1932

Abstract

Studies of syndromic hydrocephalus have led to the identification of >100 causative genes. Even though this work has illuminated numerous pathways associated with hydrocephalus, it has also highlighted the fact that the genetics underlying this phenotype are more complex than anticipated originally. Mendelian forms of hydrocephalus account for a small fraction of the genetic burden, with clear evidence of background-dependent effects of alleles on penetrance and expressivity of driver mutations in key developmental and homeostatic pathways. Here, we synthesize the currently implicated genes and inheritance paradigms underlying hydrocephalus, grouping causal loci into functional modules that affect discrete, albeit partially overlapping, cellular processes. These in turn have the potential to both inform pathomechanism and assist in the rational molecular classification of a clinically heterogeneous phenotype. Finally, we discuss conceptual methods that can lead to enhanced gene identification and dissection of disease basis, knowledge that will potentially form a foundation for the design of future therapeutics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070815-014023
2016-07-08
2024-04-15
Loading full text...

Full text loading...

/deliver/fulltext/neuro/39/1/annurev-neuro-070815-014023.html?itemId=/content/journals/10.1146/annurev-neuro-070815-014023&mimeType=html&fmt=ahah

Literature Cited

  1. Adle-Biassette H, Saugier-Veber P, Fallet-Bianco C, Delezoide AL, Razavi F. et al. 2013. Neuropathological review of 138 cases genetically tested for X-linked hydrocephalus: evidence for closely related clinical entities of unknown molecular bases. Acta Neuropathol. 126:427–42 [Google Scholar]
  2. Akasaka-Manya K, Manya H, Kobayashi K, Toda T, Endo T. 2004. Structure-function analysis of human protein O-linked mannose β1,2-N-acetylglucosaminyltransferase 1, POMGnT1. Biochem. Biophys. Res. Commun. 320:39–44 [Google Scholar]
  3. Al-Dosari MS, Al-Owain M, Tulbah M, Kurdi W, Adly N. et al. 2013. Mutation in MPDZ causes severe congenital hydrocephalus. J. Med. Genet. 50:54–58 [Google Scholar]
  4. Alby C, Piquand K, Huber C, Mégarbané A, Ichkou A. et al. 2015. Mutations in KIAA0586 cause lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly syndrome. Am. J. Hum. Genet. 97:311–18 [Google Scholar]
  5. Aoki Y, Niihori T, Kawame H, Kurosawa K, Ohashi H. et al. 2005. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat. Genet. 37:1038–40 [Google Scholar]
  6. Assémat E, Crost E, Ponserre M, Wijnholds J, Le Bivic A, Massey-Harroche D. 2013. The multi-PDZ domain protein-1 (MUPP-1) expression regulates cellular levels of the PALS-1/PATJ polarity complex. Exp. Cell Res. 319:2514–25 [Google Scholar]
  7. Baala L, Romano S, Khaddour R, Saunier S, Smith UM. et al. 2007. The Meckel-Gruber syndrome gene, MKS3, is mutated in Joubert syndrome. Am. J. Hum. Genet. 80:186–94 [Google Scholar]
  8. Badano JL, Mitsuma N, Beales PL, Katsanis N. 2006. The ciliopathies: an emerging class of human genetic disorders. Annu. Rev. Genom. Hum. Genet. 7:125–48 [Google Scholar]
  9. Banizs B, Pike MM, Millican CL, Ferguson WB, Komlosi P. et al. 2005. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development 132:5329–39 [Google Scholar]
  10. Bay C, Kerzin L, Hall BD. 1979. Recurrence risk in hydrocephalus. Birth Defects Orig. Artic. Ser. 15:95–105 [Google Scholar]
  11. Beltrán-Valero de Bernabé D, Currier S, Steinbrecher A, Celli J, van Beusekom E. et al. 2002. Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am. J. Hum. Genet. 71:1033–43 [Google Scholar]
  12. Bristol RE, Lekovic GP, Rekate HL. 2004. The effects of craniosynostosis on the brain with respect to intracranial pressure. Semin. Pediatr. Neurol. 11:262–67 [Google Scholar]
  13. Brockington M, Blake DJ, Prandini P, Brown SC, Torelli S. et al. 2001a. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin α2 deficiency and abnormal glycosylation of α-dystroglycan. Am. J. Hum. Genet. 69:1198–209 [Google Scholar]
  14. Brockington M, Torelli S, Prandini P, Boito C, Dolatshad NF. et al. 2005. Localization and functional analysis of the LARGE family of glycosyltransferases: significance for muscular dystrophy. Hum. Mol. Genet. 14:657–65 [Google Scholar]
  15. Brockington M, Yuva Y, Prandini P, Brown SC, Torelli S. et al. 2001b. Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum. Mol. Genet. 10:2851–59 [Google Scholar]
  16. Brown SA, Warburton D, Brown LY, Yu CY, Roeder ER. et al. 1998. Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nat. Genet. 20:180–83 [Google Scholar]
  17. Burg MB, Orloff J. 1968. Control of fluid absorption in the renal proximal tubule. J. Clin. Investig. 47:2016–24 [Google Scholar]
  18. Burton BK. 1979. Empiric recurrence risks for congenital hydrocephalus. Birth Defects Orig. Artic. Ser. 15:107–15 [Google Scholar]
  19. Buysse K, Riemersma M, Powell G, van Reeuwijk J, Chitayat D. et al. 2013. Missense mutations in β-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) cause Walker-Warburg syndrome. Hum. Mol. Genet. 22:1746–54 [Google Scholar]
  20. Cacciagli P, Desvignes JP, Girard N, Delepine M, Zelenika D. et al. 2014. AP1S2 is mutated in X-linked Dandy-Walker malformation with intellectual disability, basal ganglia disease and seizures (Pettigrew syndrome). Eur. J. Hum. Genet. 22:363–68 [Google Scholar]
  21. Capo-Chichi JM, Tcherkezian J, Hamdan FF, Décarie JC, Dobrzeniecka S. et al. 2013. Disruption of TBC1D7, a subunit of the TSC1-TSC2 protein complex, in intellectual disability and megalencephaly. J. Med. Genet. 50:740–44 [Google Scholar]
  22. Chabás A, Cormand B, Grinberg D, Burguera JM, Balcells S. et al. 1995. Unusual expression of Gaucher's disease: cardiovascular calcifications in three sibs homozygous for the D409H mutation. J. Med. Genet. 32:740–42 [Google Scholar]
  23. Chae TH, Kim S, Marz KE, Hanson PI, Walsh CA. 2004. The hyh mutation uncovers roles for αSnap in apical protein localization and control of neural cell fate. Nat. Genet. 36:264–70 [Google Scholar]
  24. Chambers CD, Johnson KA, Dick LM, Felix RJ, Jones KL. 1998. Maternal fever and birth outcome: a prospective study. Teratology 58:251–57 [Google Scholar]
  25. Chen J, Knowles HJ, Hebert JL, Hackett BP. 1998. Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left-right asymmetry. J. Clin. Investig. 102:1077–82 [Google Scholar]
  26. Chow CW, McKelvie PA, Anderson RM, Phelan EM, Klug GL, Rogers JG. 1990. Autosomal recessive hydrocephalus with third ventricle obstruction. Am. J. Med. Genet. 35:310–13 [Google Scholar]
  27. Chow KC, Lee CC, Lin TY, Shen WC, Wang JH. et al. 2000. Congenital enterovirus 71 infection: a case study with virology and immunohistochemistry. Clin. Infect. Dis. 31:509–12 [Google Scholar]
  28. Copp AJ, Greene ND. 2010. Genetics and development of neural tube defects. J. Pathol. 220:217–30 [Google Scholar]
  29. Corns R, Martin A. 2012. Hydrocephalus. Surgery 30:142–48 [Google Scholar]
  30. Correa A, Botto L, Liu Y, Mulinare J, Erickson JD. 2003. Do multivitamin supplements attenuate the risk for diabetes-associated birth defects?. Pediatrics 111:1146–51 [Google Scholar]
  31. Cserr HF. 1971. Physiology of the choroid plexus. Physiol. Rev. 51:273–311 [Google Scholar]
  32. Dandy WE, Blackfan KD. 1913. An experimental and clinical study of internal hydrocephalus. J. Am. Med. Assoc. 61:2216–17 [Google Scholar]
  33. de Paula F, Vieira N, Starling A, Yamamoto LU, Lima B. et al. 2003. Asymptomatic carriers for homozygous novel mutations in the FKRP gene: the other end of the spectrum. Eur. J. Hum. Genet. 11:923–30 [Google Scholar]
  34. Debiec H, Christensen EI, Ronco PM. 1998. The cell adhesion molecule L1 is developmentally regulated in the renal epithelium and is involved in kidney branching morphogenesis. J. Cell Biol. 143:2067–79 [Google Scholar]
  35. Delaunoy JP, Dubos A, Marques Pereira P, Hanauer A. 2006. Identification of novel mutations in the RSK2 gene (RPS6KA3) in patients with Coffin–Lowry syndrome. Clin. Genet. 70:161–66 [Google Scholar]
  36. Di Costanzo S, Balasubramanian A, Pond HL, Rozkalne A, Pantaleoni C. et al. 2014. POMK mutations disrupt muscle development leading to a spectrum of neuromuscular presentations. Hum. Mol. Genet. 23:5781–92 [Google Scholar]
  37. Dinçer A, Yener U, Özek MM. 2011. Hydrocephalus in patients with neurofibromatosis type 1: MR imaging findings and the outcome of endoscopic third ventriculostomy. AJNR. Am. J. Neuroradiol. 32:643–46 [Google Scholar]
  38. Dobyns WB, Pagon RA, Armstrong D, Curry CJ, Greenberg F. et al. 1989. Diagnostic criteria for Walker-Warburg syndrome. Am. J. Med. Genet. 32:195–210 [Google Scholar]
  39. Doyle AJ, Doyle JJ, Bessling SL, Maragh S, Lindsay ME. et al. 2012. Mutations in the TGF-β repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm. Nat. Genet. 44:1249–54 [Google Scholar]
  40. Drielsma A, Jalas C, Simonis N, Désir J, Simanovsky N. et al. 2012. Two novel CCDC88C mutations confirm the role of DAPLE in autosomal recessive congenital hydrocephalus. J. Med. Genet. 49:708–12 [Google Scholar]
  41. Durbeej M, Talts JF, Henry MD, Yurchenco PD, Campbell KP, Ekblom P. 2001. Dystroglycan binding to laminin α1LG4 module influences epithelial morphogenesis of salivary gland and lung in vitro. Differ.; Res. Biol. Divers. 69:121–34 [Google Scholar]
  42. Edvardson S, Shaag A, Zenvirt S, Erlich Y, Hannon GJ. et al. 2010. Joubert syndrome 2 (JBTS2) in Ashkenazi Jews is associated with a TMEM216 mutation. Am. J. Hum. Genet. 86:93–97 [Google Scholar]
  43. Ekici AB, Hilfinger D, Jatzwauk M, Thiel CT, Wenzel D. et al. 2010. Disturbed Wnt signalling due to a mutation in CCDC88C causes an autosomal recessive non-syndromic hydrocephalus with medial diverticulum. Mol. Syndromol. 1:99–112 [Google Scholar]
  44. Failler M, Gee HY, Krug P, Joo K, Halbritter J. et al. 2014. Mutations of CEP83 cause infantile nephronophthisis and intellectual disability. Am. J. Hum. Genet. 94:905–14 [Google Scholar]
  45. Ferrante MI, Giorgio G, Feather SA, Bulfone A, Wright V. et al. 2001. Identification of the gene for oral-facial-digital type I syndrome. Am. J. Hum. Genet. 68:569–76 [Google Scholar]
  46. Finckh U, Schroder J, Ressler B, Veske A, Gal A. 2000. Spectrum and detection rate of L1CAM mutations in isolated and familial cases with clinically suspected L1-disease. Am. J. Hum. Genet. 92:40–46 [Google Scholar]
  47. Fried K. 1972. X-linked mental retardation and/or hydrocephalus. Clin. Genet. 3:258–63 [Google Scholar]
  48. Fukumitsu H, Ohmiya M, Nitta A, Furukawa S, Mima T, Mori K. 2000. Aberrant expression of neurotrophic factors in the ventricular progenitor cells of infant congenitally hydrocephalic rats. Child's Nerv. Syst. 16:516–21 [Google Scholar]
  49. Garavelli L, Guareschi E, Errico S, Simoni A, Bergonzini P. et al. 2007. Megalencephaly and perisylvian polymicrogyria with postaxial polydactyly and hydrocephalus (MPPH): report of a new case. Neuropediatrics 38:200–3 [Google Scholar]
  50. Garavelli L, Leask K, Zanacca C, Pedori S, Albertini G. et al. 2005. MRI and neurological findings in macrocephaly-cutis marmorata telangiectatica congenita syndrome: report of ten cases and review of the literature. Genet. Couns. 16:117–28 [Google Scholar]
  51. Gebbia M, Ferrero GB, Pilia G, Bassi MT, Aylsworth A. et al. 1997. X-linked situs abnormalities result from mutations in ZIC3. Nat. Genet. 17:305–8 [Google Scholar]
  52. Geis T, Marquard K, Rodl T, Reihle C, Schirmer S. et al. 2013. Homozygous dystroglycan mutation associated with a novel muscle-eye-brain disease-like phenotype with multicystic leucodystrophy. Neurogenetics 14:205–13 [Google Scholar]
  53. Godfrey C, Clement E, Mein R, Brockington M, Smith J. et al. 2007. Refining genotype phenotype correlations in muscular dystrophies with defective glycosylation of dystroglycan. Brain: J. Neurol. 130:2725–35 [Google Scholar]
  54. Gografe SI, Garbuzova-Davis S, Willing AE, Haas K, Chamizo W, Sanberg PR. 2003. Mouse model of Sanfilippo syndrome type B: relation of phenotypic features to background strain. Comp. Med. 53:622–32 [Google Scholar]
  55. Goto J, Tezuka T, Nakazawa T, Sagara H, Yamamoto T. 2008. Loss of Fyn tyrosine kinase on the C57BL/6 genetic background causes hydrocephalus with defects in oligodendrocyte development. Mol. Cell. Neurosci. 38:203–12 [Google Scholar]
  56. Greene ND, Copp AJ. 2014. Neural tube defects. Annu. Rev. Neurosci. 37:221–42 [Google Scholar]
  57. Gripp KW, Hopkins E, Doyle D, Dobyns WB. 2010. High incidence of progressive postnatal cerebellar enlargement in Costello syndrome: brain overgrowth associated with HRAS mutations as the likely cause of structural brain and spinal cord abnormalities. Am. J. Med. Genet. Part A 152A:1161–68 [Google Scholar]
  58. Hakim S, Adams RD. 1965. The special clinical problem of symptomatic hydrocephalus with normal cerebrospinal fluid pressure. Observations on cerebrospinal fluid hydrodynamics. J. Neurol. Sci. 2:307–27 [Google Scholar]
  59. Halbritter J, Bizet AA, Schmidts M, Porath JD, Braun DA. et al. 2013. Defects in the IFT-B component IFT172 cause Jeune and Mainzer-Saldino syndromes in humans. Am. J. Hum. Genet. 93:915–25 [Google Scholar]
  60. Hevner RF. 2005. The cerebral cortex malformation in thanatophoric dysplasia: neuropathology and pathogenesis. Acta Neuropathol. 110:208–21 [Google Scholar]
  61. Heye N, Dunne JW. 1995. Noonan's syndrome with hydrocephalus, hindbrain herniation, and upper cervical intracord cyst. J. Neurol. Neurosurg. Psychiatry 59:338–39 [Google Scholar]
  62. Hogue J, Lee C, Jelin A, Strecker MN, Cox VA, Slavotinek AM. 2013. Homozygosity for a FBN1 missense mutation causes a severe Marfan syndrome phenotype. Clin. Genet. 84:392–93 [Google Scholar]
  63. Ibañez-Tallon I, Pagenstecher A, Fliegauf M, Olbrich H, Kispert A. et al. 2004. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum. Mol. Genet. 13:2133–41 [Google Scholar]
  64. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W. et al. 2012. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid βa. Sci. Translational Med. 4:147ra11 [Google Scholar]
  65. Ishida-Takagishi M, Enomoto A, Asai N, Ushida K, Watanabe T. et al. 2012. The Dishevelled-associating protein Daple controls the non-canonical Wnt/Rac pathway and cell motility. Nat. Commun. 3:859 [Google Scholar]
  66. Itoh K, Cheng L, Kamei Y, Fushiki S, Kamiguchi H. et al. 2004. Brain development in mice lacking L1-L1 homophilic adhesion. J. Cell Biol. 165:145–54 [Google Scholar]
  67. Jouet M, Rosenthal A, Armstrong G, MacFarlane J, Stevenson R. et al. 1994. X-linked spastic paraplegia (SPG1), MASA syndrome and X-linked hydrocephalus result from mutations in the L1 gene. Nat. Genet. 7:402–7 [Google Scholar]
  68. Khonsari RH, Delezoide AL, Kang W, Hébert JM, Bessières B. et al. 2012. Central nervous system malformations and deformations in FGFR2-related craniosynostosis. Am. J. Med. Genet. Part A 158A:2797–806 [Google Scholar]
  69. Kibar Z, Salem S, Bosoi CM, Pauwels E, De Marco P. et al. 2011. Contribution of VANGL2 mutations to isolated neural tube defects. Clin. Genet. 80:76–82 [Google Scholar]
  70. Kibar Z, Vogan KJ, Groulx N, Justice MJ, Underhill DA, Gros P. 2001. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat. Genet. 28:251–55 [Google Scholar]
  71. Kiefer M, Eymann R, von Tiling S, Muller A, Steudel WI, Booz KH. 1998. The ependyma in chronic hydrocephalus. Child's Nerv. Syst. 14:263–70 [Google Scholar]
  72. Killer M, Arthur A, Al-Schameri AR, Barr J, Elbert D. et al. 2010. Cytokine and growth factor concentration in cerebrospinal fluid from patients with hydrocephalus following endovascular embolization of unruptured aneurysms in comparison with other types of hydrocephalus. Neurochem. Res. 35:1652–58 [Google Scholar]
  73. Kinsler VA, Thomas AC, Ishida M, Bulstrode NW, Loughlin S. et al. 2013. Multiple congenital melanocytic nevi and neurocutaneous melanosis are caused by postzygotic mutations in codon 61 of NRAS. J. Investig. Dermatol. 133:2229–36 [Google Scholar]
  74. Klezovitch O, Fernandez TE, Tapscott SJ, Vasioukhin V. 2004. Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev. 18:559–71 [Google Scholar]
  75. Kobayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Iida E. et al. 1998. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394:388–92 [Google Scholar]
  76. Kowitz A, Kadmon G, Eckert M, Schirrmacher V, Schachner M, Altevogt P. 1992. Expression and function of the neural cell adhesion molecule L1 in mouse leukocytes. Eur. J. Immunol. 22:1199–205 [Google Scholar]
  77. Kujat R, Miragall F, Krause D, Dermietzel R, Wrobel KH. 1995. Immunolocalization of the neural cell adhesion molecule L1 in non-proliferating epithelial cells of the male urogenital tract. Histochem. Cell Biol. 103:311–21 [Google Scholar]
  78. Kyttälä M, Tallila J, Salonen R, Kopra O, Kohlschmidt N. et al. 2006. MKS1, encoding a component of the flagellar apparatus basal body proteome, is mutated in Meckel syndrome. Nat. Genet. 38:155–57 [Google Scholar]
  79. Langenbach KJ, Rando TA. 2002. Inhibition of dystroglycan binding to laminin disrupts the PI3K/AKT pathway and survival signaling in muscle cells. Muscle Nerve 26:644–53 [Google Scholar]
  80. Lategan B, Chodirker BN, Del Bigio MR. 2010. Fetal hydrocephalus caused by cryptic intraventricular hemorrhage. Brain Pathol. 20:391–98 [Google Scholar]
  81. Lausch E, Hermanns P, Farin HF, Alanay Y, Unger S. et al. 2008. TBX15 mutations cause craniofacial dysmorphism, hypoplasia of scapula and pelvis, and short stature in Cousin syndrome. Am. J. Hum. Genet. 83:649–55 [Google Scholar]
  82. Lee JH, Huynh M, Silhavy JL, Kim S, Dixon-Salazar T. et al. 2012. De novo somatic mutations in components of the PI3K-AKT3-mTOR pathway cause hemimegalencephaly. Nat. Genet. 44:941–45 [Google Scholar]
  83. Lee L, Campagna DR, Pinkus JL, Mulhern H, Wyatt TA. et al. 2008. Primary ciliary dyskinesia in mice lacking the novel ciliary protein Pcdp1. Mol. Cell. Biol. 28:949–57 [Google Scholar]
  84. Lesnik Oberstein SAJ, Kriek M, White SJ, Kalf ME, Szuhai K. et al. 2006. Peters Plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase. Am. J. Hum. Genet. 79:562–66 [Google Scholar]
  85. Li X, Miyajima M, Arai H. 2005. Analysis of TGF-β2 and TGF-β3 expression in the hydrocephalic H-Tx rat brain. Child's Nerv. Syst. 21:32–38 [Google Scholar]
  86. Lindeman GJ, Dagnino L, Gaubatz S, Xu Y, Bronson RT. et al. 1998. A specific, nonproliferative role for E2F-5 in choroid plexus function revealed by gene targeting. Genes Dev. 12:1092–98 [Google Scholar]
  87. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M. et al. 2005. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat. Genet. 37:275–81 [Google Scholar]
  88. Manya H, Sakai K, Kobayashi K, Taniguchi K, Kawakita M. et al. 2003. Loss-of-function of an N-acetylglucosaminyltransferase, POMGnT1, in muscle–eye–brain disease. Biochem. Biophys. Res. Commun. 306:93–97 [Google Scholar]
  89. Matsumura K, Chiba A, Yamada H, Fukuta-Ohi H, Fujita S. et al. 1997. A role of dystroglycan in schwannoma cell adhesion to laminin. J. Biol. Chem. 272:13904–10 [Google Scholar]
  90. Mee L, Honkala H, Kopra O, Vesa J, Finnilä S. et al. 2005. Hydrolethalus syndrome is caused by a missense mutation in a novel gene HYLS1. Hum. Mol. Genet. 14:1475–88 [Google Scholar]
  91. Mégarbané A, Pangrazio A, Villa A, Chouery E, Maarawi J. et al. 2013. Homozygous stop mutation in the SNX10 gene in a consanguineous Iraqi boy with osteopetrosis and corpus callosum hypoplasia. Eur. J. Med. Genet. 56:32–35 [Google Scholar]
  92. Mirzaa GM, Conway RL, Gripp KW, Lerman-Sagie T, Siegel DH. et al. 2012. Megalencephaly-capillary malformation (MCAP) and megalencephaly-polydactyly-polymicrogyria-hydrocephalus (MPPH) syndromes: two closely related disorders of brain overgrowth and abnormal brain and body morphogenesis. Am. J. Med. Genet. Part A 158A:269–91 [Google Scholar]
  93. Mirzaa GM, Dodge NN, Glass I, Day C, Gripp K. et al. 2004. Megalencephaly and perisylvian polymicrogyria with postaxial polydactyly and hydrocephalus: a rare brain malformation syndrome associated with mental retardation and seizures. Neuropediatrics 35:353–59 [Google Scholar]
  94. Mirzaa GM, Parry DA, Fry AE, Giamanco KA, Schwartzentruber J. et al. 2014. De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome. Nat. Genet. 46:510–15 [Google Scholar]
  95. Missmer SA, Suarez L, Felkner M, Wang E, Merrill AH Jr.. et al. 2006. Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ. Health Perspect. 114:237–41 [Google Scholar]
  96. Mitchell LE. 2005. Epidemiology of neural tube defects. Am. J. Med. Genet. Part C Semin. Med. Genet. 135C:88–94 [Google Scholar]
  97. Montanaro F, Gee SH, Jacobson C, Lindenbaum MH, Froehner SC, Carbonetto S. 1998. Laminin and α-dystroglycan mediate acetylcholine receptor aggregation via a MuSK-independent pathway. J. Neurosci. 18:1250–60 [Google Scholar]
  98. Morioka T, Hashiguchi K, Nagata S, Miyagi Y, Mihara F. et al. 2006. Fetal germinal matrix and intraventricular hemorrhage. Pediatr. Neurosurg. 42:354–61 [Google Scholar]
  99. Munch TN, Rasmussen ML, Wohlfahrt J, Juhler M, Melbye M. 2014. Risk factors for congenital hydrocephalus: a nationwide, register-based, cohort study. J. Neurol. Neurosurg. Psychiatry 85:1253–59 [Google Scholar]
  100. Murdoch JN, Doudney K, Paternotte C, Copp AJ, Stanier P. 2001. Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Hum. Mol. Genet. 10:2593–601 [Google Scholar]
  101. Nakamura K, Kato M, Tohyama J, Shiohama T, Hayasaka K. et al. 2014. AKT3 and PIK3R2 mutations in two patients with megalencephaly-related syndromes: MCAP and MPPH. Clin. Genet. 85:396–98 [Google Scholar]
  102. Niceta M, Stellacci E, Gripp KW, Zampino G, Kousi M. et al. 2015. Mutations impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a Down syndrome-like facies. Am. J. Hum. Genet. 96:816–25 [Google Scholar]
  103. Niihori T, Aoki Y, Narumi Y, Neri G, Cavé H. et al. 2006. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat. Genet. 38:294–96 [Google Scholar]
  104. Nonaka-Kinoshita M, Reillo I, Artegiani B, Martínez-Martínez MA, Nelson M. et al. 2013. Regulation of cerebral cortex size and folding by expansion of basal progenitors. EMBO J. 32:1817–28 [Google Scholar]
  105. Noor A, Windpassinger C, Patel M, Stachowiak B, Mikhailov A. et al. 2008. CC2D2A, encoding a coiled-coil and C2 domain protein, causes autosomal-recessive mental retardation with retinitis pigmentosa. Am. J. Hum. Genet. 82:1011–18 [Google Scholar]
  106. Ohata S, Nakatani J, Herranz-Pérez V, Cheng J, Belinson H. et al. 2014. Loss of Dishevelleds disrupts planar polarity in ependymal motile cilia and results in hydrocephalus. Neuron 83:558–71 [Google Scholar]
  107. Ohmiya M, Fukumitsu H, Nitta A, Nomoto H, Furukawa Y, Furukawa S. 2001. Administration of FGF-2 to embryonic mouse brain induces hydrocephalic brain morphology and aberrant differentiation of neurons in the postnatal cerebral cortex. J. Neurosci. Res. 65:228–35 [Google Scholar]
  108. Oi S. 2011. Classification of hydrocephalus: critical analysis of classification categories and advantages of “Multi-categorical Hydrocephalus Classification” (Mc HC). Child's Nerv. Syst. 27:1523–33 [Google Scholar]
  109. Olbrich H, Häffner K, Kispert A, Völkel A, Volz A. et al. 2002. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat. Genet. 30:143–44 [Google Scholar]
  110. Oshita A, Kishida S, Kobayashi H, Michiue T, Asahara T. et al. 2003. Identification and characterization of a novel Dvl-binding protein that suppresses Wnt signalling pathway. Genes Cells: Devoted Mol. Cell. Mech. 8:1005–17 [Google Scholar]
  111. Pennarun G, Escudier E, Chapelin C, Bridoux AM, Cacheux V. et al. 1999. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am. J. Hum. Genet. 65:1508–19 [Google Scholar]
  112. Pisano T, Meloni M, Cianchetti C, Falchi M, Nucaro A, Pruna D. 2008. Megalencephaly, polymicrogyria, and hydrocephalus (MPPH) syndrome: a new case with syndactyly. J. Child Neurol. 23:916–18 [Google Scholar]
  113. Porteous MEM, Cross I, Burn J. 1992. VACTERL with hydrocephalus: One end of the Fanconi anemia spectrum of anomalies?. Am. J. Med. Genet. 43:1032–34 [Google Scholar]
  114. Poulton JS, Deng WM. 2006. Dystroglycan down-regulation links EGF receptor signaling and anterior–posterior polarity formation in the Drosophila oocyte. PNAS 103:12775–80 [Google Scholar]
  115. Putoux A, Thomas S, Coene KLM, Davis EE, Alanay Y. et al. 2011. KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes. Nat. Genet. 43:601–6 [Google Scholar]
  116. Qvarlander S, Lundkvist B, Koskinen LO, Malm J, Eklund A. 2013. Pulsatility in CSF dynamics: pathophysiology of idiopathic normal pressure hydrocephalus. J. Neurol. Neurosurg. Psychiatry 84:735–41 [Google Scholar]
  117. Radmanesh F, Caglayan AO, Silhavy JL, Yilmaz C, Cantagrel V. et al. 2013. Mutations in LAMB1 cause cobblestone brain malformation without muscular or ocular abnormalities. Am. J. Hum. Genet. 92:468–74 [Google Scholar]
  118. Rauen KA. 2013. The RASopathies. Annu. Rev. Genom. Hum. Genet. 14:355–69 [Google Scholar]
  119. Reinker KA, Stevenson DA, Tsung A. 2011. Orthopaedic conditions in Ras/MAPK related disorders. J. Pediatr. Orthop. 31:599–605 [Google Scholar]
  120. Rekate HL. 2008. The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Res. 5:2 [Google Scholar]
  121. Reusch U, Bernhard O, Koszinowski U, Schu P. 2002. AP-1A and AP-3A lysosomal sorting functions. Traffic 3:752–61 [Google Scholar]
  122. Riemersma M, Mandel H, van Beusekom E, Gazzoli I, Roscioli T. et al. 2015. Absence of α- and β-dystroglycan is associated with Walker-Warburg syndrome. Neurology 84:2177–82 [Google Scholar]
  123. Rivière JB, Mirzaa GM, O'Roak BJ, Beddaoui M, Alcantara D. et al. 2012. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat. Genet. 44:934–40 [Google Scholar]
  124. Robertson SP, Twigg SR, Sutherland-Smith AJ, Biancalana V, Gorlin RJ. et al. 2003. Localized mutations in the gene encoding the cytoskeletal protein filamin A cause diverse malformations in humans. Nat. Genet. 33:487–91 [Google Scholar]
  125. Roscioli T, Kamsteeg EJ, Buysse K, Maystadt I, van Reeuwijk J. et al. 2012. Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan. Nat. Genet. 44:581–85 [Google Scholar]
  126. Rosenthal A, Jouet M, Kenwrick S. 1992. Aberrant splicing of neural cell adhesion molecule L1 mRNA in a family with X-linked hydrocephalus. Nat. Genet. 2:107–12 [Google Scholar]
  127. Rousseau F, Bonaventure J, Legeai-Mallet L, Pelet A, Rozet JM. et al. 1994. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Nature 371:252–54 [Google Scholar]
  128. Saito F, Moore SA, Barresi R, Henry MD, Messing A. et al. 2003. Unique role of dystroglycan in peripheral nerve myelination, nodal structure, and sodium channel stabilization. Neuron 38:747–58 [Google Scholar]
  129. Sapiro R, Kostetskii I, Olds-Clarke P, Gerton GL, Radice GL, Strauss IJ. 2002. Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol. Cell. Biol. 22:6298–305 [Google Scholar]
  130. Satz JS, Barresi R, Durbeej M, Willer T, Turner A. et al. 2008. Brain and eye malformations resembling Walker–Warburg syndrome are recapitulated in mice by dystroglycan deletion in the epiblast. J. Neurosci. 28:10567–75 [Google Scholar]
  131. Schrander-Stumpel C, Fryns JP. 1998. Congenital hydrocephalus: nosology and guidelines for clinical approach and genetic counselling. Eur. J. Pediatr. 157:355–62 [Google Scholar]
  132. Seo JH, Zilber Y, Babayeva S, Liu J, Kyriakopoulos P. et al. 2011. Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum. Mol. Genet. 20:4324–33 [Google Scholar]
  133. Shiang R, Thompson LM, Zhu YZ, Church DM, Fielder TJ. et al. 1994. Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78:335–42 [Google Scholar]
  134. Simeone RM, Rasmussen SA, Mei JV, Dollard SC, Frias JL. et al. 2013. A pilot study using residual newborn dried blood spots to assess the potential role of cytomegalovirus and Toxoplasma gondii in the etiology of congenital hydrocephalus. Birth Defects Res. Part A Clin. Mol. Teratol. 97:431–36 [Google Scholar]
  135. Simpson MA, Irving MD, Asilmaz E, Gray MJ, Dafou D. et al. 2011. Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat. Genet. 43:303–5 [Google Scholar]
  136. Slavotinek A, Kaylor J, Pierce H, Cahr M, DeWard SJ. et al. 2015. CRB2 mutations produce a phenotype resembling congenital nephrosis, Finnish type, with cerebral ventriculomegaly and raised alpha-fetoprotein. Am. J. Hum. Genet. 96:162–69 [Google Scholar]
  137. Smith UM, Consugar M, Tee LJ, McKee BM, Maina EN. et al. 2006. The transmembrane protein meckelin (MKS3) is mutated in Meckel-Gruber syndrome and the wpk rat. Nat. Genet. 38:191–96 [Google Scholar]
  138. Smithells RW, Sheppard S, Schorah CJ. 1976. Vitamin deficiencies and neural tube defects. Arch. Dis. Child. 51:944–50 [Google Scholar]
  139. Sotak BN, Gleeson JG. 2012. Can't get there from here: cilia and hydrocephalus. Nat. Med. 18:1742–43 [Google Scholar]
  140. Spence HJ, Dhillon AS, James M, Winder SJ. 2004. Dystroglycan, a scaffold for the ERK-MAP kinase cascade. EMBO Rep. 5:484–89 [Google Scholar]
  141. Stevens E, Carss KJ, Cirak S, Foley AR, Torelli S. et al. 2013. Mutations in B3GALNT2 cause congenital muscular dystrophy and hypoglycosylation of α-dystroglycan. Am. J. Hum. Genet. 92:354–65 [Google Scholar]
  142. Strain L, Wright AF, Bonthron DT. 1997. Fried syndrome is a distinct X linked mental retardation syndrome mapping to Xp22. J. Med. Genet. 34:535–40 [Google Scholar]
  143. Tarkar A, Loges NT, Slagle CE, Francis R, Dougherty GW. et al. 2013. DYX1C1 is required for axonemal dynein assembly and ciliary motility. Nat. Genet. 45:995–1003 [Google Scholar]
  144. Tarpey PS, Smith R, Pleasance E, Whibley A, Edkins S. et al. 2009. A systematic, large-scale resequencing screen of X-chromosome coding exons in mental retardation. Nat. Genet. 41:535–43 [Google Scholar]
  145. Tarpey PS, Stevens C, Teague J, Edkins S, O'Meara S. et al. 2006. Mutations in the gene encoding the sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation. Am. J. Hum. Genet. 79:1119–24 [Google Scholar]
  146. Teebi AS, Naguib KK. 1988. Autosomal recessive nonsyndromal hydrocephalus. Am. J. Med. Genet. 31:467–70 [Google Scholar]
  147. Thor G, Probstmeier R, Schachner M. 1987. Characterization of the cell adhesion molecules L1, N-CAM and J1 in the mouse intestine. EMBO J. 6:2581–86 [Google Scholar]
  148. Timal S, Hoischen A, Lehle L, Adamowicz M, Huijben K. et al. 2012. Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing. Hum. Mol. Genet. 21:4151–61 [Google Scholar]
  149. Tissir F, Qu Y, Montcouquiol M, Zhou L, Komatsu K. et al. 2010. Lack of cadherins Celsr2 and Celsr3 impairs ependymal ciliogenesis, leading to fatal hydrocephalus. Nat. Neurosci. 13:700–7 [Google Scholar]
  150. Tully HM, Dobyns WB. 2014. Infantile hydrocephalus: a review of epidemiology, classification and causes. Eur. J. Med. Genet. 57:359–68 [Google Scholar]
  151. Van Camp G, Vits L, Coucke P, Lyonnet S, Schrander-Stumpel C. et al. 1993. A duplication in the L1CAM gene associated with X-linked hydrocephalus. Nat. Genet. 4:421–25 [Google Scholar]
  152. van Reeuwijk J, Brunner HG, van Bokhoven H. 2005. Glyc-O-genetics of Walker–Warburg syndrome. Clin. Genet. 67:281–89 [Google Scholar]
  153. van Reeuwijk J, Grewal PK, Salih MAM, Beltrán-Valero de Bernabé D, McLaughlan JM. et al. 2007. Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome. Hum. Genet. 121:685–90 [Google Scholar]
  154. Verhagen JMA, Schrander-Stumpel CTRM, Krapels IPC, de Die-Smulders CEM, van Lint FHM. et al. 2011. Congenital hydrocephalus in clinical practice: a genetic diagnostic approach. Eur. J. Med. Genet. 54:e542–47 [Google Scholar]
  155. Vieira NM, Elvers I, Alexander MS, Moreira YB, Eran A. et al. 2015. Jagged 1 rescues the Duchenne muscular dystrophy phenotype. Cell 163:1204–13 [Google Scholar]
  156. Vits L, Van Camp G, Coucke P, Fransen E, De Boulle K. et al. 1994. MASA syndrome is due to mutations in the neural cell adhesion gene L1CAM. Nat. Genet. 7:408–13 [Google Scholar]
  157. Vogel P, Read RW, Hansen GM, Payne BJ, Small D. et al. 2012. Congenital hydrocephalus in genetically engineered mice. Vet. Pathol. 49:166–81 [Google Scholar]
  158. Vos YJ, de Walle HE, Bos KK, Stegeman JA, Ten Berge AM. et al. 2010. Genotype-phenotype correlations in L1 syndrome: a guide for genetic counselling and mutation analysis. J. Med. Genet. 47:169–75 [Google Scholar]
  159. Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM. et al. 1990. Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249:181–86 [Google Scholar]
  160. Walsh T, Shahin H, Elkan-Miller T, Lee MK, Thornton AM. et al. 2010. Whole exome sequencing and homozygosity mapping identify mutation in the cell polarity protein GPSM2 as the cause of nonsyndromic hearing loss DFNB82. Am. J. Hum. Genet. 87:90–94 [Google Scholar]
  161. Wang T, Liu Y, Xu XH, Deng CY, Wu KY. et al. 2011. Lgl1 activation of rab10 promotes axonal membrane trafficking underlying neuronal polarization. Dev. Cell 21:431–44 [Google Scholar]
  162. Waters AM, Asfahani R, Carroll P, Bicknell L, Lescai F. et al. 2015. The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes. J. Med. Genet. 52:147–56 [Google Scholar]
  163. Wicker G, Prill V, Brooks D, Gibson G, Hopwood J. et al. 1991. Mucopolysaccharidosis VI (Maroteaux-Lamy syndrome): an intermediate clinical phenotype caused by substitution of valine for glycine at position 137 of arylsulfatase B. J. Biol. Chem. 266:21386–91 [Google Scholar]
  164. Wild A, Kalff-Suske M, Vortkamp A, Bornholdt D, Kônig R, Grzeschik KH. 1997. Point mutations in human GLI3 cause Greig syndrome. Hum. Mol. Genet. 6:1979–84 [Google Scholar]
  165. Wilkie AOM, Slaney SF, Oldridge M, Poole MD, Ashworth GJ. et al. 1995. Apert syndrome results from localized mutations of FGFR2 and is allelic with Crouzon syndrome. Nat. Genet. 9:165–72 [Google Scholar]
  166. Willems PJ, Brouwer OF, Dijkstra I, Wilmink J. 1987. X-linked hydrocephalus. Am. J. Med. Genet. 27:921–28 [Google Scholar]
  167. Willer T, Lee H, Lommel M, Yoshida-Moriguchi T, Beltrán-Valero de Bernabé D. et al. 2012. ISPD loss-of-function mutations disrupt dystroglycan O-mannosylation and cause Walker-Warburg syndrome. Nat. Genet. 44:575–80 [Google Scholar]
  168. Wlodarczyk BJ, Palacios AM, George TM, Finnell RH. 2012. Antiepileptic drugs and pregnancy outcomes. Am. J. Med. Genet. Part A 158A:2071–90 [Google Scholar]
  169. Wright R, Johnson D, Neumann M, Ksiazek TG, Rollin P. et al. 1997. Congenital lymphocytic choriomeningitis virus syndrome: a disease that mimics congenital toxoplasmosis or cytomegalovirus infection. Pediatrics 100:E9 [Google Scholar]
  170. Xiong H, Kobayashi K, Tachikawa M, Manya H, Takeda S. et al. 2006. Molecular interaction between fukutin and POMGnT1 in the glycosylation pathway of α-dystroglycan. Biochem. Biophys. Res. Commun. 350:935–41 [Google Scholar]
  171. Yagi H, Furutani Y, Hamada H, Sasaki T, Asakawa S. et al. 2003. Role of TBX1 in human del22q11.2 syndrome. Lancet 362:1366–73 [Google Scholar]
  172. Yamasaki M, Kanemura Y. 2015. Molecular biology of pediatric hydrocephalus and hydrocephalus-related diseases. Neurol. Med.-Chir. 55:640–46 [Google Scholar]
  173. Yoshida A, Kobayashi K, Manya H, Taniguchi K, Kano H. et al. 2001. Muscular dystrophy and neuronal migration disorder caused by mutations in a glycosyltransferase, POMGnT1. Dev. Cell 1:717–24 [Google Scholar]
  174. Zlotogora J, Sagi M, Cohen T. 1994. Familial hydrocephalus of prenatal onset. Am. J. Med. Genet. 49:202–4 [Google Scholar]
/content/journals/10.1146/annurev-neuro-070815-014023
Loading
/content/journals/10.1146/annurev-neuro-070815-014023
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error