1932

Abstract

A commonly observed neural correlate of working memory is firing that persists after the triggering stimulus disappears. Substantial effort has been devoted to understanding the many potential mechanisms that may underlie memory-associated persistent activity. These rely either on the intrinsic properties of individual neurons or on the connectivity within neural circuits to maintain the persistent activity. Nevertheless, it remains unclear which mechanisms are at play in the many brain areas involved in working memory. Herein, we first summarize the palette of different mechanisms that can generate persistent activity. We then discuss recent work that asks which mechanisms underlie persistent activity in different brain areas. Finally, we discuss future studies that might tackle this question further. Our goal is to bridge between the communities of researchers who study either single-neuron biophysical, or neural circuit, mechanisms that can generate the persistent activity that underlies working memory.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070815-014006
2017-07-25
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/neuro/40/1/annurev-neuro-070815-014006.html?itemId=/content/journals/10.1146/annurev-neuro-070815-014006&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott LF, Nelson SB. 2000. Synaptic plasticity: taming the beast. Nat. Neurosci. 3:1178–83 [Google Scholar]
  2. Abeles M. 1991. Corticonics: Neural Circuits of the Cerebral Cortex Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  3. Amari SI. 1977. Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27:77–87 [Google Scholar]
  4. Amit DJ, Brunel N. 1997. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7:3237–52 [Google Scholar]
  5. Anderson RW, Strowbridge BW. 2014. Regulation of persistent activity in hippocampal mossy cells by inhibitory synaptic potentials. Learn. Mem. 21:5263–71 [Google Scholar]
  6. Arnold DB, Robinson DA. 1997. The oculomotor integrator: testing of a neural network model. Exp. Brain Res. 113:57–74 [Google Scholar]
  7. Aksay E, Gamkrelidze G, Seung HS, Baker R, Tank DW. 2001. In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nat. Neurosci. 4:184–93 [Google Scholar]
  8. Barak O, Sussillo D, Romo R, Tsodyks M, Abbott L. 2013. From fixed points to chaos: three models of delayed discrimination. Prog. Neurobiol. 103:214–22 [Google Scholar]
  9. Barak O, Tsodyks M. 2014. Working models of working memory. Curr. Opin. Neurobiol. 25:20–24 [Google Scholar]
  10. Barak O, Tsodyks M, Romo R. 2010. Neuronal population coding of parametric working memory. J. Neurosci. 30:289424–30 [Google Scholar]
  11. Bathellier B, Ushakova L, Rumpel S. 2012. Discrete neocortical dynamics predict behavioral categorization of sounds. Neuron 76:2435–49 [Google Scholar]
  12. Benna MK, Fusi S. 2016. Computational principles of synaptic memory consolidation. Nat. Neurosci. 19:1697–706 [Google Scholar]
  13. Bertschinger N, Natschläger T. 2004. Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput 16:71413–36 [Google Scholar]
  14. Bisley JW, Zaksas D, Droll JA, Pasternak T. 2004. Activity of neurons in cortical area MT during a memory for motion task. J. Neurophysiol. 91:286–300 [Google Scholar]
  15. Boerlin M, Machens CK, Denève S. 2013. Predictive coding of dynamical variables in balanced spiking networks. PLOS Comput. Biol. 9:11e1003258 [Google Scholar]
  16. Branco T, Staras K. 2009. The probability of neurotransmitter release: variability and feedback control at single synapses. Nat. Rev. Neurosci. 10:5373–83 [Google Scholar]
  17. Brody CD, Hernández A, Zainos A, Romo R. 2003. Timing and neural encoding of somatosensory parametric working memory in macaque prefrontal cortex. Cereb. Cortex 13:111196–207 [Google Scholar]
  18. Buonomano DV, Maass W. 2009. State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10:2113–25 [Google Scholar]
  19. Burak Y, Fiete IR. 2009. Accurate path integration in continuous attractor network models of grid cells. PLOS Comput. Biol. 5:e1000291 [Google Scholar]
  20. Cain N, Barreiro AK, Shadlen M, Shea-Brown E. 2013. Neural integrators for decision making: a favorable tradeoff between robustness and sensitivity. J. Neurophysiol. 109:2542–59 [Google Scholar]
  21. Chaudhuri R, Fiete I. 2016. Computational principles of memory. Nat. Neurosci. 19:3394–403 [Google Scholar]
  22. Churchland MM, Yu BM, Cunningham JP, Sugrue LP, Cohen MR. et al. 2010. Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat. Neurosci. 13:369–78 [Google Scholar]
  23. Cockerill SL, Tobin AB, Torrecilla I, Willars GB, Standen NB, Mitcheson JS. 2007. Modulation of hERG potassium currents in HEK-293 cells by protein kinase C. Evidence for direct phosphorylation of pore forming subunits. J. Physiol. 581:2479–93 [Google Scholar]
  24. Compte A. 2006. Computational and in vitro studies of persistent activity: edging towards cellular and synaptic mechanisms of working memory. Neuroscience 139:1135–51 [Google Scholar]
  25. Compte A, Brunel N, Goldman-Rakic PS, Wang X-J. 2000. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb. Cortex 10:9910–23 [Google Scholar]
  26. Constantinidis C, Franowicz MN, Goldman-Rakic PS. 2001. The sensory nature of mnemonic representation in the primate prefrontal cortex. Nat. Neurosci. 4:3311–16 [Google Scholar]
  27. Crunelli V, Tóth TI, Cope DW, Blethyn K, Hughes SW. 2005. The ‘window’ T-type calcium current in brain dynamics of different behavioural states. J. Physiol. 562:1121–29 [Google Scholar]
  28. Cui ED, Strowbridge BW. 2016. Mechanisms regulating persistent spiking in rodent neocortical neurons in vitro Presented at Soc. Neurosci. Annu. Meet., Poster 590.19, Nov. 12–16 San Diego: [Google Scholar]
  29. Cui ED, Strowbridge BW. 2017. Modulation of Ether-à-go-go related gene (ERG) current governs intrinsic persistent activity in rodent neocortical pyramidal cells. bioRxiv 156075. https://doi.org/10.1101/156075 [Crossref] [Google Scholar]
  30. Douglas RJ, Martin KA. 2004. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 440:735–69 [Google Scholar]
  31. Druckmann S, Chklovskii DB. 2012. Neuronal circuits underlying persistent representations despite time varying activity. Curr. Biol. 22:222095–103 [Google Scholar]
  32. Durstewitz D, Seamans JK, Sejnowski TJ. 2000. Neurocomputational models of working memory. Nat. Neurosci. 3:1184–91 [Google Scholar]
  33. Egorov AV, Hamam BN, Fransén E, Hasselmo ME, Alonso AA. 2002. Graded persistent activity in entorhinal cortex neurons. Nature 420:6912173–78 [Google Scholar]
  34. Faisal AA, Selen LP, Wolpert DM. 2008. Noise in the nervous system. Nat. Rev. Neurosci. 9:4292–303 [Google Scholar]
  35. Field GD, Sampath AP, Rieke F. 2005. Retinal processing near absolute threshold: from behavior to mechanism. Annu. Rev. Physiol. 67:491–514 [Google Scholar]
  36. Fransén E, Tahvildari B, Egorov AV, Hasselmo ME, Alonso AA. 2006. Mechanism of graded persistent cellular activity of entorhinal cortex layer V neurons. Neuron 49:5735–46 [Google Scholar]
  37. Fraser DD, MacVicar BA. 1996. Cholinergic-dependent plateau potential in hippocampal CA1 pyramidal neurons. J. Neurosci. 16:134113–28 [Google Scholar]
  38. Funahashi S, Bruce CJ, Goldman-Rakic PS. 1989. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61:2331–49 [Google Scholar]
  39. Fusi S, Drew PJ, Abbott L. 2005. Cascade models of synaptically stored memories. Neuron 45:4599–611 [Google Scholar]
  40. Fuster JM. 1973. Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J. Neurophysiol. 36:161–78 [Google Scholar]
  41. Fuster JM, Jervey JP. 1981. Inferotemporal neurons distinguish and retain behaviorally relevant features of visual stimuli. Science 212:952–55 [Google Scholar]
  42. Ganguli S, Bisley JW, Roitman JD, Shadlen MN, Goldberg ME, Miller KD. 2008. One-dimensional dynamics of attention and decision making in LIP. Neuron 58:115–25 [Google Scholar]
  43. Ganguli S, Latham P. 2009. Feedforward to the past: the relation between neuronal connectivity, amplification, and short-term memory. Neuron 61:4499–501 [Google Scholar]
  44. Gnadt JW, Andersen RA. 1988. Memory related motor planning activity in posterior parietal cortex of macaque. Exp. Brain Res. 70:216–20 [Google Scholar]
  45. Goldman MS. 2009. Memory without feedback in a neural network. Neuron 61:4621–34 [Google Scholar]
  46. Goldman MS, Levine JH, Major G, Tank DW, Seung H. 2003. Robust persistent neural activity in a model integrator with multiple hysteretic dendrites per neuron. Cereb. Cortex 13:111185–95 [Google Scholar]
  47. Goldman-Rakic PS. 1995. Cellular basis of working memory. Neuron 14:3477–85 [Google Scholar]
  48. Goldwyn JH, Shea-Brown E. 2011. The what and where of adding channel noise to the Hodgkin-Huxley equations. PLOS Comput. Biol. 7:e1002247 [Google Scholar]
  49. Gottlieb Y, Vaadia E, Abeles M. 1989. Single unit activity in the auditory cortex of a monkey performing a short term memory task. Exp. Brain Res. 74:139–48 [Google Scholar]
  50. Guinamard R, Simard C, Del Negro C. 2013. Flufenamic acid as an ion channel modulator. Pharmacol. Ther. 138:2272–84 [Google Scholar]
  51. Haj-Dahmane S, Andrade R. 1996. Muscarinic activation of a voltage-dependent cation nonselective current in rat association cortex. J. Neurosci. 16:123848–61 [Google Scholar]
  52. Haj-Dahmane S, Andrade R. 1999. Muscarinic receptors regulate two different calcium-dependent non-selective cation currents in rat prefrontal cortex. Eur. J. Neurosci. 11:61973–80 [Google Scholar]
  53. Harvey CD, Coen P, Tank DW. 2012. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484:739262–68 [Google Scholar]
  54. Hasselmo ME, Stern CE. 2006. Mechanisms underlying working memory for novel information. Trends Cogn. Sci. 10:11487–93 [Google Scholar]
  55. Hernández A, Zainos A, Romo R. 2002. Temporal evolution of a decision-making process in medial premotor cortex. Neuron 33:6959–72 [Google Scholar]
  56. Hillar C, Sohl-Dickstein J, Koepsell K. 2012. Efficient and optimal binary hopfield associative memory storage using minimum probability flow. arXiv1204.2916 [nlin.AO]
  57. Hopfield JJ. 1982. Neural networks and physical systems with emergent collective computational abilities. PNAS 79:82554–58 [Google Scholar]
  58. Hughes SW, Cope DW, Tóth TI, Williams SR, Crunelli V. 1999. All thalamocortical neurones possess a T-type Ca2+ ‘window’ current that enables the expression of bistability-mediated activities. J. Physiol. 517:3805–15 [Google Scholar]
  59. Hyde RA, Strowbridge BW. 2012. Mnemonic representations of transient stimuli and temporal sequences in the rodent hippocampus in vitro. Nat. Neurosci. 15:101430–38 [Google Scholar]
  60. Jentsch TJ. 2000. Neuronal KCNQ potassium channels: physiology and role in disease. Nat. Rev. Neurosci. 1:121–30 [Google Scholar]
  61. Jochems A, Yoshida M. 2013. Persistent firing supported by an intrinsic cellular mechanism in hippocampal CA3 pyramidal cells. Eur. J. Neurosci. 38:22250–59 [Google Scholar]
  62. Joshua M, Lisberger S. 2015. A tale of two species: neural integration in zebrafish and monkeys. Neuroscience 296:80–91 [Google Scholar]
  63. Kass JI, Mintz IM. 2006. Silent plateau potentials, rhythmic bursts, and pacemaker firing: three patterns of activity that coexist in quadristable subthalamic neurons. PNAS 103:1183–88 [Google Scholar]
  64. Kilpatrick ZP, Ermentrout B, Doiron B. 2013. Optimizing working memory with heterogeneity of recurrent cortical excitation. J. Neurosci. 33:18999–9011 [Google Scholar]
  65. Knauer B, Jochems A, Valero-Aracama MJ, Yoshida M. 2013. Long-lasting intrinsic persistent firing in rat CA1 pyramidal cells: a possible mechanism for active maintenance of memory. Hippocampus 23:9820–31 [Google Scholar]
  66. Kopec CD, Erlich JC, Brunton BW, Deisseroth K, Brody CD. 2015. Cortical and subcortical contributions to short-term memory for orienting movements. Neuron 88:2367–77 [Google Scholar]
  67. Koulakov AA, Raghavachari S, Kepecs A, Lisman JE. 2002. Model for a robust neural integrator. Nat. Neurosci. 5:8775–82 [Google Scholar]
  68. Kubota K, Iwamoto T, Suzuki H. 1974. Visuokinetic activities of primate prefrontal neurons during delayed-response performance. J. Neurophysiol. 37:1197–212 [Google Scholar]
  69. Lahiri S, Ganguli S. 2013. A memory frontier for complex synapses. Advances in Neural Information Processing Systems 26 CJC Burges, L Bottou, M Welling, Z Ghahramani, KQ Weinberger 1034–42 https://papers.nips.cc/paper/4872-a-memory-frontier-for-complex-synapses [Google Scholar]
  70. Laje R, Buonomano DV. 2013. Robust timing and motor patterns by taming chaos in recurrent neural networks. Nat. Neurosci. 16:7925–33 [Google Scholar]
  71. Larimer P, Strowbridge BW. 2008. Nonrandom local circuits in the dentate gyrus. J. Neurosci. 28:4712212–23 [Google Scholar]
  72. Larimer P, Strowbridge BW. 2010. Representing information in cell assemblies: persistent activity mediated by semilunar granule cells. Nat. Neurosci. 13:2213–22 [Google Scholar]
  73. Lei YT, Thuault SJ, Launay P, Margolskee RF, Kandel ER, Siegelbaum SA. 2014. Differential contribution of TRPM4 and TRPM5 nonselective cation channels to the slow afterdepolarization in mouse prefrontal cortex neurons. Front. Cell Neurosci. 8:267 [Google Scholar]
  74. Li N, Daie K, Svoboda K, Druckmann S. 2016. Robust neuronal dynamics in premotor cortex during motor planning. Nature 532:7600459–64 [Google Scholar]
  75. Lim S, Goldman MS. 2013. Balanced cortical microcircuitry for maintaining information in working memory. Nat. Neurosci. 16:91306–14 [Google Scholar]
  76. Lisman JE, Goldring MA. 1988. Feasibility of long-term storage of graded information by the Ca2+/calmodulin-dependent protein kinase molecules of the postsynaptic density. PNAS 85:145320–24 [Google Scholar]
  77. Litwin-Kumar A, Doiron B. 2014. Formation and maintenance of neuronal assemblies through synaptic plasticity. Nat. Commun. 5:5319 [Google Scholar]
  78. Liu D, Gu X, Zhu J, Zhang X, Han Z. et al. 2014. Medial prefrontal activity during delay period contributes to learning of a working memory task. Science 346:6208458–63 [Google Scholar]
  79. Maass W, Natschläger T, Markram H. 2002. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput 14:112531–60 [Google Scholar]
  80. MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H. 2011. Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron 71:4737–49 [Google Scholar]
  81. MacNeil D, Eliasmith C. 2011. Fine-tuning and the stability of recurrent neural networks. PLOS ONE 6:9e22885 [Google Scholar]
  82. Major G, Tank D. 2004. Persistent neural activity: prevalence and mechanisms. Curr. Opin. Neurobiol. 14:6675–84 [Google Scholar]
  83. Miles R, Wong RK. 1986. Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. J. Physiol. 373:397–418 [Google Scholar]
  84. Miles R, Wong RK. 1987. Latent synaptic pathways revealed after tetanic stimulation in the hippocampus. Nature 329:6141724–26 [Google Scholar]
  85. Miller EK, Erickson CA, Desimone R. 1996. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 16:5154–67 [Google Scholar]
  86. Miller EK, Li L, Desimone R. 1993. Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J. Neurosci. 13:1460–78 [Google Scholar]
  87. Miyashita Y, Chang HS. 1988. Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature 331:68–70 [Google Scholar]
  88. Mongillo G, Barak O, Tsodyks M. 2008. Synaptic theory of working memory. Science 319:58691543–46 [Google Scholar]
  89. Morishima M, Morita K, Kubota Y, Kawaguchi Y. 2011. Highly differentiated projection-specific cortical subnetworks. J. Neurosci. 31:2810380–91 [Google Scholar]
  90. Murray JD, Bernacchia A, Roy NA, Constantinidis C, Romo R, Wang X-J. 2016. Stable population coding for working memory coexists with heterogeneous neural dynamics in prefrontal cortex. PNAS 114:2394–99 [Google Scholar]
  91. Nastainczyk W, Meves H, Watt DD. 2002. A short-chain peptide toxin isolated from Centruroides sculpturatus scorpion venom inhibits ether-à-go-go-related gene K+ channels. Toxicon 40:71053–58 [Google Scholar]
  92. Navaroli VL, Zhao Y, Boguszewski P, Brown TH. 2012. Muscarinic receptor activation enables persistent firing in pyramidal neurons from superficial layers of dorsal perirhinal cortex. Hippocampus 22:61392–404 [Google Scholar]
  93. Niessing J, Friedrich RW. 2010. Olfactory pattern classification by discrete neuronal network states. Nature 465:729447–52 [Google Scholar]
  94. Otsuka T, Murakami F, Song WJ. 2001. Excitatory postsynaptic potentials trigger a plateau potential in rat subthalamic neurons at hyperpolarized states. J. Neurophysiol. 86:41816–25 [Google Scholar]
  95. Pace RW, Mackay DD, Feldman JL, Del Negro CA. 2007. Inspiratory bursts in the preBötzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice. J. Physiol. 582:1113–25 [Google Scholar]
  96. Panzeri S, Harvey CD, Piasini E, Latham PE, Fellin T. 2017. Cracking the neural code for sensory perception by combining statistics, intervention, and behavior. Neuron 93:491–507 [Google Scholar]
  97. Pastalkova E, Itskov V, Amarasingham A, Buzsaki G. 2008. Internally generated cell assembly sequences in the rat hippocampus. Science 321:58941322–27 [Google Scholar]
  98. Perrier JF, Alaburda A, Hounsgaard J. 2002. Spinal plasticity mediated by postsynaptic L-type Ca2+ channels. Brain Res. Brain Res. Rev. 40:1–3223–29 [Google Scholar]
  99. Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA. 2002. Temporal structure in neuronal activity during working memory in macaque parietal cortex. Nat. Neurosci. 5:805–11 [Google Scholar]
  100. Pessia M, Servettini I, Panichi R, Guasti L, Grassi S. et al. 2008. ERG voltage-gated K+ channels regulate excitability and discharge dynamics of the medial vestibular nucleus neurones. J. Physiol. 586:204877–90 [Google Scholar]
  101. Petersson ME, Fransén E. 2012. Long-lasting small-amplitude TRP-mediated dendritic depolarizations in CA1 pyramidal neurons are intrinsically stable and originate from distal tuft regions. Eur. J. Neurosci. 36:72917–25 [Google Scholar]
  102. Pinsky PF, Rinzel J. 1994. Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J. Comput. Neurosci. 1:1–239–60 [Google Scholar]
  103. Pressler RT, Strowbridge BW. 2006. Blanes cells mediate persistent feedforward inhibition onto granule cells in the olfactory bulb. Neuron 49:6889–904 [Google Scholar]
  104. Rahman J, Berger T. 2011. Persistent activity in layer 5 pyramidal neurons following cholinergic activation of mouse primary cortices. Eur. J. Neurosci. 34:122–30 [Google Scholar]
  105. Rainer G, Asaad WF, Miller EK. 1998. Selective representation of relevant information by neurons in the primate prefrontal cortex. Nature 393:577–79 [Google Scholar]
  106. Rajan K, Harvey CD, Tank DW. 2016. Recurrent network models of sequence generation and memory. Neuron 90:1128–42 [Google Scholar]
  107. Rao SC, Rainer G, Miller EK. 1997. Integration of what and where in the primate prefrontal cortex. Science 276:821–24 [Google Scholar]
  108. Reboreda A, Jiménez-Díaz L, Navarro-López JD. 2011. TRP channels and neural persistent activity. Adv. Exp. Med. Biol 704595–613 [Google Scholar]
  109. Renart A, Song P, Wang X-J. 2003. Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38:3473–85 [Google Scholar]
  110. Rigotti M, Barak O, Warden MR, Wang X-J, Daw ND. et al. 2013. The importance of mixed selectivity in complex cognitive tasks. Nature 497:7451585–90 [Google Scholar]
  111. Romo R, Brody CD, Hernández A, Lemus L. 1999. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 399:6735470–73 [Google Scholar]
  112. Rubin JE, Hayes JA, Mendenhall JL, Del Negro CA. 2009. Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. PNAS 106:82939–44 [Google Scholar]
  113. Russo RE, Hounsgaard J. 1996. Plateau-generating neurones in the dorsal horn in an in vitro preparation of the turtle spinal cord. J. Physiol. 493:139–54 [Google Scholar]
  114. Santos MD, Mohammadi MH, Yang S, Liang CW, Kao JP. et al. 2012. Dendritic hold and read: a gated mechanism for short term information storage and retrieval. PLOS ONE 7:5e37542 [Google Scholar]
  115. Savin C, Triesch J. 2014. Emergence of task-dependent representations in working memory circuits. Front. Comput. Neurosci. 8:57 [Google Scholar]
  116. Schwemmer MA, Fairhall AL, Denéve S, Shea-Brown ET. 2015. Constructing precisely computing networks with biophysical spiking neurons. J. Neurosci. 35:2810112–34 [Google Scholar]
  117. Seung HS. 1996. How the brain keeps the eyes still. PNAS 93:2313339–44 [Google Scholar]
  118. Shafi M, Zhou Y, Quintana J, Chow C, Fuster J, Bodner M. 2007. Variability in neuronal activity in primate cortex during working memory tasks. Neuroscience 146:31082–108 [Google Scholar]
  119. Singh R, Eliasmith C. 2006. Higher-dimensional neurons explain the tuning and dynamics of working memory cells. J. Neurosci. 26:143667–78 [Google Scholar]
  120. Super H, Spekreijse H, Lamme VA. 2001. A neural correlate of working memory in the monkey primary visual cortex. Science 293:120–124 [Google Scholar]
  121. Tahvildari B, Alonso AA, Bourque CW. 2008. Ionic basis of ON and OFF persistent activity in layer III lateral entorhinal cortical principal neurons. J. Neurophysiol. 99:42006–11 [Google Scholar]
  122. Tegnér J, Compte A, Wang X-J. 2002. The dynamical stability of reverberatory neural circuits. Biol. Cybern. 87:471–481 [Google Scholar]
  123. Toyoizumi T, Abbott L. 2011. Beyond the edge of chaos: amplification and temporal integration by recurrent networks in the chaotic regime. Phys. Rev. E 84:5051908 [Google Scholar]
  124. Traub RD, Jefferys JGR. 1994. Are there unifying principles underlying the generation of epileptic afterdischarges in vitro. ? Prog. Brain Res. 102:383–94 [Google Scholar]
  125. Traub RD, Wong RK. 1982. Cellular mechanism of neuronal synchronization in epilepsy. Science 216:4547745–47 [Google Scholar]
  126. Trengove C, van Leeuwen C, Diesmann M. 2013. High-capacity embedding of synfire chains in a cortical network model. J. Comput. Neurosci. 34:2185–209 [Google Scholar]
  127. Vergara J, Rivera N, Rossi-Pool R, Romo R. 2016. A neural parametric code for storing information of more than one sensory modality in working memory. Neuron 89:154–62 [Google Scholar]
  128. Wang X-J. 1999. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. 19:9587–603 [Google Scholar]
  129. Wang X-J. 2001. Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci 24:8455–63 [Google Scholar]
  130. White JA, Rubinstein JT, Kay AR. 2000. Channel noise in neurons. Trends Neurosci 23:131–37 [Google Scholar]
  131. Williams PA, Larimer P, Gao Y, Strowbridge BW. 2007. Semilunar granule cells: glutamatergic neurons in the rat dentate gyrus with axon collaterals in the inner molecular layer. J. Neurosci. 27:5013756–61 [Google Scholar]
  132. Wills TJ, Lever C, Cacucci F, Burgess N, O'Keefe J. 2005. Attractor dynamics in the hippocampal representation of the local environment. Science 308:873–76 [Google Scholar]
  133. Wimmer K, Nykamp DQ, Constantinidis C, Compte A. 2014. Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nat. Neurosci. 17:3431–39 [Google Scholar]
  134. Wong RK, Traub RD, Miles R. 1986. Cellular basis of neuronal synchrony in epilepsy. Adv. Neurol. 44:583–92 [Google Scholar]
  135. Yamada-Hanff J, Bean BP. 2013. Persistent sodium current drives conditional pacemaking in CA1 pyramidal neurons under muscarinic stimulation. J. Neurosci. 33:3815011–21 [Google Scholar]
  136. Yan HD, Villalobos C, Andrade R. 2009. TRPC channels mediate a muscarinic receptor-induced afterdepolarization in cerebral cortex. J. Neurosci. 29:3210038–46 [Google Scholar]
  137. Yoon K, Buice MA, Barry C, Hayman R, Burgess N, Fiete IR. 2013. Specific evidence of low-dimensional continuous attractor dynamics in grid cells. Nat. Neurosci. 16:1077–84 [Google Scholar]
  138. Zaksas D, Pasternak T. 2006. Directional signals in the prefrontal cortex and in area MT during a working memory for visual motion task. J. Neurosci. 26:11726–42 [Google Scholar]
  139. Zenke F, Agnes EJ, Gerstner W. 2015. Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks. Nat. Commun. 6:6922 [Google Scholar]
  140. Zhang Z, Reboreda A, Alonso A, Barker PA, Séguéla P. 2011. TRPC channels underlie cholinergic plateau potentials and persistent activity in entorhinal cortex. Hippocampus 21:4386–97 [Google Scholar]
  141. Zhou YD, Fuster JM. 1996. Mnemonic neuronal activity in somatosensory cortex. PNAS 93:10533–37 [Google Scholar]
  142. Zylberberg J, Cafaro J, Turner MH, Shea-Brown E, Rieke F. 2016a. Direction-selective circuits shape noise to ensure a precise population code. Neuron 89:369–83 [Google Scholar]
  143. Zylberberg J, Hyde RA, Strowbridge BW. 2016b. Dynamics of robust pattern separability in the hippocampal dentate gyrus. Hippocampus 26:5623–32 [Google Scholar]
/content/journals/10.1146/annurev-neuro-070815-014006
Loading
/content/journals/10.1146/annurev-neuro-070815-014006
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error