1932

Abstract

Many exciting studies have begun to elucidate the genetics of the morphological and physiological diversity of ants, but as yet few studies have investigated the genetics of ant behavior directly. Ant genomes are marked by extreme rates of gene turnover, especially in gene families related to olfactory communication, such as the synthesis of cuticular hydrocarbons and the perception of environmental semiochemicals. Transcriptomic and epigenetic differences are apparent between reproductive and sterile females, males and females, and workers that differ in body size. Quantitative genetic approaches suggest heritability of task performance, and population genetic studies indicate a genetic association with reproductive status in some species. Gene expression is associated with behavior including foraging, response to queens attempting to join a colony, circadian patterns of task performance, and age-related changes of task. Ant behavioral genetics needs further investigation of the feedback between individual-level physiological changes and socially mediated responses to environmental conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070815-013927
2016-07-08
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/neuro/39/1/annurev-neuro-070815-013927.html?itemId=/content/journals/10.1146/annurev-neuro-070815-013927&mimeType=html&fmt=ahah

Literature Cited

  1. Alvarado S, Rajakumar R, Abouheif E, Szyf M. 2015. Epigenetic variation in the Egfr gene generates quantitative variation in a complex trait in ants. Nat. Commun. 6:6513 [Google Scholar]
  2. Anderson KE, Gadau J, Mott BM, Johnson RA, Altamirano A. et al. 2006. Distribution and evolution of genetic caste determination in Pogonomyrmex seed-harvester ants. Ecology 87:2171–84 [Google Scholar]
  3. Badouin H, Belkhir K, Gregson E, Galindo J, Sundström L. et al. 2013. Transcriptome characterisation of the ant Formica exsecta with new insights into the evolution of desaturase genes in social hymenoptera. PLOS ONE 8:e68200 [Google Scholar]
  4. Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V, van Brabant Smith A. 2015. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Res. 43:3407–19 [Google Scholar]
  5. Beani L, Dessì-Fulgheri F, Cappa F, Toth A. 2014. The trap of sex in social insects: from the female to the male perspective. Neurosci. Biobehav. Rev. 46:Pt. 4519–33 [Google Scholar]
  6. Ben-Shahar Y. 2003. cGMP-dependent changes in phototaxis: a possible role for the foraging gene in honey bee division of labor. J. Exp. Biol. 206:2507–15 [Google Scholar]
  7. Ben-Shahar Y, Robichon A, Sokolowski MB, Robinson GE. 2002. Influence of gene action across different time scales on behavior. Science 296:741–44 [Google Scholar]
  8. Beye M, Hasselmann M, Fondrk MK, Page RE Jr., Omholt SW. 2003. The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114:419–29 [Google Scholar]
  9. Bonasio R, Li Q, Lian J, Mutti NS, Jin L. et al. 2012. Genome-wide and caste-specific DNA methylomes of the ants Camponotus floridanus and Harpegnathos saltator. Curr. Biol. 22:1755–64 [Google Scholar]
  10. Bonasio R, Zhang G, Ye C, Mutti NS, Fang X. et al. 2010. Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator. Science 329:1068–71 [Google Scholar]
  11. Brown JJ, Traniello JFA. 1998. Regulation of brood-care behavior in the dimorphic castes of the ant Pheidole morrisi (Hymenoptera: Formicidae): effects of caste ratio, colony size, and colony needs. J. Insect Behav. 11:209–19 [Google Scholar]
  12. Caers J, Verlinden H, Zels S, Vandersmissen HP, Vuerinckx K, Schoofs L. 2012. More than two decades of research on insect neuropeptide GPCRs: an overview. Front. Endocrinol. 3:151 [Google Scholar]
  13. Cheng D, Lu Y, Zeng L, Liang G, He X. 2015. Si-CSP9 regulates the integument and moulting process of larvae in the red imported fire ant, Solenopsis invicta. Sci. Rep. 5:9245 [Google Scholar]
  14. Chittka A, Wurm Y, Chittka L. 2012. Epigenetics: the making of ant castes. Curr. Biol. 22:835–38 [Google Scholar]
  15. Choi M-Y, Vander Meer RK, Coy M, Scharf ME. 2012. Phenotypic impacts of PBAN RNA interference in an ant, Solenopsis invicta, and a moth, Helicoverpa zea. J. Insect Physiol. 58:1159–65 [Google Scholar]
  16. Clark RM, Anderson KE, Gadau J, Fewell JH. 2006. Behavioral regulation of genetic caste determination in a Pogonomyrmex population with dependent lineages. Ecology 87:2201–6 [Google Scholar]
  17. Corona M, Libbrecht R, Wurm Y, Riba-Grognuz O, Studer RA, Keller L. 2013. Vitellogenin underwent subfunctionalization to acquire caste and behavioral specific expression in the harvester ant Pogonomyrmex barbatus. PLOS Genet. 9:e1003730 [Google Scholar]
  18. de Bekker C, Ohm RA, Loreto RG, Sebastian A, Albert I. et al. 2015. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation. BMC Genom. 16:620 [Google Scholar]
  19. DeHeer CJ, Goodisman MAD, Ross KG. 1999. Queen dispersal strategies in the multiple-queen form of the fire ant Solenopsis invicta. Am. Nat. 153:660–75 [Google Scholar]
  20. Endler A, Hölldobler B, Liebig J. 2007. Lack of physical policing and fertility cues in egg-laying workers of the ant Camponotus floridanus. Anim. Behav. 74:1171–80 [Google Scholar]
  21. Feldmeyer B, Elsner D, Foitzik S. 2014. Gene expression patterns associated with caste and reproductive status in ants: worker-specific genes are more derived than queen-specific ones. Mol. Ecol. 23:151–61 [Google Scholar]
  22. Ferreira PG, Patalano S, Chauhan R, Ffrench-Constant R, Gabaldón T. et al. 2013. Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes. Genome Biol. 14:R20 [Google Scholar]
  23. Fletcher DJC, Blum MS, Whitt TV, Temple N. 1980. Monogyny and polygyny in the fire ant, Solenopsis invicta. Ann. Entomol. Soc. Am. 73:658–61 [Google Scholar]
  24. Foret S, Kucharski R, Pittelkow Y, Lockett GA, Maleszka R. 2009. Epigenetic regulation of the honey bee transcriptome: unravelling the nature of methylated genes. BMC Genom. 10:472 [Google Scholar]
  25. Gadau J, Helmkampf M, Nygaard S, Roux J, Simola DF. et al. 2012. The genomic impact of 100 million years of social evolution in seven ant species. Trends Genet. 28:14–21 [Google Scholar]
  26. Glastad KM, Chau LM, Goodisman MAD. 2015. Chapter seven – epigenetics in social insects. Advances in Insect Physiology: Genomics, Physiology and Behaviour of Social Insects 48 A Zayed, CF Kent 227–69 London: Academic [Google Scholar]
  27. Gordon DM. 1995. The development of an ant colony's foraging range. Anim. Behav. 49:649–59 [Google Scholar]
  28. Gordon DM. 2013. The rewards of restraint in the collective regulation of foraging by harvester ant colonies. Nature 498:91–93 [Google Scholar]
  29. Gordon DM. 2014. The ecology of collective behavior. PLOS Biol. 12:3e1001805 [Google Scholar]
  30. Gordon DM. 2015. From division of labor to the collective behavior of social insects. Behav. Ecol. Sociobiol. In press. doi: 10.1007/s00265-015-2045-3 [Google Scholar]
  31. Gordon DM, Pilko A, De Bortoli N, Ingram KK. 2013. Does an ecological advantage produce the asymmetric lineage ratio in a harvester ant population?. Oecologia 173:849–57 [Google Scholar]
  32. Gouws EJ, Gaston KJ, Chown SL. 2011. Intraspecific body size frequency distributions of insects. PLOS ONE 6:e16606 [Google Scholar]
  33. Harpur BA, Kent CF, Molodtsova D, Lebon JMD, Alqarni AS. 2014. Population genomics of the honey bee reveals strong signatures of positive selection on worker traits. PNAS 111:72614–19 [Google Scholar]
  34. Heinze J, Schrempf A. 2008. Aging and reproduction in social insects – a mini-review. Gerontology 54:160–67 [Google Scholar]
  35. Helmkampf M, Cash E, Gadau J. 2014. Evolution of the insect desaturase gene family with an emphasis on social hymenoptera. Mol. Biol. Evol. 32:2456–71 [Google Scholar]
  36. Helms Cahan S, Keller L. 2003. Complex hybrid origin of genetic caste determination in harvester ants. Nature 424:306–9 [Google Scholar]
  37. Holbrook CT, Eriksson TH, Overson RP, Gadau J, Fewell JH. 2013. Colony-size effects on task organization in the harvester ant Pogonomyrmex californicus. Insectes Sociaux 60:191–201 [Google Scholar]
  38. Howard RW, Blomquist GJ. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371–93 [Google Scholar]
  39. Ingram KK, Kleeman L, Peteru S. 2011. Differential regulation of the foraging gene associated with task behaviors in harvester ants. BMC Ecol. 11:19 [Google Scholar]
  40. Ingram KK, Krummey S, LeRoux M. 2009. Expression patterns of a circadian clock gene are associated with age-related polyethism in harvester ants, Pogonomyrmex occidentalis. BMC Ecol. 9:7 [Google Scholar]
  41. Ingram KK, Kutowoi A, Wurm Y, Shoemaker D, Meier R, Bloch G. 2012. The molecular clockwork of the fire ant Solenopsis invicta. PLOS ONE 7:e45715 [Google Scholar]
  42. Ingram KK, Oefner P, Gordon DM. 2005. Task-specific expression of the foraging gene in harvester ants. Mol. Ecol. 14:813–18 [Google Scholar]
  43. Ingram KK, Pilko A, Heer J, Gordon DM. 2013. Colony life history and lifetime reproductive success of red harvester ant colonies. J. Anim. Ecol. 82:540–50 [Google Scholar]
  44. Jasper WC, Linksvayer TA, Atallah J, Friedman DA, Chiu JC, Johnson BR. 2014. Large-scale coding sequence change underlies the evolution of postdevelopmental novelty in honey bees. Mol. Biol. Evol. 32:2334–46 [Google Scholar]
  45. Johnson BR, Borowiec ML, Chiu JC, Lee EK, Atallah J, Ward PS. 2013. Phylogenomics resolves evolutionary relationships among ants, bees, and wasps. Curr. Biol. 23:2058–62 [Google Scholar]
  46. Johnson BR, Linksvayer TA. 2010. Deconstructing the superorganism: social physiology, groundplans, and sociogenomics. Q. Rev. Biol. 85:57–79 [Google Scholar]
  47. Johnson BR, Tsutsui ND. 2011. Taxonomically restricted genes are associated with the evolution of sociality in the honey bee. BMC Genom. 12:164 [Google Scholar]
  48. Julian GE, Fewell JH. 2004. Genetic variation and task specialization in the desert leaf-cutter ant, Acromyrmex versicolor. Anim. Behav. 68:1–8 [Google Scholar]
  49. Kamakura M. 2011. Royalactin induces queen differentiation in honeybees. Nature 473:478–83 [Google Scholar]
  50. Kamhi JF, Traniello JFA. 2013. Biogenic amines and collective organization in a superorganism: neuromodulation of social behavior in ants. Brain Behav. Evol. 82:220–36 [Google Scholar]
  51. Katz PS, Lillvis JL. 2014. Reconciling the deep homology of neuromodulation with the evolution of behavior. Curr. Opin. Neurobiol. 29:39–47 [Google Scholar]
  52. Kaun KR, Sokolowski MB. 2009. cGMP-dependent protein kinase: linking foraging to energy homeostasis. Genome 52:1–7 [Google Scholar]
  53. Keller L, Ross KG. 1998. Selfish genes: a green beard in the red fire ant. Nature 394:573–75 [Google Scholar]
  54. Keller L, Ross KG. 1999. Major gene effects on phenotype and fitness: the relative roles of Pgm-3 and Gp-9 in introduced populations of the fire ant Solenopsis invicta. J. Evol. Biol. 12:672–80 [Google Scholar]
  55. Koch SI, Groh K, Vogel H, Hansson BS, Hannson BS. et al. 2013. Caste-specific expression patterns of immune response and chemosensory related genes in the leaf-cutting ant, Atta vollenweideri. PLOS ONE 8:e81518 [Google Scholar]
  56. Krieger MJB. 2005. To b or not to b: a pheromone-binding protein regulates colony social organization in fire ants. Bioessays 27:91–99 [Google Scholar]
  57. Kulmuni J, Wurm Y, Pamilo P. 2013. Comparative genomics of chemosensory protein genes reveals rapid evolution and positive selection in ant-specific duplicates. Heredity 110:538–47 [Google Scholar]
  58. Li Q, Wang Z, Lian J, Schiott M, Jin L. et al. 2014. Caste-specific RNA editomes in the leaf-cutting ant Acromyrmex echinatior. Nat. Commun. 5:4943 [Google Scholar]
  59. Libbrecht R, Oxley PR, Keller L, Kronauer DJC. 2016. Robust DNA methylation in the clonal raider ant brain. Curr. Biol. 26:391–95 [Google Scholar]
  60. Libbrecht R, Oxley PR, Kronauer DJC, Keller L. 2013. Ant genomics sheds light on the molecular regulation of social organization. Genome Biol. 14:212 [Google Scholar]
  61. Linksvayer TA. 2006. Direct, maternal, and sibsocial genetic effects on individual and colony traits in an ant. Evolution 60:2552–61 [Google Scholar]
  62. Linksvayer TA. 2007. Ant species differences determined by epistasis between brood and worker genomes. PLOS ONE 2:e994 [Google Scholar]
  63. Linksvayer TA. 2015. The molecular and evolutionary genetic implications of being truly social for the social insects. Adv. Insect Physiol. 48:271–92 [Google Scholar]
  64. Linksvayer TA, Fewell JH, Gadau J, Laubichler MD. 2012. Developmental evolution in social insects: regulatory networks from genes to societies. J. Exp. Zool. Part B: Mol. Dev. Evol. 318:159–69 [Google Scholar]
  65. Linksvayer TA, Wade MJ. 2005. The evolutionary origin and elaboration of sociality in the aculeate Hymenoptera: maternal effects, sib-social effects, and heterochrony. Q. Rev. Biol. 80:317–36 [Google Scholar]
  66. Linksvayer TA, Wade MJ, Gordon DM. 2006. Genetic caste determination in harvester ants: possible origin and maintenance by cyto-nuclear epistasis. Ecology 87:2185–93 [Google Scholar]
  67. Lu H-L, Vinson SB, Pietrantonio PV. 2009. Oocyte membrane localization of vitellogenin receptor coincides with queen flying age, and receptor silencing by RNAi disrupts egg formation in fire ant virgin queens. FEBS J. 276:3110–23 [Google Scholar]
  68. Lucas C, Nicolas M, Keller L. 2015. Expression of foraging and Gp-9 are associated with social organization in the fire ant Solenopsis invicta. Insect Mol. Biol. 24:93–104 [Google Scholar]
  69. Lucas C, Sokolowski MB. 2009. Molecular basis for changes in behavioral state in ant social behaviors. PNAS 106:6351–56 [Google Scholar]
  70. Manfredini F, Lucas C, Nicolas M, Keller L, Shoemaker D, Grozinger CM. 2014. Molecular and social regulation of worker division of labour in fire ants. Mol. Ecol. 23:660–72 [Google Scholar]
  71. Manfredini F, Riba-Grognuz O, Wurm Y, Keller L, Shoemaker D, Grozinger CM. 2013. Sociogenomics of cooperation and conflict during colony founding in the fire ant Solenopsis invicta. PLOS Genet. 9:e1003633 [Google Scholar]
  72. McKenzie SK, Oxley PR, Kronauer DJC. 2014. Comparative genomics and transcriptomics in ants provide new insights into the evolution and function of odorant binding and chemosensory proteins. BMC Genom. 15:718 [Google Scholar]
  73. Meunier J. 2015. Social immunity and the evolution of group living in insects. Philos. Trans. R. Soc. B 370:20140102 [Google Scholar]
  74. Mikheyev AS, Linksvayer TA. 2015. Genes associated with ant social behavior show distinct transcriptional and evolutionary patterns. eLife 4:e04775 [Google Scholar]
  75. Miyazaki S, Okada Y, Miyakawa H, Tokuda G, Cornette R. et al. 2014. Sexually dimorphic body color is regulated by sex-specific expression of yellow gene in ponerine ant, Diacamma sp. PLOS ONE 9:e92875 [Google Scholar]
  76. Mohr SE, Hu Y, Kim K, Housden BE, Perrimon N. 2014. Resources for functional genomics studies in Drosophila melanogaster. Genetics 197:1–18 [Google Scholar]
  77. Morandin C, Dhaygude K, Paviala J, Trontti K, Wheat C, Helanterä H. 2015. Caste-biases in gene expression are specific to developmental stage in the ant Formica exsecta. J. Evol. Biol. 9:1705–18 [Google Scholar]
  78. Morandin C, Havukainen H, Kulmuni J, Dhaygude K, Trontti K, Helanterä H. 2014. Not only for egg yolk—functional and evolutionary insights from expression, selection, and structural analyses of Formica ant vitellogenins. Mol. Biol. Evol. 31:2181–93 [Google Scholar]
  79. Mott BM, Gadau J, Anderson KE. 2015. Phylogeography of Pogonomyrmex barbatus and P. rugosus harvester ants with genetic and environmental caste determination. Ecol. Evol. 5:2798–826 [Google Scholar]
  80. Nipitwattanaphon M, Wang J, Ross KG, Riba-Grognuz O, Wurm Y. et al. 2014. Effects of ploidy and sex-locus genotype on gene expression patterns in the fire ant Solenopsis invicta. Proc. R. Soc. B 281:1797 [Google Scholar]
  81. Noble D, Jablonka E, Joyner MJ, Müller GB, Omholt SW. 2014. Evolution evolves: Physiology returns to centre stage. J. Physiol. 592:2237–44 [Google Scholar]
  82. Nygaard S, Wurm Y. 2015. Ant genomics (Hymenoptera: Formicidae): challenges to overcome and opportunities to seize. Myrmecol. News 21:59–72 [Google Scholar]
  83. Nygaard S, Zhang G, Schiøtt M, Li C, Wurm Y. et al. 2011. The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming. Genome Res. 21:1339–48 [Google Scholar]
  84. Ometto L, Shoemaker D, Ross KG, Keller L. 2011. Evolution of gene expression in fire ants: the effects of developmental stage, caste, and species. Mol. Biol. Evol. 28:1381–92 [Google Scholar]
  85. Osborne KA, Robichon A, Burgess E, Butland S, Shaw RA. et al. 1997. Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 277:834–36 [Google Scholar]
  86. Oster GF, Wilson EO. 1978. Caste and Ecology in the Social Insects Princeton, NJ: Princeton Univ. Press [Google Scholar]
  87. Oxley PR, Ji L, Fetter-Pruneda I, McKenzie SK, Li C. et al. 2014. The genome of the clonal raider ant Cerapachys biroi. Curr. Biol. 24:451–58 [Google Scholar]
  88. Patel AD. 1990. An unusually broad behavioral repertory for a major worker in a dimorphic ant species: Pheidole morrisi (Hymenoptera, Formicidae). Psyche: J. Entomol. 97:181–91 [Google Scholar]
  89. Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S. et al. 2010. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328:753–56 [Google Scholar]
  90. Purcell J, Brelsford A, Wurm Y, Perrin N, Chapuisat M. 2014. Convergent genetic architecture underlies social organization in ants. Curr. Biol. 24:2728–32 [Google Scholar]
  91. Purcell J, Chapuisat M. 2013. Bidirectional shifts in colony queen number in a socially polymorphic ant population. Evolution 67:1169–80 [Google Scholar]
  92. Rappoport N, Linial M. 2015. Trends in genome dynamics among major orders of insects revealed through variations in protein families. BMC Genom. 16:583 [Google Scholar]
  93. Ratzka C, Gross R, Feldhaar H. 2013. Systemic gene knockdown in Camponotus floridanus workers by feeding of dsRNA. Insectes Sociaux 60:475–84 [Google Scholar]
  94. Rehan SM, Toth AL. 2015. Climbing the social ladder: the molecular evolution of sociality. Trends Ecol. Evol. 30:426–33 [Google Scholar]
  95. Rittschof CC, Robinson GE. 2014. Genomics: moving behavioural ecology beyond the phenotypic gambit. Anim. Behav. 92:263–70 [Google Scholar]
  96. Ross KG. 1992. Strong selection on a gene that influences reproductive competition in a social insect. Nature 355:347–49 [Google Scholar]
  97. Rosset H, Chapuisat M. 2006. Alternative life-histories in a socially polymorphic ant. Evol. Ecol.21577–88 [Google Scholar]
  98. Roux J, Privman E, Moretti S, Daub JT, Robinson-Rechavi M, Keller L. 2014. Patterns of positive selection in seven ant genomes. Mol. Biol. Evol. 31:1661–85 [Google Scholar]
  99. Schwander T, Helms Cahan S, Keller L. 2007. Characterization and distribution of Pogonomyrmex harvester ant lineages with genetic caste determination. Mol. Ecol. 16:367–87 [Google Scholar]
  100. Sempo G, Detrain C. 2004. Between-species differences of behavioural repertoire of castes in the ant genus Pheidole: a methodological artefact?. Insectes Sociaux 51:48–54 [Google Scholar]
  101. Simola DF, Graham RJ, Brady CM, Enzmann BL, Desplan C. et al. 2016. Epigenetic (re)programming of caste-specific behavior in the ant Camponotus floridanus. Science 351:aac6633 [Google Scholar]
  102. Simola DF, Wissler L, Donahue G, Waterhouse RM, Helmkampf M. et al. 2013a. Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality. Genome Res. 23:1235–47 [Google Scholar]
  103. Simola DF, Ye C, Mutti NS, Dolezal K, Bonasio R. et al. 2013b. A chromatin link to caste identity in the carpenter ant Camponotus floridanus. Genome Res. 23:486–96 [Google Scholar]
  104. Sirviö A, Pamilo P, Johnson RA, Page RE Jr., Gadau J. 2011. Origin and evolution of the dependent lineages in the genetic caste determination system of Pogonomyrmex ants. Evolution 65:869–84 [Google Scholar]
  105. Smith CD, Zimin A, Holt C, Abouheif E, Benton R. et al. 2011. Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile). PNAS 108:5673–78 [Google Scholar]
  106. Smith CR, Helms Cahan S, Kemena C, Brady SG, Yang W. et al. 2015. How do genomes create novel phenotypes? Insights from the loss of the worker caste in ant social parasites. Mol. Biol. Evol. 32:2919–31 [Google Scholar]
  107. Smith CR, Mutti NS, Jasper WC, Naidu A, Smith CD, Gadau J. 2012. Patterns of DNA methylation in development, division of labor and hybridization in an ant with genetic caste determination. PLOS ONE 7:e42433 [Google Scholar]
  108. Smith CR, Smith CD, Robertson HM, Helmkampf M, Zimin A. et al. 2011. Draft genome of the red harvester ant Pogonomyrmex barbatus. PNAS 108:5667–72 [Google Scholar]
  109. Snyder LE. 1992. The genetics of social behavior in a polygynous ant. Naturwissenschaften 79:525–27 [Google Scholar]
  110. Snyder LE. 1993. Non-random behavioural interactions among genetic subgroups in a polygynous ant. Anim. Behav. 46:431–39 [Google Scholar]
  111. Sokolowski MB. 1980. Foraging strategies of Drosophila melanogaster: a chromosomal analysis. Behav. Genet. 10:291–302 [Google Scholar]
  112. Sokolowski MB, Bauer SJ. 1989. Genetic analyses of pupation distance in Drosophila melanogaster. Heredity 62:177–83 [Google Scholar]
  113. Spannhoff A, Kim YK, Raynal NJM, Gharibyan V, Su M-B. et al. 2011. Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees. EMBO Rep. 12:238–43 [Google Scholar]
  114. Stuart RJ, Page RE Jr. 1991. Genetic component to division of labor among workers of a leptothoracine ant. Naturwissenschaften 78:375–77 [Google Scholar]
  115. Suen G, Teiling C, Li L, Holt C, Abouheif E. et al. 2011. The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle. PLOS Genet. 7:e1002007 [Google Scholar]
  116. Sumner S. 2014. The importance of genomic novelty in social evolution. Mol. Ecol. 23:26–28 [Google Scholar]
  117. Tataroglu O, Emery P. 2014. Studying circadian rhythms in Drosophila melanogaster. Methods 68:140–50 [Google Scholar]
  118. Toth AL, Robinson GE. 2007. Evo-devo and the evolution of social behavior. Trends Genet. 23:334–41 [Google Scholar]
  119. Trible W, Ross KG. 2015. Chemical communication of queen supergene status in an ant. J. Evol. Biol. 293502–13 [Google Scholar]
  120. Tsutsui ND. 2013. Dissecting ant recognition systems in the age of genomics. Biol. Lett. 9:20130416 [Google Scholar]
  121. Vander Meer R. 2012. Ant interactions with soil organisms and associated semiochemicals. J. Chem. Ecol. 38:728–45 [Google Scholar]
  122. Visscher PM, Hill WG, Wray NR. 2008. Heritability in the genomics era—concepts and misconceptions. Nat. Rev. Genet. 9:255–66 [Google Scholar]
  123. Volny VP, Gordon DM. 2002. Genetic basis for queen-worker dimorphism in a social insect. PNAS 99:6108–11 [Google Scholar]
  124. Volny VP, Greene MJ, Gordon DM. 2006. Brood production and lineage discrimination in the red harvester ant (Pogonomyrmex barbatus). Ecology 87:2194–200 [Google Scholar]
  125. Wang J, Ross KG, Keller L. 2008. Genome-wide expression patterns and the genetic architecture of a fundamental social trait. PLOS Genet. 4:e1000127 [Google Scholar]
  126. Wang J, Wurm Y, Nipitwattanaphon M, Riba-Grognuz O, Huang Y-C. et al. 2013. A Y-like social chromosome causes alternative colony organization in fire ants. Nature 493:664–68 [Google Scholar]
  127. Ward PS. 2014. The phylogeny and evolution of ants. Annu. Rev. Ecol. Evol. Syst. 45:23–43 [Google Scholar]
  128. Wiernasz DC, Hines J, Parker DG, Cole BJ. 2008. Mating for variety increases foraging activity in the harvester ant, Pogonomyrmex occidentalis. Mol. Ecol. 17:1137–44 [Google Scholar]
  129. Wilson EO. 1984. The relation between caste ratios and division of labor in the ant genus Pheidole (Hymenoptera: Formicidae). Behav. Ecol. Sociobiol. 16:89–98 [Google Scholar]
  130. Wurm Y, Wang J, Riba-Grognuz O, Corona M, Nygaard S. et al. 2011. The genome of the fire ant Solenopsis invicta. PNAS 108:5679–84 [Google Scholar]
  131. Yan H, Simola DF, Bonasio R, Liebig J, Berger SL, Reinberg D. 2014. Eusocial insects as emerging models for behavioural epigenetics. Nat. Rev. Genet. 15:677–88 [Google Scholar]
  132. Zhou X, Rokas A, Berger SL, Liebig J, Ray A, Zwiebel LJ. 2015. Chemoreceptor evolution in Hymenoptera and its implications for the evolution of eusociality. Genome Biol. Evol. 7:2407–16 [Google Scholar]
  133. Zhou X, Slone JD, Rokas A, Berger SL, Liebig J. et al. 2012. Phylogenetic and transcriptomic analysis of chemosensory receptors in a pair of divergent ant species reveals sex-specific signatures of odor coding. PLOS Genet. 8:e1002930 [Google Scholar]
/content/journals/10.1146/annurev-neuro-070815-013927
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error