1932

Abstract

The dorsal anterior cingulate cortex (dACC) has attracted great interest from neuroscientists because it is associated with so many important cognitive functions. Despite, or perhaps because of, its rich functional repertoire, we lack a single comprehensive view of its function. Most research has approached this puzzle from the top down, using aggregate measures such as neuroimaging. We provide a view from the bottom up, with a focus on single-unit responses and anatomy. We summarize the strengths and weaknesses of the three major approaches to characterizing the dACC: as a monitor, as a controller, and as an economic structure. We argue that neurons in the dACC are specialized for representing contexts, or task-state variables relevant for behavior, and strategies, or aspects of future plans. We propose that dACC neurons link contexts with strategies by integrating diverse task-relevant information to create a rich representation of task space and exert high-level and abstract control over decision and action.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070815-013952
2016-07-08
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/neuro/39/1/annurev-neuro-070815-013952.html?itemId=/content/journals/10.1146/annurev-neuro-070815-013952&mimeType=html&fmt=ahah

Literature Cited

  1. Ainslie G. 1975. Specious reward: a behavioral theory of impulsiveness and impulse control. Psychol. Bull. 82:463–96 [Google Scholar]
  2. Akkal D, Bioulac B, Audin J, Burbaud P. 2002. Comparison of neuronal activity in the rostral supplementary and cingulate motor areas during a task with cognitive and motor demands. Eur. J. Neurosci. 15:887–904 [Google Scholar]
  3. Alexander WH, Brown JW. 2011. Medial prefrontal cortex as an action-outcome predictor. Nat. Neurosci. 14:1338–44 [Google Scholar]
  4. Amaral D, Price J. 1984. Amygdalo-cortical projections in the monkey (Macaca fascicularis). J. Comp. Neurol. 230:465–96 [Google Scholar]
  5. Amiez C, Joseph JP, Procyk E. 2005. Anterior cingulate error-related activity is modulated by predicted reward. Eur. J. Neurosci. 21:3447–52 [Google Scholar]
  6. Amiez C, Joseph JP, Procyk E. 2006. Reward encoding in the monkey anterior cingulate cortex. Cereb. Cortex 16:1040–55 [Google Scholar]
  7. Aron AR, Robbins TW, Poldrack RA. 2004. Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 8:170–77 [Google Scholar]
  8. Barbas H, Pandya DN. 1989. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286:353–75 [Google Scholar]
  9. Bartra O, McGuire JT, Kable JW. 2013. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage 76:412–27 [Google Scholar]
  10. Bechara A, Damasio H, Damasio AR. 2000. Emotion, decision making and the orbitofrontal cortex. Cereb. Cortex 10:295–307 [Google Scholar]
  11. Behrens TE, Woolrich MW, Walton ME, Rushworth MF. 2007. Learning the value of information in an uncertain world. Nat. Neurosci. 10:1214–21 [Google Scholar]
  12. Blanchard TC, Hayden BY. 2014. Neurons in dorsal anterior cingulate cortex signal postdecisional variables in a foraging task. J. Neurosci. 34:646–55 [Google Scholar]
  13. Blanchard TC, Strait CE, Hayden BY. 2015. Ramping ensemble activity in dorsal anterior cingulate cortex during persistent commitment to a decision. J. Neurophysiol. 114:2439–49 [Google Scholar]
  14. Boorman ED, Behrens TE, Woolrich MW, Rushworth MF. 2009. How green is the grass on the other side? Frontopolar cortex and the evidence in favor of alternative courses of action. Neuron 62:733–43 [Google Scholar]
  15. Boorman ED, Rushworth MF, Behrens TE. 2013. Ventromedial prefrontal and anterior cingulate cortex adopt choice and default reference frames during sequential multi-alternative choice. J. Neurosci. 33:2242–53 [Google Scholar]
  16. Botvinick MM. 2007. Conflict monitoring and decision making: reconciling two perspectives on anterior cingulate function. Cogn. Affect. Behav. Neurosci. 7:356–66 [Google Scholar]
  17. Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD. 2001. Conflict monitoring and cognitive control. Psychol. Rev. 108:624–52 [Google Scholar]
  18. Brass M, Haggard P. 2007. To do or not to do: the neural signature of self-control. J. Neurosci. 27:9141–45 [Google Scholar]
  19. Brown JW, Braver TS. 2005. Learned predictions of error likelihood in the anterior cingulate cortex. Science 307:1118–21 [Google Scholar]
  20. Bryden DW, Johnson EE, Tobia SC, Kashtelyan V, Roesch MR. 2011. Attention for learning signals in anterior cingulate cortex. J. Neurosci. 31:18266–74 [Google Scholar]
  21. Bush G, Luu P, Posner MI. 2000. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4:215–22 [Google Scholar]
  22. Cai X, Padoa-Schioppa C. 2012. Neuronal encoding of subjective value in dorsal and ventral anterior cingulate cortex. J. Neurosci. 32:3791–808 [Google Scholar]
  23. Calhoun AJ, Hayden BY. 2015. The foraging brain. Curr. Opin. Behav. Sci. 5:24–31 [Google Scholar]
  24. Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD. 1998. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280:747–49 [Google Scholar]
  25. Chang SWC, Gariepy JF, Platt ML. 2013. Neuronal reference frames for social decisions in primate frontal cortex. Nat. Neurosci. 16:243–50 [Google Scholar]
  26. Chudasama Y, Daniels TE, Gorrin DP, Rhodes SE, Rudebeck PH, Murray EA. 2013. The role of the anterior cingulate cortex in choices based on reward value and reward contingency. Cereb. Cortex 23:2884–98 [Google Scholar]
  27. Cowen SL, McNaughton BL. 2007. Selective delay activity in the medial prefrontal cortex of the rat: contribution of sensorimotor information and contingency. J. Neurophysiol. 98:303–16 [Google Scholar]
  28. Croxson PL, Walton ME, O'Reilly JX, Behrens TE, Rushworth MF. 2009. Effort-based cost–benefit valuation and the human brain. J. Neurosci. 29:4531–41 [Google Scholar]
  29. Devinsky O, Morrell MJ, Vogt BA. 1995. Contributions of anterior cingulate cortex to behaviour. Brain 118:279–306 [Google Scholar]
  30. Dum RP, Strick PL. 1991. The origin of corticospinal projections from the premotor areas in the frontal lobe. J. Neurosci. 11:667–89 [Google Scholar]
  31. Dum RP, Strick PL. 1992. Medial wall motor areas and skeletomotor control. Curr. Opin. Neurobiol. 2:836–39 [Google Scholar]
  32. Dum RP, Strick PL. 2002. Motor areas in the frontal lobe of the primate. Physiol. Behav. 77:677–82 [Google Scholar]
  33. Duncan J. 2001. An adaptive coding model of neural function in prefrontal cortex. Nat. Rev. Neurosci. 2:820–29 [Google Scholar]
  34. Durstewitz D, Vittoz NM, Floresco SB, Seamans JK. 2010. Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning. Neuron 66:438–48 [Google Scholar]
  35. Ebitz RB, Platt ML. 2015. Neuronal activity in primate dorsal anterior cingulate cortex signals task conflict and predicts adjustments in pupil-linked arousal. Neuron 85:628–40 [Google Scholar]
  36. Etkin A, Egner T, Kalisch R. 2011. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn. Sci. 15:85–93 [Google Scholar]
  37. Euston DR, Gruber AJ, McNaughton BL. 2012. The role of medial prefrontal cortex in memory and decision making. Neuron 76:1057–70 [Google Scholar]
  38. Evenden JL. 1999. Varieties of impulsivity. Psychopharmacology 146:348–61 [Google Scholar]
  39. Falkenstein M, Hohnsbein J, Hoormann J, Blanke L. 1990. Effects of errors in choice reaction tasks on the ERP under focused and divided attention. Psychophysiol. Brain Res. 1:192–95 [Google Scholar]
  40. FitzGerald TH, Seymour B, Dolan RJ. 2009. The role of human orbitofrontal cortex in value comparison for incommensurable objects. J. Neurosci. 29:8388–95 [Google Scholar]
  41. Floden D, Stuss DT. 2006. Inhibitory control is slowed in patients with right superior medial frontal damage. J. Cogn. Neurosci. 18:1843–49 [Google Scholar]
  42. Forstmann BU, Brass M, Koch I, Von Cramon DY. 2006. Voluntary selection of task sets revealed by functional magnetic resonance imaging. J. Cogn. Neurosci. 18:388–98 [Google Scholar]
  43. Fried I, Mukamel R, Kreiman G. 2011. Internally generated preactivation of single neurons in human medial frontal cortex predicts volition. Neuron 69:548–62 [Google Scholar]
  44. Fuster JM. 1973. Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J. Neurophysiol. 36:61–78 [Google Scholar]
  45. Gehring WJ, Goss B, Coles MG, Meyer DE, Donchin E. 1993. A neural system for error detection and compensation. Psychol. Sci. 4:385–90 [Google Scholar]
  46. Gehring WJ, Willoughby AR. 2002. The medial frontal cortex and the rapid processing of monetary gains and losses. Science 295:2279–82 [Google Scholar]
  47. Gemba H, Sasaki K, Brooks V. 1986. ‘Error’ potentials in limbic cortex (anterior cingulate area 24) of monkeys during motor learning. Neurosci. Lett. 70:223–27 [Google Scholar]
  48. Goldman-Rakic PS. 1988. Topography of cognition: parallel distributed networks in primate association cortex. Annu. Rev. Neurosci. 11:137–56 [Google Scholar]
  49. Hadland KA, Rushworth MF, Gaffan D, Passingham RE. 2003. The anterior cingulate and reward-guided selection of actions. J. Neurophysiol. 89:1161–64 [Google Scholar]
  50. Hare TA, Camerer CF, Rangel A. 2009. Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324:646–48 [Google Scholar]
  51. Hare TA, Schultz W, Camerer CF, O'Doherty JP, Rangel A. 2011. Transformation of stimulus value signals into motor commands during simple choice. PNAS 108:18120–25 [Google Scholar]
  52. Hayden BY. 2016. Time discounting and time preference in animals: a critical review. Psychon. Bull. Rev. 23:39–53 [Google Scholar]
  53. Hayden BY, Heilbronner SR, Pearson JM, Platt ML. 2011a. Surprise signals in anterior cingulate cortex: neuronal encoding of unsigned reward prediction errors driving adjustment in behavior. J. Neurosci. 31:4178–87 [Google Scholar]
  54. Hayden BY, Pearson JM, Platt ML. 2009. Fictive reward signals in the anterior cingulate cortex. Science 324:948–50 [Google Scholar]
  55. Hayden BY, Pearson JM, Platt ML. 2011b. Neuronal basis of sequential foraging decisions in a patchy environment. Nat. Neurosci. 14:933–39 [Google Scholar]
  56. Hayden BY, Platt ML. 2010. Neurons in anterior cingulate cortex multiplex information about reward and action. J. Neurosci. 30:3339–46 [Google Scholar]
  57. Heilbronner SR, Haber SN. 2014. Frontal cortical and subcortical projections provide a basis for segmenting the cingulum bundle: implications for neuroimaging and psychiatric disorders. J. Neurosci. 34:10041–54 [Google Scholar]
  58. Hillman KL, Bilkey DK. 2010. Neurons in the rat anterior cingulate cortex dynamically encode cost–benefit in a spatial decision-making task. J. Neurosci. 30:7705–13 [Google Scholar]
  59. Holroyd CB, Coles MG. 2002. The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychol. Rev. 109:679–709 [Google Scholar]
  60. Holroyd CB, McClure SM. 2015. Hierarchical control over effortful behavior by rodent medial frontal cortex: a computational model. Psychol. Rev. 122:54–83 [Google Scholar]
  61. Holroyd CB, Yeung N. 2012. Motivation of extended behaviors by anterior cingulate cortex. Trends Cogn. Sci. 16:122–28 [Google Scholar]
  62. Horst NK, Laubach M. 2012. Working with memory: evidence for a role for the medial prefrontal cortex in performance monitoring during spatial delayed alternation. J. Neurophysiol. 108:3276–88 [Google Scholar]
  63. Hoshi E, Sawamura H, Tanji J. 2005. Neurons in the rostral cingulate motor area monitor multiple phases of visuomotor behavior with modest parametric selectivity. J. Neurophysiol. 94:640–56 [Google Scholar]
  64. Hosokawa T, Kennerley SW, Sloan J, Wallis JD. 2013. Single-neuron mechanisms underlying cost–benefit analysis in frontal cortex. J. Neurosci. 33:17385–97 [Google Scholar]
  65. Hyman JM, Ma L, Balaguer-Ballester E, Durstewitz D, Seamans JK. 2012. Contextual encoding by ensembles of medial prefrontal cortex neurons. PNAS 109:5086–91 [Google Scholar]
  66. Isomura Y, Ito Y, Akazawa T, Nambu A, Takada M. 2003. Neural coding of “attention for action” and “response selection” in primate anterior cingulate cortex. J. Neurosci. 23:8002–12 [Google Scholar]
  67. Ito S, Stuphorn V, Brown JW, Schall JD. 2003. Performance monitoring by the anterior cingulate cortex during saccade countermanding. Science 302:120–22 [Google Scholar]
  68. Jocham G, Neumann J, Klein TA, Danielmeier C, Ullsperger M. 2009. Adaptive coding of action values in the human rostral cingulate zone. J. Neurosci. 29:7489–96 [Google Scholar]
  69. Johnston K, Levin HM, Koval MJ, Everling S. 2007. Top-down control-signal dynamics in anterior cingulate and prefrontal cortex neurons following task switching. Neuron 53:453–62 [Google Scholar]
  70. Jung MW, Baeg EH, Kim MJ, Kim YB, Kim JJ. 2008. Plasticity and memory in the prefrontal cortex. Rev. Neurosci. 19:29–46 [Google Scholar]
  71. Kennerley SW, Behrens TE, Wallis JD. 2011. Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nat. Neurosci. 14:1581–89 [Google Scholar]
  72. Kennerley SW, Dahmubed AF, Lara AH, Wallis JD. 2009. Neurons in the frontal lobe encode the value of multiple decision variables. J. Cogn. Neurosci. 21:1162–78 [Google Scholar]
  73. Kennerley SW, Wallis JD. 2009a. Encoding of reward and space during a working memory task in the orbitofrontal cortex and anterior cingulate sulcus. J. Neurophysiol. 102:3352–64 [Google Scholar]
  74. Kennerley SW, Wallis JD. 2009b. Evaluating choices by single neurons in the frontal lobe: outcome value encoded across multiple decision variables. Eur. J. Neurosci. 29:2061–73 [Google Scholar]
  75. Kennerley SW, Walton ME, Behrens TE, Buckley MJ, Rushworth MF. 2006. Optimal decision making and the anterior cingulate cortex. Nat. Neurosci. 9:940–47 [Google Scholar]
  76. Kerns JG, Cohen JD, MacDonald AW, Cho RY, Stenger VA, Carter CS. 2004. Anterior cingulate conflict monitoring and adjustments in control. Science 303:1023–26 [Google Scholar]
  77. Kesner RP. 2000. Subregional analysis of mnemonic functions of the prefrontal cortex in the rat. Psychobiology 28:219–28 [Google Scholar]
  78. Knoch D, Fehr E. 2007. Resisting the power of temptations: the right prefrontal cortex and self-control. Ann. N.Y. Acad. Sci. 1104:123–34 [Google Scholar]
  79. Kolling N, Behrens TE, Mars RB, Rushworth MF. 2012. Neural mechanisms of foraging. Science 336:95–98 [Google Scholar]
  80. Kurzban R, Duckworth A, Kable JW, Myers J. 2013. An opportunity cost model of subjective effort and task performance. Behav. Brain Sci. 36:661–79 [Google Scholar]
  81. Lapish CC, Durstewitz D, Chandler LJ, Seamans JK. 2008. Successful choice behavior is associated with distinct and coherent network states in anterior cingulate cortex. PNAS 105:11963–68 [Google Scholar]
  82. Lavenex P, Suzuki WA, Amaral DG. 2002. Perirhinal and parahippocampal cortices of the macaque monkey: projections to the neocortex. J. Comp. Neurol. 447:394–420 [Google Scholar]
  83. Levy DJ, Glimcher PW. 2012. The root of all value: a neural common currency for choice. Curr. Opin. Neurobiol. 22:1027–38 [Google Scholar]
  84. Lim SL, O'Doherty JP, Rangel A. 2011. The decision value computations in the vmPFC and striatum use a relative value code that is guided by visual attention. J. Neurosci. 31:13214–23 [Google Scholar]
  85. Luk C-H, Wallis JD. 2009. Dynamic encoding of responses and outcomes by neurons in medial prefrontal cortex. J. Neurosci. 29:7526–39 [Google Scholar]
  86. Luk CH, Wallis JD. 2013. Choice coding in frontal cortex during stimulus-guided or action-guided decision-making. J. Neurosci. 33:1864–71 [Google Scholar]
  87. Ma L, Hyman JM, Phillips AG, Seamans JK. 2014. Tracking progress toward a goal in corticostriatal ensembles. J. Neurosci. 34:2244–53 [Google Scholar]
  88. Matelli M, Luppino G, Rizzolatti G. 1991. Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey. J. Comp. Neurol. 311:445–62 [Google Scholar]
  89. Matsumoto K, Suzuki W, Tanaka K. 2003. Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science 301:229–32 [Google Scholar]
  90. Matsumoto K, Tanaka K. 2004. The role of the medial prefrontal cortex in achieving goals. Curr. Opin. Neurobiol. 14:178–85 [Google Scholar]
  91. Matsumoto M, Matsumoto K, Abe H, Tanaka K. 2007. Medial prefrontal cell activity signaling prediction errors of action values. Nat. Neurosci. 10:647–56 [Google Scholar]
  92. Maunsell JHR. 2004. Neuronal representations of cognitive state: reward or attention?. Trends Cogn. Sci. 8:261–65 [Google Scholar]
  93. McCoy AN, Crowley JC, Haghighian G, Dean HL, Platt ML. 2003. Saccade reward signals in posterior cingulate cortex. Neuron 40:1031–40 [Google Scholar]
  94. Michelet T, Bioulac B, Langbour N, Goillandeau M, Guehl D, Burbaud P. 2015. Electrophysiological correlates of a versatile executive control system in the monkey anterior cingulate cortex. Cereb. Cortex 26:1684–97 [Google Scholar]
  95. Milad MR, Quirk GJ. 2002. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420:70–74 [Google Scholar]
  96. Milad MR, Quirk GJ, Pitman RK, Orr SP, Fischl B, Rauch SL. 2007. A role for the human dorsal anterior cingulate cortex in fear expression. Biol. Psychiatry 62:1191–94 [Google Scholar]
  97. Miller EK, Cohen JD. 2001. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24:167–202 [Google Scholar]
  98. Morecraft RJ, Van Hoesen GW. 1998. Convergence of limbic input to the cingulate motor cortex in the rhesus monkey. Brain Res. Bull. 45:209–32 [Google Scholar]
  99. Nakamura K, Roesch MR, Olson CR. 2005. Neuronal activity in macaque SEF and ACC during performance of tasks involving conflict. J. Neurophysiol. 93:884–908 [Google Scholar]
  100. Narayanan NS, Cavanagh JF, Frank MJ, Laubach M. 2013. Common medial frontal mechanisms of adaptive control in humans and rodents. Nat. Neurosci. 16:1888–95 [Google Scholar]
  101. Narayanan NS, Horst NK, Laubach M. 2006. Reversible inactivations of rat medial prefrontal cortex impair the ability to wait for a stimulus. Neuroscience 139:865–76 [Google Scholar]
  102. Narayanan NS, Laubach M. 2006. Top-down control of motor cortex ensembles by dorsomedial prefrontal cortex. Neuron 52:921–31 [Google Scholar]
  103. Niki H, Watanabe M. 1979. Prefrontal and cingulate unit activity during timing behavior in the monkey. Brain Res. 171:213–24 [Google Scholar]
  104. Norman D, Shallice T. 1986. Attention to action: willed and automatic control of behavior. Consciousness and Self-Regulation: Advances in Research and Theory 4 R Davidson, R Schwartz, D Shapiro 1–18 New York: Plenum [Google Scholar]
  105. Padoa-Schioppa C, Assad JA. 2006. Neurons in the orbitofrontal cortex encode economic value. Nature 441:223–26 [Google Scholar]
  106. Papez JW. 1937. A proposed mechanism of emotion. Arch. Neurol. Psychiatry 38:725–43 [Google Scholar]
  107. Parent MA, Amarante LM, Liu B, Weikum D, Laubach M. 2015. The medial prefrontal cortex is crucial for the maintenance of persistent licking and the expression of incentive contrast. Front. Integr. Neurosci. 9:23 [Google Scholar]
  108. Parvizi J, Rangarajan V, Shirer WR, Desai N, Greicius MD. 2013. The will to persevere induced by electrical stimulation of the human cingulate gyrus. Neuron 80:1359–67 [Google Scholar]
  109. Passetti F, Chudasama Y, Robbins TW. 2002. The frontal cortex of the rat and visual attentional performance: dissociable functions of distinct medial prefrontal subregions. Cereb. Cortex 12:1254–68 [Google Scholar]
  110. Passingham RE, Bengtsson SL, Lau HC. 2010. Medial frontal cortex: from self-generated action to reflection on one's own performance. Trends Cogn. Sci. 14:16–21 [Google Scholar]
  111. Passingham RE, Wise SP. 2012. The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the Origin of Insight London: Oxford Univ. Press [Google Scholar]
  112. Paus T. 2001. Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat. Rev. Neurosci. 2:417–24 [Google Scholar]
  113. Paxinos G, Huang XF, Toga AW. 2000. The Rhesus Monkey Brain in Stereotaxic Coordinates San Diego, CA: Academic [Google Scholar]
  114. Peters J, Buchel C. 2010. Episodic future thinking reduces reward delay discounting through an enhancement of prefrontal–mediotemporal interactions. Neuron 66:138–48 [Google Scholar]
  115. Petrides M, Pandya DN. 1994. Comparative architectonic analysis of the human and the macaque frontal cortex. Handbook of Neuropsychology 9 F Boller, J Grafman 17–58 Amsterdam: Elsevier [Google Scholar]
  116. Picard N, Strick PL. 1996. Motor areas of the medial wall: a review of their location and functional activation. Cereb. Cortex 6:342–53 [Google Scholar]
  117. Picton TW, Stuss DT, Alexander MP, Shallice T, Binns MA, Gillingham S. 2007. Effects of focal frontal lesions on response inhibition. Cereb. Cortex 17:826–38 [Google Scholar]
  118. Platt ML, Glimcher PW. 1999. Neural correlates of decision variables in parietal cortex. Nature 400:233–38 [Google Scholar]
  119. Prévost C, Pessiglione M, Météreau E, Cléry-Melin M-L, Dreher J-C. 2010. Separate valuation subsystems for delay and effort decision costs. J. Neurosci. 30:14080–90 [Google Scholar]
  120. Price DD. 2000. Psychological and neural mechanisms of the affective dimension of pain. Science 288:1769–72 [Google Scholar]
  121. Procyk E, Tanaka YL, Joseph JP. 2000. Anterior cingulate activity during routine and non-routine sequential behaviors in macaques. Nat. Neurosci. 3:502–8 [Google Scholar]
  122. Procyk E, Wilson CRE, Stoll FM, Faraut MCM, Petrides M, Amiez C. 2016. Midcingulate motor map and feedback detection: converging data from humans and monkeys. Cereb. Cortex 26:467–76 [Google Scholar]
  123. Quilodran R, Rothe M, Procyk E. 2008. Behavioral shifts and action valuation in the anterior cingulate cortex. Neuron 57:314–25 [Google Scholar]
  124. Raichle ME, Fiez JA, Videen TO, MacLeod AM, Pardo JV. et al. 1994. Practice-related changes in human brain functional anatomy during nonmotor learning. Cereb. Cortex 4:8–26 [Google Scholar]
  125. Rudebeck PH, Behrens TE, Kennerley SW, Baxter MG, Buckley MJ. et al. 2008. Frontal cortex subregions play distinct roles in choices between actions and stimuli. J. Neurosci. 28:13775–85 [Google Scholar]
  126. Rudebeck PH, Buckley MJ, Walton ME, Rushworth MFS. 2006a. A role for the macaque anterior cingulate gyrus in social valuation. Science 313:1310–12 [Google Scholar]
  127. Rudebeck PH, Walton ME, Smyth AN, Bannerman DM, Rushworth MF. 2006b. Separate neural pathways process different decision costs. Nat. Neurosci. 9:1161–68 [Google Scholar]
  128. Rushworth MF, Hadland KA, Gaffan D, Passingham RE. 2003. The effect of cingulate cortex lesions on task switching and working memory. J. Cogn. Neurosci. 15:338–53 [Google Scholar]
  129. Rushworth MF, Noonan MP, Boorman ED, Walton ME, Behrens TE. 2011. Frontal cortex and reward-guided learning and decision-making. Neuron 70:1054–69 [Google Scholar]
  130. Rushworth MF, Walton M, Kennerley S, Bannerman D. 2004. Action sets and decisions in the medial frontal cortex. Trends Cogn. Sci. 8:410–17 [Google Scholar]
  131. Sallet J, Quilodran R, Rothe M, Vezoli J, Joseph JP, Procyk E. 2007. Expectations, gains, and losses in the anterior cingulate cortex. Cogn. Affect. Behav. Neurosci. 7:327–36 [Google Scholar]
  132. Schall JD, Stuphorn V, Brown JW. 2002. Monitoring and control of action by the frontal lobes. Neuron 36:309–22 [Google Scholar]
  133. Seo H, Lee D. 2007. Temporal filtering of reward signals in the dorsal anterior cingulate cortex during a mixed-strategy game. J. Neurosci. 27:8366–77 [Google Scholar]
  134. Seo H, Lee D. 2009. Behavioral and neural changes after gains and losses of conditioned reinforcers. J. Neurosci. 29:3627–41 [Google Scholar]
  135. Shen C, Ardid S, Kaping D, Westendorff S, Everling S, Womelsdorf T. 2015. Anterior cingulate cortex cells identify process-specific errors of attentional control prior to transient prefrontal-cingulate inhibition. Cereb. Cortex 25:2213–28 [Google Scholar]
  136. Shenhav A, Botvinick MM, Cohen JD. 2013. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79:217–40 [Google Scholar]
  137. Shenhav A, Straccia MA, Cohen JD, Botvinick MM. 2014. Anterior cingulate engagement in a foraging context reflects choice difficulty, not foraging value. Nat. Neurosci. 17:1249–54 [Google Scholar]
  138. Sheth SA, Mian MK, Patel SR, Asaad WF, Williams ZM. et al. 2012. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature 488:218–21 [Google Scholar]
  139. Shidara M, Richmond BJ. 2002. Anterior cingulate: single neuronal signals related to degree of reward expectancy. Science 296:1709–11 [Google Scholar]
  140. Shima K, Aya K, Mushiake H, Inase M, Aizawa H, Tanji J. 1991. Two movement-related foci in the primate cingulate cortex observed in signal-triggered and self-paced forelimb movements. J. Neurophysiol. 65:188–202 [Google Scholar]
  141. Shima K, Tanji J. 1998. Role for cingulate motor area cells in voluntary movement selection based on reward. Science 282:1335–38 [Google Scholar]
  142. Stephens DW, Anderson D. 2001. The adaptive value of preference for immediacy: when shortsighted rules have farsighted consequences. Behav. Ecol. 12:330–39 [Google Scholar]
  143. Stott JJ, Redish AD. 2014. A functional difference in information processing between orbitofrontal cortex and ventral striatum during decision-making behaviour. Philos. Trans. R. Soc. B 369:20130472 [Google Scholar]
  144. Strait CE, Blanchard TC, Hayden BY. 2014. Reward value comparison via mutual inhibition in ventromedial prefrontal cortex. Neuron 82:1357–66 [Google Scholar]
  145. Strait CE, Sleezer BJ, Blanchard TC, Azab H, Castagno MD, Hayden BY. 2015a. Neuronal selectivity for spatial positions of offers and choices in five reward regions. J. Neurophysiol. 115:1098–111 [Google Scholar]
  146. Strait CE, Sleezer BJ, Hayden BY. 2015b. Signatures of value comparison in ventral striatum neurons. PLOS Biol. 13:e1002173 [Google Scholar]
  147. Tow PM, Whitty C. 1953. Personality changes after operations on the cingulate gyrus in man. J. Neurol. Neurosurg. Psychiatry 16:186 [Google Scholar]
  148. Turken AU, Swick D. 1999. Response selection in the human anterior cingulate cortex. Nat. Neurosci. 2:920–24 [Google Scholar]
  149. Ullsperger M, von Cramon DY. 2001. Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by event-related fMRI and ERPs. NeuroImage 14:1387–401 [Google Scholar]
  150. Van Hoesen GW, Morecraft RJ, Vogt BA. 1993. Connections of the monkey cingulate cortex. See Vogt & Gabriel 1993 249–84
  151. Van Veen V, Cohen JD, Botvinick MM, Stenger VA, Carter CS. 2001. Anterior cingulate cortex, conflict monitoring, and levels of processing. NeuroImage 14:1302–8 [Google Scholar]
  152. Vogt BA. 2009. Cingulate Neurobiology and Disease London: Oxford Univ. Press [Google Scholar]
  153. Vogt BA, Finch DM, Olson CR. 1992. Functional hetereogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb. Cortex 2:435–43 [Google Scholar]
  154. Vogt BA, Gabriel M. 1993. Neurobiology of Cingulate Cortex and Limbic Thalamus: A Comprehensive Handbook Dordrecht, Neth: Springer [Google Scholar]
  155. Vogt BA, Nimchinsky EA, Vogt LJ, Hof PR. 1995. Human cingulate cortex: surface features, flat maps, and cytoarchitecture. J. Comp. Neurol. 359:490–506 [Google Scholar]
  156. Vogt BA, Pandya DN. 1987. Cingulate cortex of the rhesus monkey: II. Cortical afferents. J. Comp. Neurol. 262:271–89 [Google Scholar]
  157. Vogt BA, Pandya DN, Rosene DL. 1987. Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents. J. Comp. Neurol. 262:256–70 [Google Scholar]
  158. Vogt BA, Vogt L, Farber NB, Bush G. 2005. Architecture and neurocytology of monkey cingulate gyrus. J. Comp. Neurol. 485:218–39 [Google Scholar]
  159. Wallis JD, Rich EL. 2011. Challenges of interpreting frontal neurons during value-based decision-making. Front. Neurosci. 5:124 [Google Scholar]
  160. Walton M, Kennerley S, Bannerman D, Phillips P, Rushworth MF. 2006. Weighing up the benefits of work: behavioral and neural analyses of effort-related decision making. Neural Netw. 19:1302–14 [Google Scholar]
  161. Wang S-H, Tse D, Morris RG. 2012. Anterior cingulate cortex in schema assimilation and expression. Learn. Mem. 19:315–18 [Google Scholar]
  162. Warden MR, Selimbeyoglu A, Mirzabekov JJ, Lo M, Thompson KR. et al. 2012. A prefrontal cortex–brainstem neuronal projection that controls response to behavioural challenge. Nature 492:428–32 [Google Scholar]
  163. Williams ZM, Bush G, Rauch SL, Cosgrove GR, Eskandar EN. 2004. Human anterior cingulate neurons and the integration of monetary reward with motor responses. Nat. Neurosci. 7:1370–75 [Google Scholar]
  164. Wilson RC, Takahashi YK, Schoenbaum G, Niv Y. 2014. Orbitofrontal cortex as a cognitive map of task space. Neuron 81:267–69 [Google Scholar]
  165. Wunderlich K, Rangel A, O'Doherty JP. 2009. Neural computations underlying action-based decision making in the human brain. PNAS 106:17199–92 [Google Scholar]
/content/journals/10.1146/annurev-neuro-070815-013952
Loading
/content/journals/10.1146/annurev-neuro-070815-013952
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error