]
  83. Lenz FA, Kwan HC, Martin RL, Tasker RR, Dostrovsky JO, Lenz YE. 1994. Single unit analysis of the human ventral thalamic nuclear group: tremor-related activity in functionally identified cells. Brain 117:531–43 [Google Scholar]
  84. Lenz FA, Tasker RR, Kwan HC, Schnider S, Kwong R. et al. 1988. Single unit analysis of the human ventral thalamic nuclear group: correlation of thalamic “tremor cells” with the 3–6 Hz component of parkinsonian tremor. J. Neurosci. 8:754–64 [Google Scholar]
  85. Lerner TN, Ye L, Deisseroth K. 2016. Communication in neural circuits: tools, opportunities, and challenges. Cell 164:1136–50 [Google Scholar]
  86. Levy R, Ashby P, Hutchison WD, Lang AE, Lozano AM, Dostrovsky JO. 2002a. Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson's disease. Brain 125:1196–209 [Google Scholar]
  87. Levy R, Dostrovsky JO, Lang AE, Sime E, Hutchison WD, Lozano AM. 2001. Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson's disease. J. Neurophysiol. 86:249–60 [Google Scholar]
  88. Levy R, Hutchison WD, Lozano AM, Dostrovsky JO. 2002b. Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity. J. Neurosci. 22:2855–61 [Google Scholar]
  89. Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C. et al. 1998. Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. N. Engl. J. Med. 339:1105–11 [Google Scholar]
  90. Limousin P, Speelman JD, Gielen F, Janssens M. 1999. Multicentre European study of thalamic stimulation in parkinsonian and essential tremor. J. Neurol. Neurosurg. Psychiatry 66:289–96 [Google Scholar]
  91. Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L. et al. 2013. Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 74:449–57 [Google Scholar]
  92. Litvak V, Eusebio A, Jha A, Oostenveld R, Barnes G. et al. 2012. Movement-related changes in local and long-range synchronization in Parkinson's disease revealed by simultaneous magnetoencephalography and intracranial recordings. J. Neurosci. 32:10541–53 [Google Scholar]
  93. Litvak V, Jha A, Eusebio A, Oostenveld R, Foltynie T. et al. 2011. Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson's disease. Brain 134:359–74 [Google Scholar]
  94. Liu LD, Prescott IA, Dostrovsky JO, Hodaie M, Lozano AM, Hutchison WD. 2012. Frequency-dependent effects of electrical stimulation in the globus pallidus of dystonia patients. J. Neurophysiol. 108:5–17 [Google Scholar]
  95. Lopez-Azcarate J, Tainta M, Rodriguez-Oroz MC, Valencia M, Gonzalez R. et al. 2010. Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in Parkinson's disease. J. Neurosci. 30:6667–77 [Google Scholar]
  96. Lozano AM, Dostrovsky J, Chen R, Ashby P. 2002. Deep brain stimulation for Parkinson's disease: disrupting the disruption. Lancet Neurol 1:225–31 [Google Scholar]
  97. Lozano AM, Hutchison W, Kiss Z, Tasker R, Davis K, Dostrovsky J. 1996. Methods for microelectrode-guided posteroventral pallidotomy. J. Neurosurg. 84:194–202 [Google Scholar]
  98. Lozano AM, Lang AE, Galvez-Jimenez N, Miyasaki J, Duff J. et al. 1995. Effect of GPi pallidotomy on motor function in Parkinson's disease. Lancet 346:1383–87 [Google Scholar]
  99. Lozano AM, Lang AE, Levy R, Hutchison W, Dostrovsky J. 2000. Neuronal recordings in Parkinson's disease patients with dyskinesias induced by apomorphine. Ann. Neurol. 47:S141–46 [Google Scholar]
  100. Lozano AM, Lipsman N. 2013. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron 77:406–24 [Google Scholar]
  101. Maesawa S, Kaneoke Y, Kajita Y, Usui N, Misawa N. et al. 2004. Long-term stimulation of the subthalamic nucleus in hemiparkinsonian rats: neuroprotection of dopaminergic neurons. J. Neurosurg. 100:679–87 [Google Scholar]
  102. Marsden JF, Limousin-Dowsey P, Ashby P, Pollak P, Brown P. 2001. Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson's disease. Brain 124:378–88 [Google Scholar]
  103. Martens HC, Toader E, Decre MM, Anderson DJ, Vetter R. et al. 2011. Spatial steering of deep brain stimulation volumes using a novel lead design. Clin. Neurophysiol. 122:558–66 [Google Scholar]
  104. Merello M, Balej J, Delfino M, Cammarota A, Betti O, Leiguarda R. 1999. Apomorphine induces changes in GPi spontaneous outflow in patients with Parkinson's disease. Mov. Disord. 14:45–49 [Google Scholar]
  105. Miocinovic S, de Hemptinne C, Qasim S, Ostrem JL, Starr PA. 2015. Patterns of cortical synchronization in isolated dystonia compared with Parkinson disease. JAMA Neurol 72:1244–51 [Google Scholar]
  106. Miocinovic S, Somayajula S, Chitnis S, Vitek JL. 2013. History, applications, and mechanisms of deep brain stimulation. JAMA Neurol 70:163–71 [Google Scholar]
  107. Moran A, Bergman H, Israel Z, Bar-Gad I. 2008. Subthalamic nucleus functional organization revealed by parkinsonian neuronal oscillations and synchrony. Brain 131:3395–409 [Google Scholar]
  108. Morita H, Hass CJ, Moro E, Sudhyadhom A, Kumar R, Okun MS. 2014. Pedunculopontine nucleus stimulation: Where are we now and what needs to be done to move the field forward. ? Front. Neurol. 5:243 [Google Scholar]
  109. Moro E, Hamani C, Poon YY, Al-Khairallah T, Dostrovsky JO. et al. 2010. Unilateral pedunculopontine stimulation improves falls in Parkinson's disease. Brain 133:215–24 [Google Scholar]
  110. Moro E, Piboolnurak P, Arenovich T, Hung SW, Poon YY, Lozano AM. 2009. Pallidal stimulation in cervical dystonia: clinical implications of acute changes in stimulation parameters. Eur. J. Neurol. 16:506–12 [Google Scholar]
  111. Nambu A, Tokuno H, Takada M. 2002. Functional significance of the cortico-subthalamo-pallidal ‘hyperdirect’ pathway. Neurosci. Res. 43:111–17 [Google Scholar]
  112. Neumann WJ, Degen K, Schneider GH, Brücke C, Huebl J. et al. 2016. Subthalamic synchronized oscillatory activity correlates with motor impairment in patients with Parkinson's disease. Mov. Disord. 31:1748–51 [Google Scholar]
  113. Obeso I, Wilkinson L, Rodriguez-Oroz MC, Obeso JA, Jahanshahi M. 2013. Bilateral stimulation of the subthalamic nucleus has differential effects on reactive and proactive inhibition and conflict-induced slowing in Parkinson's disease. Exp. Brain Res. 226:451–62 [Google Scholar]
  114. Odekerken VJ, Boel JA, Schmand BA, de Haan RJ, Figee M. et al. 2016. GPi versus STN deep brain stimulation for Parkinson disease: three-year follow-up. Neurology 86:755–61 [Google Scholar]
  115. Okun MS, Fernandez HH, Wu SS, Kirsch-Darrow L, Bowers D. et al. 2009. Cognition and mood in Parkinson's disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann. Neurol. 65:586–95 [Google Scholar]
  116. Ostrem JL, Jr. Marks WJ, Volz MM, Heath SL, Starr PA. 2007. Pallidal deep brain stimulation in patients with cranial-cervical dystonia (Meige syndrome). Mov. Disord. 22:1885–91 [Google Scholar]
  117. Ostrem JL, Racine CA, Glass GA, Grace JK, Volz MM. et al. 2011. Subthalamic nucleus deep brain stimulation in primary cervical dystonia. Neurology 76:870–78 [Google Scholar]
  118. Oswal A, Brown P, Litvak V. 2013. Synchronized neural oscillations and the pathophysiology of Parkinson's disease. Curr. Opin. Neurol. 26:662–70 [Google Scholar]
  119. Ozkurt TE, Butz M, Homburger M, Elben S, Vesper J. et al. 2011. High frequency oscillations in the subthalamic nucleus: a neurophysiological marker of the motor state in Parkinson's disease. Exp. Neurol. 229:324–31 [Google Scholar]
  120. Panov F, Gologorsky Y, Connors G, Tagliati M, Miravite J, Alterman RL. 2013. Deep brain stimulation in DYT1 dystonia: a 10-year experience. Neurosurgery 73:86–93 [Google Scholar]
  121. Panov F, Levin E, de Hemptinne C, Swann NC, Qasim S. et al. 2016. Intraoperative electrocorticography for physiological research in movement disorders: principles and experience in 200 cases. J. Neurosurg. 126:122–31 [Google Scholar]
  122. Perlmutter JS, Mink JW. 2006. Deep brain stimulation. Annu. Rev. Neurosci. 29:229–57 [Google Scholar]
  123. Picillo M, Lozano AM, Kou N, Munhoz RP, Fasano A. 2016a. Programming deep brain stimulation for Parkinson's disease: the Toronto Western Hospital algorithms. Brain Stimul 9:425–37 [Google Scholar]
  124. Picillo M, Lozano AM, Kou N, Munhoz RP, Fasano A. 2016b. Programming deep brain stimulation for tremor and dystonia: the Toronto Western Hospital algorithms. Brain Stimul 9:438–52 [Google Scholar]
  125. Pollok B, Makhloufi H, Butz M, Gross J, Timmermann L. et al. 2009. Levodopa affects functional brain networks in Parkinsonian resting tremor. Mov. Disord. 24:91–98 [Google Scholar]
  126. Qasim SE, de Hemptinne C, Swann NC, Miocinovic S, Ostrem JL, Starr PA. 2016. Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson's disease. Neurobiol. Dis. 86:177–86 [Google Scholar]
  127. Quinn EJ, Blumenfeld Z, Velisar A, Koop MM, Shreve LA. et al. 2015. Beta oscillations in freely moving Parkinson's subjects are attenuated during deep brain stimulation. Mov. Disord. 30:1750–58 [Google Scholar]
  128. Ray NJ, Jenkinson N, Brittain J, Holland P, Joint C. et al. 2009. The role of the subthalamic nucleus in response inhibition: evidence from deep brain stimulation for Parkinson's disease. Neuropsychologia 47:2828–34 [Google Scholar]
  129. Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN. et al. 2011. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 72:370–84 [Google Scholar]
  130. Rowland NC, De Hemptinne C, Swann NC, Qasim S, Miocinovic S. et al. 2015. Task-related activity in sensorimotor cortex in Parkinson's disease and essential tremor: changes in beta and gamma bands. Front. Hum. Neurosci. 9:512 [Google Scholar]
  131. Schaltenbrand G, Wahren W. 1977. Atlas for Stereotaxy of the Human Brain New York: Thieme [Google Scholar]
  132. Schjerling L, Hjermind LE, Jespersen B, Madsen FF, Brennum J. et al. 2013. A randomized double-blind crossover trial comparing subthalamic and pallidal deep brain stimulation for dystonia. J. Neurosurg. 119:1537–45 [Google Scholar]
  133. Schrock LE, Ostrem JL, Turner RS, Shimamoto SA, Starr PA. 2009. The subthalamic nucleus in primary dystonia: single-unit discharge characteristics. J. Neurophysiol. 102:3740–52 [Google Scholar]
  134. Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P. et al. 2013. Neurostimulation for Parkinson's disease with early motor complications. N. Engl. J. Med. 368:610–22 [Google Scholar]
  135. Sharott A, Gulberti A, Zittel S, Tudor Jones AA, Fickel U. et al. 2014. Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in Parkinson's disease. J. Neurosci. 34:6273–85 [Google Scholar]
  136. Shimamoto SA, Ryapolova-Webb ES, Ostrem JL, Galifianakis NB, Miller KJ, Starr PA. 2013. Subthalamic nucleus neurons are synchronized to primary motor cortex local field potentials in Parkinson's disease. J. Neurosci. 33:7220–33 [Google Scholar]
  137. Shute JB, Okun MS, Opri E, Molina R, Rossi PJ. et al. 2016. Thalamocortical network activity enables chronic tic detection in humans with Tourette syndrome. NeuroImage Clin 12:165–72 [Google Scholar]
  138. Skogseid IM, Ramm-Pettersen J, Volkmann J, Kerty E, Dietrichs E, Roste GK. 2012. Good long-term efficacy of pallidal stimulation in cervical dystonia: a prospective, observer-blinded study. Eur. J. Neurol. 19:610–15 [Google Scholar]
  139. Spieles-Engemann AL, Behbehani MM, Collier TJ, Wohlgenant SL, Steece-Collier K. et al. 2010. Stimulation of the rat subthalamic nucleus is neuroprotective following significant nigral dopamine neuron loss. Neurobiol. Dis. 39:105–15 [Google Scholar]
  140. Starr PA, Rau GM, Davis V, Jr. Marks WJ, Ostrem JL. et al. 2005. Spontaneous pallidal neuronal activity in human dystonia: comparison with Parkinson's disease and normal macaque. J. Neurophysiol. 93:3165–76 [Google Scholar]
  141. Stefani A, Lozano AM, Peppe A, Stanzione P, Galati S. et al. 2007. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson's disease. Brain 130:1596–607 [Google Scholar]
  142. Stefani A, Peppe A, Galati S, Bassi MS, D'Angelo V, Pierantozzi M. 2013. The serendipity case of the pedunculopontine nucleus low-frequency brain stimulation: chasing a gait response, finding sleep, and cognition improvement. Front. Neurol. 4:68 [Google Scholar]
  143. Steigerwald F, Muller L, Johannes S, Matthies C, Volkmann J. 2016. Directional deep brain stimulation of the subthalamic nucleus: a pilot study using a novel neurostimulation device. Mov. Disord. 31:1240–43 [Google Scholar]
  144. Stein E, Bar-Gad I. 2013. Beta oscillations in the cortico-basal ganglia loop during parkinsonism. Exp. Neurol. 245:52–59 [Google Scholar]
  145. Stoffers D, Bosboom JL, Deijen JB, Wolters EC, Berendse HW, Stam CJ. 2007. Slowing of oscillatory brain activity is a stable characteristic of Parkinson's disease without dementia. Brain 130:1847–60 [Google Scholar]
  146. Stone SS, Teixeira CM, Devito LM, Zaslavsky K, Josselyn SA. et al. 2011. Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J. Neurosci. 31:13469–84 [Google Scholar]
  147. Swann NC, de Hemptinne C, Miocinovic S, Qasim S, Wang SS. et al. 2016. Gamma oscillations in the hyperkinetic state detected with chronic human brain recordings in Parkinson's disease. J. Neurosci. 36:6445–58 [Google Scholar]
  148. Sydow O, Thobois S, Alesch F, Speelman JD. 2003. Multicentre European study of thalamic stimulation in essential tremor: a six year follow up. J. Neurol. Neurosurg. Psychiatry 74:1387–91 [Google Scholar]
  149. Temel Y, Visser-Vandewalle V, Kaplan S, Kozan R, Daemen MA. et al. 2006. Protection of nigral cell death by bilateral subthalamic nucleus stimulation. Brain Res 1120:100–5 [Google Scholar]
  150. Timmermann L, Jain R, Chen L, Maarouf M, Barbe MT. et al. 2015. Multiple-source current steering in subthalamic nucleus deep brain stimulation for Parkinson's disease (the VANTAGE study): a non-randomised, prospective, multicentre, open-label study. Lancet Neurol 14:693–701 [Google Scholar]
  151. Toda H, Hamani C, Fawcett AP, Hutchison WD, Lozano AM. 2008. The regulation of adult rodent hippocampal neurogenesis by deep brain stimulation. J. Neurosurg. 108:132–38 [Google Scholar]
  152. Trager MH, Koop MM, Velisar A, Blumenfeld Z, Nikolau JS. et al. 2016. Subthalamic beta oscillations are attenuated after withdrawal of chronic high frequency neurostimulation in Parkinson's disease. Neurobiol. Dis. 96:22–30 [Google Scholar]
  153. van den Wildenberg WP, van Boxtel GJ, van der Molen MW, Bosch DA, Speelman JD, Brunia CH. 2006. Stimulation of the subthalamic region facilitates the selection and inhibition of motor responses in Parkinson's disease. J. Cogn. Neurosci. 18:626–36 [Google Scholar]
  154. van Wijk BC, Beudel M, Jha A, Oswal A, Foltynie T. et al. 2016. Subthalamic nucleus phase-amplitude coupling correlates with motor impairment in Parkinson's disease. Clin. Neurophysiol. 127:2010–19 [Google Scholar]
  155. Verkhratsky A, Parpura V. 2014. History of electrophysiology and the patch clamp. Methods in Molecular Biology 1183 Patch Clamp Methods and Protocols New York: Springer [Google Scholar]
  156. Vidailhet M, Vercueil L, Houeto JL, Krystkowiak P, Benabid AL. et al. 2005. Bilateral deep-brain stimulation of the globus pallidus in primary generalized dystonia. N. Engl. J. Med. 352:459–67 [Google Scholar]
  157. Wallace BA, Ashkan K, Heise CE, Foote KD, Torres N. et al. 2007. Survival of midbrain dopaminergic cells after lesion or deep brain stimulation of the subthalamic nucleus in MPTP-treated monkeys. Brain 130:2129–45 [Google Scholar]
  158. Walsh RA, Sidiropoulos C, Lozano AM, Hodaie M, Poon YY. et al. 2013. Bilateral pallidal stimulation in cervical dystonia: blinded evidence of benefit beyond 5 years. Brain 136:761–69 [Google Scholar]
  159. Wang DD, de Hemptinne C, Miocinovic S, Qasim SE, Miller AM. et al. 2016. Subthalamic local field potentials in Parkinson's disease and isolated dystonia: an evaluation of potential biomarkers. Neurobiol. Dis. 89:213–22 [Google Scholar]
  160. Wang J, Hirschmann J, Elben S, Hartmann CJ, Vesper J. et al. 2014. High-frequency oscillations in Parkinson's disease: spatial distribution and clinical relevance. Mov. Disord. 29:1265–72 [Google Scholar]
  161. Weinberger M, Hutchison WD, Dostrovsky JO. 2009. Pathological subthalamic nucleus oscillations in PD: Can they be the cause of bradykinesia and akinesia. ? Exp. Neurol. 219:58–61 [Google Scholar]
  162. Weinberger M, Mahant N, Hutchison WD, Lozano AM, Moro E. et al. 2006. Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson's disease. J. Neurophysiol. 96:3248–56 [Google Scholar]
  163. Wessel JR, Ghahremani A, Udupa K, Saha U, Kalia SK. et al. 2016. Stop-related subthalamic beta activity indexes global motor suppression in Parkinson's disease. Mov. Disord. 31:1846–53 [Google Scholar]
  164. Wichmann T, DeLong MR. 2016. Deep brain stimulation for movement disorders of basal ganglia origin: restoring function or functionality?. Neurotherapeutics 13:264–83 [Google Scholar]
  165. Wingeier B, Tcheng T, Koop MM, Hill BC, Heit G, Bronte-Stewart HM. 2006. Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson's disease. Exp. Neurol. 197:244–51 [Google Scholar]
  166. Yang AI, Vanegas N, Lungu C, Zaghloul KA. 2014. Beta-coupled high-frequency activity and beta-locked neuronal spiking in the subthalamic nucleus of Parkinson's disease. J. Neurosci. 34:12816–27 [Google Scholar]
  167. Zaghloul KA, Weidemann CT, Lega BC, Jaggi JL, Baltuch GH, Kahana MJ. 2012. Neuronal activity in the human subthalamic nucleus encodes decision conflict during action selection. J. Neurosci. 32:2453–60 [Google Scholar]
  168. Zavala B, Brittain JS, Jenkinson N, Ashkan K, Foltynie T. et al. 2013. Subthalamic nucleus local field potential activity during the Eriksen flanker task reveals a novel role for theta phase during conflict monitoring. J. Neurosci. 33:14758–66 [Google Scholar]
  169. Zavala B, Zaghloul K, Brown P. 2015. The subthalamic nucleus, oscillations, and conflict. Mov. Disord. 30:328–38 [Google Scholar]
/content/journals/10.1146/annurev-neuro-070815-013906
Loading
/content/journals/10.1146/annurev-neuro-070815-013906
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error