Human studies in the past three decades have provided us with an emerging understanding of how cortical and spinal networks collaborate to ensure the vast repertoire of human behaviors. Humans have direct cortical connections to spinal motoneurons, which bypass spinal interneurons and exert a direct (willful) muscle control with the aid of a context-dependent integration of somatosensory and visual information at cortical level. However, spinal networks also play an important role. Sensory feedback through spinal circuitries is integrated with central motor commands and contributes importantly to the muscle activity underlying voluntary movements. Regulation of spinal interneurons is used to switch between motor states such as locomotion (reciprocal innervation) and stance (coactivation pattern). Cortical regulation of presynaptic inhibition of sensory afferents may focus the central motor command by opening or closing sensory feedback pathways. In the future, human studies of spinal motor control, in close collaboration with animal studies on the molecular biology of the spinal cord, will continue to document the neural basis for human behavior.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. af Klint R, Mazzaro N, Nielsen JB, Sinkjaer T, Grey MJ. 2010. Load rather than length sensitive feedback contributes to soleus muscle activity during human treadmill walking. J. Neurophysiol. 103:2747–56 [Google Scholar]
  2. af Klint R, Nielsen JB, Sinkjaer T, Grey MJ. 2009. Sudden drop in ground support produces force-related unload response in human overground walking. J. Neurophysiol. 101:1705–12 [Google Scholar]
  3. Akay T, Tourtellotte WG, Arber S, Jessell TM. 2014. Degradation of mouse locomotor pattern in the absence of proprioceptive sensory feedback. PNAS 111:16877–82 [Google Scholar]
  4. Alstermark B, Isa T. 2012. Circuits for skilled reaching and grasping. Annu. Rev. Neurosci. 35:559–78 [Google Scholar]
  5. Alstermark B, Isa T, Ohki Y, Saito Y. 1999. Disynaptic pyramidal excitation in forelimb motoneurons mediated via C3–C4 propriospinal neurons in the Macaca fuscata. J. Neurophysiol. 82:3580–85 [Google Scholar]
  6. Alstermark B, Lundberg A, Norrsell U, Sybirska E. 1981. Integration in descending motor pathways controlling the forelimb in the cat. 9. Differential behavioural defects after spinal cord lesions interrupting defined pathways from higher centres to motoneurones. Exp. Brain Res. 42:299–318 [Google Scholar]
  7. Alstermark B, Ogawa J. 2004. In vivo recordings of bulbospinal excitation in adult mouse forelimb motoneurons. J. Neurophysiol. 92:1958–62 [Google Scholar]
  8. Alstermark B, Ogawa J, Isa T. 2004. Lack of monosynaptic corticomotoneuronal EPSPs in rats: disynaptic EPSPs mediated via reticulospinal neurons and polysynaptic EPSPs via segmental interneurons. J. Neurophysiol. 91:1832–39 [Google Scholar]
  9. Angel RW, Eppler W, Iannone A. 1965. Silent period produced by unloading of muscle during voluntary contraction. J. Physiol. 180:864–70 [Google Scholar]
  10. Aymard C, Baret M, Katz R, Lafitte C, Penicaud A, Raoul S. 2001. Modulation of presynaptic inhibition of Ia afferents during voluntary wrist flexion and extension in man. Exp. Brain Res. 137:127–31 [Google Scholar]
  11. Azim E, Jiang J, Alstermark B, Jessell TM. 2014. Skilled reaching relies on a V2a propriospinal internal copy circuit. Nature 508:357–63 [Google Scholar]
  12. Bannatyne BA, Liu TT, Hammar I, Stecina K, Jankowska E, Maxwell DJ. 2009. Excitatory and inhibitory intermediate zone interneurons in pathways from feline group I and II afferents: differences in axonal projections and input. J. Physiol. 587:379–99 [Google Scholar]
  13. Barthelemy D, Nielsen JB. 2010. Corticospinal contribution to arm muscle activity during human walking. J. Physiol. 588:967–79 [Google Scholar]
  14. Berardelli A, Day BL, Marsden CD, Rothwell JC. 1987. Evidence favouring presynaptic inhibition between antagonist muscle afferents in the human forearm. J. Physiol. 391:71–83 [Google Scholar]
  15. Blakemore SJ, Wolpert D, Frith C. 2000. Why can't you tickle yourself?. NeuroReport 11:R11–16 [Google Scholar]
  16. Brouwer B, Ashby P. 1990. Corticospinal projections to upper and lower limb spinal motoneurons in man. Electroencephalogr. Clin. Neurophysiol. 76:509–19 [Google Scholar]
  17. Brouwer B, Ashby P. 1992. Corticospinal projections to lower limb motoneurons in man. Exp. Brain Res. 89:649–54 [Google Scholar]
  18. Burke D, Gracies JM, Mazevet D, Meunier S, Pierrot-Deseilligny E. 1994. Non-monosynaptic transmission of the cortical command for voluntary movement in man. J. Physiol. 480:Pt. 1191–202 [Google Scholar]
  19. Burke D, Pierrot-Deseilligny E. 2012. The Circuitry of the Human Spinal Cord: Spinal and Corticospinal Mechanisms of Movement Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  20. Butt SJ, Kiehn O. 2003. Functional identification of interneurons responsible for left-right coordination of hindlimbs in mammals. Neuron 38:953–63 [Google Scholar]
  21. Capaday C, Ethier C, Van Vreeswijk C, Darling WG. 2013. On the functional organization and operational principles of the motor cortex. Front. Neural Circuits 7:66 [Google Scholar]
  22. Capaday C, Stein RB. 1986. Amplitude modulation of the soleus H-reflex in the human during walking and standing. J. Neurosci. 6:1308–13 [Google Scholar]
  23. Capaday C, Stein RB. 1987. Difference in the amplitude of the human soleus H reflex during walking and running. J. Physiol. 392:513–22 [Google Scholar]
  24. Cheney PD, Fetz EE. 1984. Corticomotoneuronal cells contribute to long-latency stretch reflexes in the rhesus monkey. J. Physiol. 349:249–72 [Google Scholar]
  25. Christensen LO, Petersen N, Andersen JB, Sinkjaer T, Nielsen JB. 2000. Evidence for transcortical reflex pathways in the lower limb of man. Prog. Neurobiol. 62:251–72 [Google Scholar]
  26. Conway BA, Halliday DM, Farmer SF, Shahani U, Maas P. et al. 1995. Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J. Physiol. 489:Pt. 3917–24 [Google Scholar]
  27. Crone C, Hultborn H, Jespersen B, Nielsen JB. 1987. Reciprocal Ia inhibition between ankle flexors and extensors in man. J. Physiol. 389:163–85 [Google Scholar]
  28. Crone C, Nielsen JB. 1989. Spinal mechanisms in man contributing to reciprocal inhibition during voluntary dorsiflexion of the foot. J. Physiol. 416:255–72 [Google Scholar]
  29. Datta AK, Farmer SF, Stephens JA. 1991. Central nervous pathways underlying synchronization of human motor unit firing studied during voluntary contractions. J. Physiol. 432:401–25 [Google Scholar]
  30. Day BL, Marsden CD, Obeso JA, Rothwell JC. 1984. Reciprocal inhibition between the muscles of the human forearm. J. Physiol. 349:519–34 [Google Scholar]
  31. Day BL, Rothwell JC, Marsden CD. 1983. Transmission in the spinal reciprocal Ia inhibitory pathway preceding willed movements of the human wrist. Neurosci. Lett. 37:245–50 [Google Scholar]
  32. Descartes R. 1664. L'Homme Paris: Charles Angot [Google Scholar]
  33. Desmurget M, Sirigu A. 2012. Conscious motor intention emerges in the inferior parietal lobule. Curr. Opin. Neurobiol. 22:1004–11 [Google Scholar]
  34. Dietz V, Quintern J, Berger W. 1984a. Cerebral evoked potentials associated with the compensatory reactions following stance and gait perturbation. Neurosci. Lett. 50:181–86 [Google Scholar]
  35. Dietz V, Quintern J, Berger W. 1984b. Corrective reactions to stumbling in man: functional significance of spinal and transcortical reflexes. Neurosci. Lett. 44:131–35 [Google Scholar]
  36. Dietz V, Quintern J, Berger W. 1985. Afferent control of human stance and gait: evidence for blocking of group I afferents during gait. Exp. Brain Res. 61:153–63 [Google Scholar]
  37. Di Lazzaro V, Oliviero A, Profice P, Meglio M, Cioni B. et al. 2001. Descending spinal cord volleys evoked by transcranial magnetic and electrical stimulation of the motor cortex leg area in conscious humans. J. Physiol. 537:1047–58 [Google Scholar]
  38. Donelan JM, McVea DA, Pearson KG. 2009. Force regulation of ankle extensor muscle activity in freely walking cats. J. Neurophysiol. 101:360–71 [Google Scholar]
  39. Dougherty KJ, Zagoraiou L, Satoh D, Rozani I, Doobar S. et al. 2013. Locomotor rhythm generation linked to the output of spinal Shox2 excitatory interneurons. Neuron 80:920–33 [Google Scholar]
  40. Eccles JC, Fatt P, Landgren S. 1956. Central pathway for direct inhibitory action of impulses in largest afferent nerve fibres to muscle. J. Neurophysiol. 19:75–98 [Google Scholar]
  41. Eccles JC, Schmidt RF, Willis WD. 1962. Presynaptic inhibition of the spinal monosynaptic reflex pathway. J. Physiol. 161:282–97 [Google Scholar]
  42. Eccles JC, Schmidt R, Willis WD. 1963. Pharmacological studies on presynaptic inhibition. J. Physiol. 168:500–30 [Google Scholar]
  43. Edelman DB, Seth AK. 2009. Animal consciousness: a synthetic approach. Trends Neurosci. 32:476–84 [Google Scholar]
  44. Enríquez-Denton M, Morita H, Christensen LO, Petersen N, Sinkjaer T, Nielsen JB. 2002. Interaction between peripheral afferent activity and presynaptic inhibition of Ia afferents in the cat. J. Neurophysiol. 88:1664–74 [Google Scholar]
  45. Faist M, Dietz V, Pierrot-Deseilligny E. 1996. Modulation, probably presynaptic in origin, of monosynaptic Ia excitation during human gait. Exp. Brain Res. 109:441–49 [Google Scholar]
  46. Farmer SF. 1998. Rhythmicity, synchronization and binding in human and primate motor systems. J. Physiol. 509:Pt. 13–14 [Google Scholar]
  47. Fetz EE,, Cheney PD. 1987. Functional relations between primate motor cortex cells and muscles: fixed and flexible. Ciba Found. Symp. 13298–117 [Google Scholar]
  48. Fink AJ, Croce KR, Huang ZJ, Abbott LF, Jessell TM, Azim E. 2014. Presynaptic inhibition of spinal sensory feedback ensures smooth movement. Nature 509:43–48 [Google Scholar]
  49. Firmin L, Field P, Maier MA, Kraskov A, Kirkwood PA. et al. 2014. Axon diameters and conduction velocities in the macaque pyramidal tract. J. Neurophysiol. 112:1229–40 [Google Scholar]
  50. Frank K, Fuortes MGF. 1957. Presynaptic and postsynaptic inhibition of monosynaptic reflexes. Fed. Proc. 16:39–40 [Google Scholar]
  51. Geertsen SS, van de Ruit M, Grey MJ, Nielsen JB. 2011. Spinal inhibition of descending command to soleus motoneurons is removed prior to dorsiflexion. J. Physiol. 589:5819–31 [Google Scholar]
  52. Georgopoulos AP, Grillner S. 1989. Visuomotor coordination in reaching and locomotion. Science 245:1209–10 [Google Scholar]
  53. Giboin LS, Lackmy-Vallee A, Burke D, Marchand-Pauvert V. 2012. Enhanced propriospinal excitation from hand muscles to wrist flexors during reach-to-grasp in humans. J. Neurophysiol. 107:532–43 [Google Scholar]
  54. Gossard JP, Brownstone RM, Barajon I, Hultborn H. 1994. Transmission in a locomotor-related group Ib pathway from hindlimb extensor muscles in the cat. Exp. Brain Res. 98:213–28 [Google Scholar]
  55. Gracies JM, Meunier S, Pierrot-Deseilligny E. 1994. Evidence for corticospinal excitation of presumed propriospinal neurones in man. J. Physiol. 475:509–18 [Google Scholar]
  56. Gracies JM, Meunier S, Pierrot-Deseilligny E, Simonetta M. 1991. Pattern of propriospinal-like excitation to different species of human upper limb motoneurones. J. Physiol. 434:151–67 [Google Scholar]
  57. Granit R. 1968. The functional role of the muscle spindle's primary end organs. Proc. R. Soc. Med. 61:69–78 [Google Scholar]
  58. Granit R, Pompeiano O, Waltman B. 1959. The early discharge of mammalian muscle spindles at onset of contraction. J. Physiol. 147:399–418 [Google Scholar]
  59. Grey MJ, Mazzaro N, Nielsen JB, Sinkjaer T. 2004. Ankle extensor proprioceptors contribute to the enhancement of the soleus EMG during the stance phase of human walking. Can. J. Physiol. Pharmacol. 82:610–16 [Google Scholar]
  60. Grey MJ, Nielsen JB, Mazzaro N, Sinkjaer T. 2007. Positive force feedback in human walking. J. Physiol. 581:99–105 [Google Scholar]
  61. Haggard P. 2008. Human volition: towards a neuroscience of will. Nat. Rev. Neurosci. 9:934–46 [Google Scholar]
  62. Hansen S,, Hansen NL, Christensen LO, Petersen NT,, Nielsen JB. 2002. Coupling of antagonistic ankle muscles during co-contraction in humans. Exp. Brain Res. 146:3282–92 [Google Scholar]
  63. Helm F, Marinovic W, Kruger B, Munzert J, Riek S. 2015. Corticospinal excitability during imagined and observed dynamic force production tasks: Effortfulness matters. Neuroscience 290:398–405 [Google Scholar]
  64. Hulliger M, Dürmüller N, Prochazka A, Trend P. 1989. Flexible fusimotor control of muscle spindle feedback during a variety of natural movements. Prog. Brain Res. 80:87–101 [Google Scholar]
  65. Hultborn H. 1972. Convergence on interneurones in the reciprocal Ia inhibitory pathway to motoneurones. Acta Physiol. Scand. Suppl. 375:1–42 [Google Scholar]
  66. Hultborn H. 2006. Spinal reflexes, mechanisms and concepts: from Eccles to Lundberg and beyond. Prog. Neurobiol. 78:215–32 [Google Scholar]
  67. Hultborn H, Jankowska E, Lindstrom S. 1971a. Recurrent inhibition from motor axon collaterals of transmission in the Ia inhibitory pathway to motoneurones. J. Physiol. 215:591–612 [Google Scholar]
  68. Hultborn H, Jankowska E, Lindstrom S. 1971b. Recurrent inhibition of interneurones monosynaptically activated from group Ia afferents. J. Physiol. 215:613–36 [Google Scholar]
  69. Hultborn H, Jankowska E, Lindstrom S. 1971c. Relative contribution from different nerves to recurrent depression of Ia IPSPs in motoneurones. J. Physiol. 215:637–64 [Google Scholar]
  70. Hultborn H, Lundberg A. 1972. Reciprocal inhibition during the stretch reflex. Acta Physiol. Scand. 85:136–38 [Google Scholar]
  71. Hultborn H, Meunier S, Morin C, Pierrot-Deseilligny E. 1987a. Assessing changes in presynaptic inhibition of Ia fibres: a study in man and the cat. J. Physiol. 389:729–56 [Google Scholar]
  72. Hultborn H, Meunier S, Pierrot-Deseilligny E, Shindo M. 1987b. Changes in presynaptic inhibition of Ia fibres at the onset of voluntary contraction in man. J. Physiol. 389:757–72 [Google Scholar]
  73. Hultborn H, Udo M. 1972a. Convergence in the reciprocal Ia inhibitory pathway of excitation from descending pathways and inhibition from motor axon collaterals. Acta Physiol. Scand. 84:95–108 [Google Scholar]
  74. Hultborn H, Udo M. 1972b. Convergence of large muscle spindle (Ia) afferents at interneuronal level in the reciprocal Ia inhibitory pathway to motoneurones. Acta Physiol. Scand. 84:493–99 [Google Scholar]
  75. Iglesias C, Marchand-Pauvert V, Lourenco G, Burke D, Pierrot-Deseilligny E. 2007. Task-related changes in propriospinal excitation from hand muscles to human flexor carpi radialis motoneurones. J. Physiol. 582:1361–79 [Google Scholar]
  76. Iglesias C, Nielsen JB, Marchand-Pauvert V. 2008a. Corticospinal inhibition of transmission in propriospinal-like neurones during human walking. Eur. J. Neurosci. 28:1351–61 [Google Scholar]
  77. Iglesias C, Nielsen JB, Marchand-Pauvert V. 2008b. Speed-related spinal excitation from ankle dorsiflexors to knee extensors during human walking. Exp. Brain Res. 188:101–10 [Google Scholar]
  78. Iles JF. 1986. Reciprocal inhibition during agonist and antagonist contraction. Exp. Brain Res. 62:212–14 [Google Scholar]
  79. Illert M, Lundberg A, Tanaka R. 1974. Disynaptic corticospinal effects in forelimb motoneurones in the cat. Brain Res. 75:312–15 [Google Scholar]
  80. Jankowska E. 1989. A neuronal system of movement control via muscle spindle secondaries. Prog. Brain Res. 80:299–303 [Google Scholar]
  81. Jankowska E. 1992. Interneuronal relay in spinal pathways from proprioceptors. Prog. Neurobiol. 38:335–78 [Google Scholar]
  82. Jankowska E. 2001. Spinal interneuronal systems: identification, multifunctional character and reconfigurations in mammals. J. Physiol. 533:31–40 [Google Scholar]
  83. Jankowska E, Roberts W. 1971. Function of single interneurones established by their monosynaptic inhibitory effects on motoneurones. Acta Physiol. Scand. 82:24A–25A [Google Scholar]
  84. Kagamihara Y, Tanaka R. 1985. Reciprocal inhibition upon initiation of voluntary movement. Neurosci. Lett. 55:23–27 [Google Scholar]
  85. Katz R, Meunier S, Pierrot-Deseilligny E. 1988. Changes in presynaptic inhibition of Ia fibres in man while standing. Brain: J. Neurol. 111:Pt. 2417–37 [Google Scholar]
  86. Kirkwood PA, Maier MA, Lemon RN. 2002. Interspecies comparisons for the C3-C4 propriospinal system: unresolved issues. Adv. Exp. Med. Biol. 508:299–308 [Google Scholar]
  87. Kots YM, Zhukov VI. 1973. Supraspinal control over segmental centers of antagonist muscles in man. 3. Tuning of spinal reciprocal inhibition system during organization preceding voluntary movement. Neurosci. Behav. Physiol. 6:9–15 [Google Scholar]
  88. Lemon RN. 1993. The G. L. Brown Prize Lecture: cortical control of the primate hand. Exp. Physiol. 78:263–301 [Google Scholar]
  89. Lemon RN. 1999. Neural control of dexterity: What has been achieved?. Exp. Brain Res. 128:6–12 [Google Scholar]
  90. Lemon RN. 2008. Descending pathways in motor control. Annu. Rev. Neurosci. 31:195–218 [Google Scholar]
  91. Lemon RN, Kirkwood PA, Maier MA, Nakajima K, Nathan P. 2004. Direct and indirect pathways for corticospinal control of upper limb motoneurons in the primate. Prog. Brain Res. 143:263–79 [Google Scholar]
  92. Lemon RN, Porter R. 1976. Afferent input to movement-related precentral neurones in conscious monkeys. Proc. R. Soc. B 194:313–39 [Google Scholar]
  93. Llewellyn M, Yang JF, Prochazka A. 1990. Human H-reflexes are smaller in difficult beam walking than in normal treadmill walking. Exp. Brain Res. 83:22–28 [Google Scholar]
  94. Macefield VG, Rothwell JC, Day BL. 1996. The contribution of transcortical pathways to long-latency stretch and tactile reflexes in human hand muscles. Exp. Brain Res. 108:147–54 [Google Scholar]
  95. Maier MA, Illert M, Kirkwood PA, Nielsen JB, Lemon RN. 1998. Does a C3–C4 propriospinal system transmit corticospinal excitation in the primate? An investigation in the macaque monkey. J. Physiol. 511:Pt. 1191–212 [Google Scholar]
  96. Maier MA, Shupe LE, Fetz EE. 2005. Dynamic neural network models of the premotoneuronal circuitry controlling wrist movements in primates. J. Comput. Neurosci. 19:125–46 [Google Scholar]
  97. Malmgren K, Pierrot-Deseilligny E. 1988. Evidence for non-monosynaptic Ia excitation of human wrist flexor motoneurones, possibly via propriospinal neurones. J. Physiol. 405:747–64 [Google Scholar]
  98. Marchand-Pauvert V, Nicolas G, Marque P, Iglesias C, Pierrot-Deseilligny E. 2005. Increase in group II excitation from ankle muscles to thigh motoneurones during human standing. J. Physiol. 566:257–71 [Google Scholar]
  99. Marchand-Pauvert V, Nielsen JB. 2002a. Modulation of heteronymous reflexes from ankle dorsiflexors to hamstring muscles during human walking. Exp. Brain Res. 142:402–8 [Google Scholar]
  100. Marchand-Pauvert V, Nielsen JB. 2002b. Modulation of non-monosynaptic excitation from ankle dorsiflexor afferents to quadriceps motoneurones during human walking. J. Physiol. 538:647–57 [Google Scholar]
  101. Marchand-Pauvert V, Simonetta-Moreau M, Pierrot-Deseilligny E. 1999. Cortical control of spinal pathways mediating group II excitation to human thigh motoneurones. J. Physiol. 517:Pt. 1301–13 [Google Scholar]
  102. Marsden CD, Merton PA, Morton HB. 1973. Is the human stretch reflex cortical rather than spinal?. Lancet 301:759–61 [Google Scholar]
  103. Marsden CD, Merton PA, Morton HB. 1976. Stretch reflex and servo action in a variety of human muscles. J. Physiol. 259:531–60 [Google Scholar]
  104. Marsden CD, Merton PA, Morton HB. 1977a. The sensory mechanism of servo action in human muscle. J. Physiol. 265:521–35 [Google Scholar]
  105. Marsden CD, Merton PA, Morton HB, Adam JE. 1977b. The effect of posterior column lesions on servo responses from the human long thumb flexor. Brain: J. Neurol. 100:Pt. 1185–200 [Google Scholar]
  106. Marsden CD, Merton PA, Morton HB, Adam JE. 1978. Feedback control of voluntary movements in man. Electroencephalogr. Clin. Neurophysiol. Suppl. 34:507–10 [Google Scholar]
  107. Matthews PB. 1964. Muscle spindles and their motor control. Physiol. Rev. 44:219–88 [Google Scholar]
  108. Mazevet D, Pierrot-Deseilligny E, Rothwell JC. 1996. A propriospinal-like contribution to electromyographic responses evoked in wrist extensor muscles by transcranial stimulation of the motor cortex in man. Exp. Brain Res. 109:495–99 [Google Scholar]
  109. McCrea DA, Shefchyk SJ, Stephens MJ, Pearson KG. 1995. Disynaptic group I excitation of synergist ankle extensor motoneurones during fictive locomotion in the cat. J. Physiol. 487:Pt. 2527–39 [Google Scholar]
  110. Meunier S. 1999. Modulation by corticospinal volleys of presynaptic inhibition to Ia afferents in man. J. Physiol. 93:387–94 [Google Scholar]
  111. Meunier S, Pierrot-Deseilligny E. 1989. Gating of the afferent volley of the monosynaptic stretch reflex during movement in man. J. Physiol. 419:753–63 [Google Scholar]
  112. Meunier S, Pierrot-Deseilligny E. 1998. Cortical control of presynaptic inhibition of Ia afferents in humans. Exp. Brain Res. 119:415–26 [Google Scholar]
  113. Mizuno Y, Tanaka R, Yanagisawa N. 1971. Reciprocal group I inhibition on triceps surae motoneurons in man. J. Neurophysiol. 34:1010–17 [Google Scholar]
  114. Morin C, Pierrot-Deseilligny E, Hultborn H. 1984. Evidence for presynaptic inhibition of muscle spindle Ia afferents in man. Neurosci. Lett. 44:137–42 [Google Scholar]
  115. Morita H, Crone C, Christenhuis D, Petersen NT, Nielsen JB. 2001. Modulation of presynaptic inhibition and disynaptic reciprocal Ia inhibition during voluntary movement in spasticity. Brain: J. Neurol. 124:826–37 [Google Scholar]
  116. Nicolas G, Marchand-Pauvert V, Burke D, Pierrot-Deseilligny E. 2001. Corticospinal excitation of presumed cervical propriospinal neurones and its reversal to inhibition in humans. J. Physiol. 533:903–19 [Google Scholar]
  117. Nielsen JB. 1998. Co-contraction of antagonistic muscles in man. Dan. Med. Bull. 45:423–35 [Google Scholar]
  118. Nielsen JB. 2003. How we walk: central control of muscle activity during human walking. Neuroscientist 9:195–204 [Google Scholar]
  119. Nielsen JB. 2004. Sensorimotor integration at spinal level as a basis for muscle coordination during voluntary movement in humans. J. Appl. Physiol. 96:1961–67 [Google Scholar]
  120. Nielsen JB, Kagamihara Y. 1992. The regulation of disynaptic reciprocal Ia inhibition during co-contraction of antagonistic muscles in man. J. Physiol. 456:373–91 [Google Scholar]
  121. Nielsen JB, Kagamihara Y. 1993. The regulation of presynaptic inhibition during co-contraction of antagonistic muscles in man. J. Physiol. 464:575–93 [Google Scholar]
  122. Nielsen JB, Kagamihara Y. 1994. Synchronization of human leg motor units during co-contraction in man. Exp. Brain Res. 102:84–94 [Google Scholar]
  123. Nielsen JB, Nagaoka M, Kagamihara Y, Kakuda N, Tanaka R. 1994a. Discharge of muscle afferents during voluntary co-contraction of antagonistic ankle muscles in man. Neurosci. Lett. 170:277–80 [Google Scholar]
  124. Nielsen JB, Petersen N. 1994. Is presynaptic inhibition distributed to corticospinal fibres in man?. J. Physiol. 477:Pt. 147–58 [Google Scholar]
  125. Nielsen JB, Petersen N, Ballegaard M. 1995. Latency of effects evoked by electrical and magnetic brain stimulation in lower limb motoneurones in man. J. Physiol. 484:Pt. 3791–802 [Google Scholar]
  126. Nielsen JB, Petersen N, Deuschl G, Ballegaard M. 1993. Task-related changes in the effect of magnetic brain stimulation on spinal neurones in man. J. Physiol. 471:223–43 [Google Scholar]
  127. Nielsen JB, Petersen N, Fedirchuk B. 1997. Evidence suggesting a transcortical pathway from cutaneous foot afferents to tibialis anterior motoneurones in man. J. Physiol. 501:Pt. 2473–84 [Google Scholar]
  128. Nielsen JB, Pierrot-Deseilligny E. 1996. Evidence of facilitation of soleus-coupled Renshaw cells during voluntary co-contraction of antagonistic ankle muscles in man. J. Physiol. 493:Pt. 2603–11 [Google Scholar]
  129. Nielsen JB, Sinkjaer T, Toft E, Kagamihara Y. 1994b. Segmental reflexes and ankle joint stiffness during co-contraction of antagonistic ankle muscles in man. Exp. Brain Res. 102:350–58 [Google Scholar]
  130. Okuma Y, Lee RG. 1996. Reciprocal inhibition in hemiplegia: correlation with clinical features and recovery. Can. J. Neurol. Sci. 23:15–23 [Google Scholar]
  131. Okuma Y, Mizuno Y, Lee RG. 2002. Reciprocal Ia inhibition in patients with asymmetric spinal spasticity. Clin. Neurophysiol. 113:292–97 [Google Scholar]
  132. Palmer E, Ashby P. 1992. Corticospinal projections to upper limb motoneurones in humans. J. Physiol. 448:397–412 [Google Scholar]
  133. Pascual-Leone A, Amedi A, Fregni F, Merabet LB. 2005. The plastic human brain cortex. Annu. Rev. Neurosci. 28:377–401 [Google Scholar]
  134. Pauvert V, Pierrot-Deseilligny E, Rothwell JC. 1998. Role of spinal premotoneurones in mediating corticospinal input to forearm motoneurones in man. J. Physiol. 508:Pt. 1301–12 [Google Scholar]
  135. Pearson KG. 2004. Generating the walking gait: role of sensory feedback. Prog. Brain Res. 143:123–29 [Google Scholar]
  136. Pearson KG. 2008. Role of sensory feedback in the control of stance duration in walking cats. Brain Res. Rev. 57:222–27 [Google Scholar]
  137. Petersen NT, Butler JE, Marchand-Pauvert V, Fisher R, Ledebt A. et al. 2001. Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking. J. Physiol. 537:651–56 [Google Scholar]
  138. Petersen NT, Christensen LO, Morita H, Sinkjaer T, Nielsen JB. 1998a. Evidence that a transcortical pathway contributes to stretch reflexes in the tibialis anterior muscle in man. J. Physiol. 512:Pt. 1267–76 [Google Scholar]
  139. Petersen NT, Christensen LO, Nielsen JB. 1998b. The effect of transcranial magnetic stimulation on the soleus H reflex during human walking. J. Physiol. 513:Pt. 2599–610 [Google Scholar]
  140. Petersen NT, Morita H, Nielsen JB. 1999. Modulation of reciprocal inhibition between ankle extensors and flexors during walking in man. J. Physiol. 520:Pt. 2605–19 [Google Scholar]
  141. Petersen NT, Pyndt HS, Nielsen JB. 2003. Investigating human motor control by transcranial magnetic stimulation. Exp. Brain Res. 152:1–16 [Google Scholar]
  142. Petersen TH, Willerslev-Olsen M, Conway BA, Nielsen JB. 2012. The motor cortex drives the muscles during walking in human subjects. J. Physiol. 590:2443–52 [Google Scholar]
  143. Pierrot-Deseilligny E. 1996. Transmission of the cortical command for human voluntary movement through cervical propriospinal premotoneurons. Prog. Neurobiol. 48:489–517 [Google Scholar]
  144. Pierrot-Deseilligny E. 2002. Propriospinal transmission of part of the corticospinal excitation in humans. Muscle Nerve 26:155–72 [Google Scholar]
  145. Pierrot-Deseilligny E, Marchand-Pauvert V. 2002. A cervical propriospinal system in man. Adv. Exp. Med. Biol. 508:273–79 [Google Scholar]
  146. Prochazka A, Clarac F, Loeb GE, Rothwell JC, Wolpaw JR. 2000. What do reflex and voluntary mean? Modern views on an ancient debate. Exp. Brain Res. 130:417–32 [Google Scholar]
  147. Prochazka A, Ellaway P. 2012. Sensory systems in the control of movement. Compr. Physiol. 2:2615–27 [Google Scholar]
  148. Prochazka A, Hulliger M, Zangger P, Appenteng K. 1985. ‘Fusimotor set’: new evidence for α-independent control of γ-motoneurones during movement in the awake cat. Brain Res. 339:136–40 [Google Scholar]
  149. Pruszynski JA. 2014. Primary motor cortex and fast feedback responses to mechanical perturbations: a primer on what we know now and some suggestions on what we should find out next. Front. Integr. Neurosci. 8:72 [Google Scholar]
  150. Pyndt HS, Laursen M, Nielsen JB. 2003. Changes in reciprocal inhibition across the ankle joint with changes in external load and pedaling rate during bicycling. J. Neurophysiol. 90:3168–77 [Google Scholar]
  151. Rappaport ZH. 2011. The neuroscientific foundations of free will. Adv. Tech. Stand. Neurosurg. 37:3–23 [Google Scholar]
  152. Rathelot JA, Strick PL. 2006. Muscle representation in the macaque motor cortex: an anatomical perspective. PNAS 103:8257–62 [Google Scholar]
  153. Rathelot JA, Strick PL. 2009. Subdivisions of primary motor cortex based on cortico-motoneuronal cells. PNAS 106:918–23 [Google Scholar]
  154. Rosenkranz K, Rothwell JC. 2004. The effect of sensory input and attention on the sensorimotor organization of the hand area of the human motor cortex. J. Physiol. 561:307–20 [Google Scholar]
  155. Rothwell JC. 1997. Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J. Neurosci. Methods 74:113–22 [Google Scholar]
  156. Rothwell JC. 2006. The startle reflex, voluntary movement, and the reticulospinal tract. Suppl. Clin. Neurophysiol. 58:223–31 [Google Scholar]
  157. Rudomin P, Lomeli J, Quevedo J. 2004. Tonic differential supraspinal modulation of PAD and PAH of segmental and ascending intraspinal collaterals of single group I muscle afferents in the cat spinal cord. Exp. Brain Res. 159:239–50 [Google Scholar]
  158. Rudomin P, Schmidt RF. 1999. Presynaptic inhibition in the vertebrate spinal cord revisited. Exp. Brain Res. 129:1–37 [Google Scholar]
  159. Ruge D, Muggleton N, Hoad D, Caronni A, Rothwell JC. 2014. An unavoidable modulation? Sensory attention and human primary motor cortex excitability. Eur. J. Neurosci. 40:2850–58 [Google Scholar]
  160. Salenius S, Salmelin R, Neuper C, Pfurtscheller G, Hari R. 1996. Human cortical 40 Hz rhythm is closely related to EMG rhythmicity. Neurosci. Lett. 213:75–78 [Google Scholar]
  161. Schieber MH. 2004. Motor control: basic units of cortical output?. Curr. Biol. 14:R353–54 [Google Scholar]
  162. Schieppati M. 1987. The Hoffmann reflex: a means of assessing spinal reflex excitability and its descending control in man. Prog. Neurobiol. 28:345–76 [Google Scholar]
  163. Shadmehr R, Smith MA, Krakauer JW. 2010. Error correction, sensory prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33:89–108 [Google Scholar]
  164. Sherrington CS. 1906. The Integrative Action of the Nervous System. New Haven, CT: Yale Univ. Press [Google Scholar]
  165. Sherrington CS. 1932. Nobel lecture: inhibition as a coordinative factor. Dec. 12, Stockholm. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1932/sherrington-lecture.html [Google Scholar]
  166. Simonetta-Moreau M, Marque P, Marchand-Pauvert V, Pierrot-Deseilligny E. 1999. The pattern of excitation of human lower limb motoneurones by probable group II muscle afferents. J. Physiol. 517:Pt. 1287–300 [Google Scholar]
  167. Sinkjaer T, Andersen JB, Ladouceur M, Christensen LO, Nielsen JB. 2000. Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man. J. Physiol. 523:Pt. 3817–27 [Google Scholar]
  168. Stein RB, Capaday C. 1988. The modulation of human reflexes during functional motor tasks. Trends Neurosci. 11:328–32 [Google Scholar]
  169. Stein RB, Oguztoreli MN. 1976. Tremor and other oscillations in neuromuscular systems. Biol. Cybern. 22:147–57 [Google Scholar]
  170. Tanaka R. 1974. Reciprocal Ia inhibition during voluntary movements in man. Exp. Brain Res. 21:529–40 [Google Scholar]
  171. Tyler AE, Hutton RS. 1986. Was Sherrington right about co-contractions?. Brain Res. 370:171–75 [Google Scholar]
  172. Vallbo AB. 1971. Muscle spindle response at the onset of isometric voluntary contractions in man. Time difference between fusimotor and skeletomotor effects. J. Physiol. 218:405–31 [Google Scholar]
  173. Vaughan CW, Kirkwood PA. 1997. Evidence from motoneurone synchronization for disynaptic pathways in the control of inspiratory motoneurones in the cat. J. Physiol. 503:Pt. 3673–89 [Google Scholar]
  174. Weiskrantz L. 1995. The problem of animal consciousness in relation to neuropsychology. Behav. Brain Res. 71:171–75 [Google Scholar]
  175. Weiss C, Tsakiris M, Haggard P, Schutz-Bosbach S. 2014. Agency in the sensorimotor system and its relation to explicit action awareness. Neuropsychologia 52:82–92 [Google Scholar]
  176. Wolpert DM, Diedrichsen J, Flanagan JR. 2011. Principles of sensorimotor learning. Nat. Rev. Neurosci. 12:739–51 [Google Scholar]
  177. Zagoraiou L, Akay T, Martin JF, Brownstone RM, Jessell TM, Miles GB. 2009. A cluster of cholinergic premotor interneurons modulates mouse locomotor activity. Neuron 64:645–62 [Google Scholar]
  178. Zuur AT, Lundbye-Jensen J, Leukel C, Taube W, Grey MJ. et al. 2010. Contribution of afferent feedback and descending drive to human hopping. J. Physiol. 588:799–807 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error