1932

Abstract

One of the fundamental properties of the mammalian brain is that sensory regions of cortex are formed of multiple, functionally specialized cortical field maps (CFMs). Each CFM comprises two orthogonal topographical representations, reflecting two essential aspects of sensory space. In auditory cortex, auditory field maps (AFMs) are defined by the combination of tonotopic gradients, representing the spectral aspects of sound (i.e., tones), with orthogonal periodotopic gradients, representing the temporal aspects of sound (i.e., period or temporal envelope). Converging evidence from cytoarchitectural and neuroimaging measurements underlies the definition of 11 AFMs across core and belt regions of human auditory cortex, with likely homology to those of macaque. On a macrostructural level, AFMs are grouped into cloverleaf clusters, an organizational structure also seen in visual cortex. Future research can now use these AFMs to investigate specific stages of auditory processing, key for understanding behaviors such as speech perception and multimodal sensory integration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070815-014045
2016-07-08
2024-05-28
Loading full text...

Full text loading...

/deliver/fulltext/neuro/39/1/annurev-neuro-070815-014045.html?itemId=/content/journals/10.1146/annurev-neuro-070815-014045&mimeType=html&fmt=ahah

Literature Cited

  1. Amunts K, Malikovic A, Mohlberg H, Schormann T, Zilles K. 2000. Brodmann's areas 17 and 18 brought into stereotaxic space—where and how variable?. NeuroImage 11:66–84 [Google Scholar]
  2. Amunts K, Schleicher A, Burgel U, Mohlberg H, Uylings HB, Zilles K. 1999. Broca's region revisited: cytoarchitecture and intersubject variability. J. Comp. Neurol. 412:319–41 [Google Scholar]
  3. Barton B, Venezia JH, Saberi K, Hickok G, Brewer AA. 2012. Orthogonal acoustic dimensions define auditory field maps in human cortex. PNAS 109:20738–43 [Google Scholar]
  4. Baumann S, Griffiths TD, Sun L, Petkov CI, Thiele A, Rees A. 2011. Orthogonal representation of sound dimensions in the primate midbrain. Nat. Neurosci. 14:423–25 [Google Scholar]
  5. Baumann S, Joly O, Rees A, Petkov CI, Sun L. et al. 2015. The topography of frequency and time representation in primate auditory cortices. eLife 4:e03256 [Google Scholar]
  6. Brewer AA, Barton B. 2012. Visual field map organization in human visual cortex. Visual Cortex: Current Status and Perspectives S Molotchnikoff, J Rouat 29–60 Rijeka, Croat.: InTech
  7. Brewer AA, Liu J, Wade AR, Wandell BA. 2005. Visual field maps and stimulus selectivity in human ventral occipital cortex. Nat. Neurosci. 8:1102–9 [Google Scholar]
  8. Brewer AA, Press WA, Logothetis NK, Wandell BA. 2002. Visual areas in macaque cortex measured using functional magnetic resonance imaging. J. Neurosci. 22:10416–26 [Google Scholar]
  9. Chklovskii DB, Koulakov AA. 2004. Maps in the brain: What can we learn from them?. Annu. Rev. Neurosci. 27:369–92 [Google Scholar]
  10. Clarke S, Morosan P. 2012. Architecture, connectivity, and transmitter receptors of human auditory cortex. The Human Auditory Cortex D Poeppel, T Overath, AN Popper, RR Richard 11–38 New York: Springer [Google Scholar]
  11. Da Costa S, van der Zwaag W, Marques JP, Frackowiak RSJ, Clarke S, Saenz M. 2011. Human primary auditory cortex follows the shape of Heschl's gyrus. J. Neurosci. 31:14067–75 [Google Scholar]
  12. Dau T, Kollmeier B, Kohlrausch A. 1997. Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. J. Acoust. Soc. Am. 102:2906–19 [Google Scholar]
  13. de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA. 2006. Cortical connections of the auditory cortex in marmoset monkeys: core and medial belt regions. J. Comp. Neurol. 496:27–71 [Google Scholar]
  14. DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J. et al. 1996. Mapping striate and extrastriate visual areas in human cerebral cortex. PNAS 93:2382–86 [Google Scholar]
  15. Dick F, Tierney AT, Lutti A, Josephs O, Sereno MI, Weiskopf N. 2012. In vivo functional and myeloarchitectonic mapping of human primary auditory areas. J. Neurosci. 32:16095–105 [Google Scholar]
  16. Dougherty RF, Koch VM, Brewer AA, Fischer B, Modersitzki J, Wandell BA. 2003. Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J. Vis. 3:586–98 [Google Scholar]
  17. Engel SA, Glover GH, Wandell BA. 1997. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7:181–92 [Google Scholar]
  18. Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH. et al. 1994. fMRI of human visual cortex. Nature 369:525 [Google Scholar]
  19. Ewert SD, Dau T. 2000. Characterizing frequency selectivity for envelope fluctuations. J. Acoust. Soc. Am. 108:1181–96 [Google Scholar]
  20. Formisano E, Kim DS, Di Salle F, van de Moortele PF, Ugurbil K, Goebel R. 2003. Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40:859–69 [Google Scholar]
  21. Fullerton BC, Pandya DN. 2007. Architectonic analysis of the auditory-related areas of the superior temporal region in human brain. J. Comp. Neurol. 504:470–98 [Google Scholar]
  22. Galaburda AM, Pandya DN. 1983. The intrinsic architectonic and connectional organization of the superior temporal region of the rhesus monkey.. J. Comp. Neurol. 221:169–84 [Google Scholar]
  23. Galaburda AM, Sanides F. 1980. Cytoarchitectonic organization of the human auditory cortex. J. Comp. Neurol. 190:597–610 [Google Scholar]
  24. Hackett TA. 2011. Information flow in the auditory cortical network. Hear. Res. 271:133–46 [Google Scholar]
  25. Hackett TA, Preuss TM, Kaas JH. 2001. Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J. Comp. Neurol. 441:197–222 [Google Scholar]
  26. Hackett TA, Stepniewska I, Kaas JH. 1998a. Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J. Comp. Neurol. 394:475–95 [Google Scholar]
  27. Hackett TA, Stepniewska I, Kaas JH. 1998b. Thalamocortical connections of the parabelt auditory cortex in macaque monkeys. J. Comp. Neurol. 400:271–86 [Google Scholar]
  28. Hedges S, Kumar S. 2003. Genomic clocks and evolutionary timescales. Trends Genet 19:200–6 [Google Scholar]
  29. Herdener M, Esposito F, Scheffler K, Schneider P, Logothetis NK. et al. 2013. Spatial representations of temporal and spectral sound cues in human auditory cortex. Cortex 49:2822–33 [Google Scholar]
  30. Howard MA, Volkov IO, Mirsky R, Garell PC, Noh MD. et al. 2000. Auditory cortex on the human posterior superior temporal gyrus. J. Comp. Neurol. 416:79–92 [Google Scholar]
  31. Hsieh IH, Saberi K. 2010. Detection of sinusoidal amplitude modulation in logarithmic frequency sweeps across wide regions of the spectrum. Hear. Res. 262:9–18 [Google Scholar]
  32. Humphries C, Liebenthal E, Binder JR. 2010. Tonotopic organization of human auditory cortex. NeuroImage 50:1202–11 [Google Scholar]
  33. Joly O, Baumann S, Balezeau F, Thiele A, Griffiths TD. 2014. Merging functional and structural properties of the monkey auditory cortex. Front. Neurosci. 8:198 [Google Scholar]
  34. Jones EG, Dell'Anna ME, Molinari M, Rausell E, Hashikawa T. 1995. Subdivisions of macaque monkey auditory cortex revealed by calcium-binding protein immunoreactivity. J. Comp. Neurol. 362:153–70 [Google Scholar]
  35. Kaas JH. 1997. Topographic maps are fundamental to sensory processing. Brain Res. Bull. 44:107–12 [Google Scholar]
  36. Kaas JH, Hackett TA. 2000. Subdivisions of auditory cortex and processing streams in primates. PNAS 97:11793–99 [Google Scholar]
  37. Kajikawa Y, Frey S, Ross D, Falchier A, Hackett TA, Schroeder CE. 2015. Auditory properties in the parabelt regions of the superior temporal gyrus in the awake macaque monkey: an initial survey. J. Neurosci. 35:4140–50 [Google Scholar]
  38. Kolster H, Mandeville JB, Arsenault JT, Ekstrom LB, Wald LL, Vanduffel W. 2009. Visual field map clusters in macaque extrastriate visual cortex. J. Neurosci. 29:7031–39 [Google Scholar]
  39. Kolster H, Peeters R, Orban GA. 2010. The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. J. Neurosci. 30:9801–20 [Google Scholar]
  40. Kosaki H, Hashikawa T, He J, Jones EG. 1997. Tonotopic organization of auditory cortical fields delineated by parvalbumin immunoreactivity in macaque monkeys. J. Comp. Neurol. 386:304–16 [Google Scholar]
  41. Krubitzer LA, Seelke AM. 2012. Cortical evolution in mammals: the bane and beauty of phenotypic variability. PNAS 109:10647–54 [Google Scholar]
  42. Kusmierek P, Rauschecker JP. 2009. Functional specialization of medial auditory belt cortex in the alert rhesus monkey. J. Neurophysiol. 102:1606–22 [Google Scholar]
  43. Langner G. 1992. Periodicity coding in the auditory system. Hear. Res. 60:115–42 [Google Scholar]
  44. Langner G, Albert M, Briede T. 2002. Temporal and spatial coding of periodicity information in the inferior colliculus of awake chinchilla (Chinchilla laniger). Hear. Res. 168:110–30 [Google Scholar]
  45. Langner G, Dinse HR, Godde B. 2009. A map of periodicity orthogonal to frequency representation in the cat auditory cortex. Front. Integr. Neurosci. 3:27 [Google Scholar]
  46. Langner G, Sams M, Heil P, Schulze H. 1997. Frequency and periodicity are represented in orthogonal maps in the human auditory cortex: evidence from magnetoencephalography. J. Comp. Physiol. A 181:665–76 [Google Scholar]
  47. Langner G, Schreiner CE. 1988. Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J. Neurophysiol. 60:1799–822 [Google Scholar]
  48. Leaver AM, Rauschecker JP. 2016. Functional topography of human auditory cortex. J. Neurosci. 36:1416–28 [Google Scholar]
  49. Leonard CM, Puranik C, Kuldau JM, Lombardino LJ. 1998. Normal variation in the frequency and location of human auditory cortex landmarks. Heschl's gyrus: Where is it?. Cereb. Cortex 8:397–406 [Google Scholar]
  50. Lutti A, Dick F, Sereno MI, Weiskopf N. 2014. Using high-resolution quantitative mapping of R1 as an index of cortical myelination. NeuroImage 93:Pt. 2176–88 [Google Scholar]
  51. Merzenich MM, Brugge JF. 1973. Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Res 50:275–96 [Google Scholar]
  52. Mitchison G. 1991. Neuronal branching patterns and the economy of cortical wiring. Proc. Biol. Sci. 245:151–8 [Google Scholar]
  53. Moerel M, De Martino F, Formisano E. 2012. Processing of natural sounds in human auditory cortex: tonotopy, spectral tuning, and relation to voice sensitivity. J. Neurosci. 32:14205–16 [Google Scholar]
  54. Moerel M, De Martino F, Formisano E. 2014. An anatomical and functional topography of human auditory cortical areas. Front. Neurosci. 8:225 [Google Scholar]
  55. Molinari M, Dell'Anna ME, Rausell E, Leggio MG, Hashikawa T, Jones EG. 1995. Auditory thalamocortical pathways defined in monkeys by calcium-binding protein immunoreactivity. J. Comp. Neurol. 362:171–94 [Google Scholar]
  56. Moradi F, Heeger DJ. 2009. Inter-ocular contrast normalization in human visual cortex. J. Vis. 9:13 [Google Scholar]
  57. Morel A, Garraghty PE, Kaas JH. 1993. Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys. J. Comp. Neurol. 335:437–59 [Google Scholar]
  58. Morosan P, Rademacher J, Schleicher A, Amunts K, Schormann T, Zilles K. 2001. Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. NeuroImage 13:684–701 [Google Scholar]
  59. Pandya DN, Sanides F. 1973. Architectonic parcellation of the temporal operculum in rhesus monkey and its projection pattern. Z. Anatom. Entwickl. 139:127–61 [Google Scholar]
  60. Pantev C, Elbert T, Ross B, Eulitz C, Terhardt E. 1996. Binaural fusion and the representation of virtual pitch in the human auditory cortex. Hear. Res. 100:164–70 [Google Scholar]
  61. Petkov CI, Kayser C, Augath M, Logothetis NK. 2006. Functional imaging reveals numerous fields in the monkey auditory cortex. PLOS Biol 4:e215 [Google Scholar]
  62. Petkov CI, Kayser C, Augath M, Logothetis NK. 2009. Optimizing the imaging of the monkey auditory cortex: sparse versus continuous fMRI. Magn. Reson. Imaging 27:1065–73 [Google Scholar]
  63. Press WA, Brewer AA, Dougherty RF, Wade AR, Wandell BA. 2001. Visual areas and spatial summation in human visual cortex. Vision Res 41:1321–32 [Google Scholar]
  64. Rademacher J, Caviness VS Jr., Steinmetz H, Galaburda AM. 1993. Topographical variation of the human primary cortices: implications for neuroimaging, brain mapping, and neurobiology. Cereb. Cortex 3:313–29 [Google Scholar]
  65. Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C. et al. 2001. Probabilistic mapping and volume measurement of human primary auditory cortex. NeuroImage 13669–83
  66. Rauschecker JP, Tian B. 2004. Processing of band-passed noise in the lateral auditory belt cortex of the rhesus monkey. J. Neurophysiol. 91:2578–89 [Google Scholar]
  67. Rauschecker JP, Tian B, Hauser M. 1995. Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268:111–4 [Google Scholar]
  68. Recanzone GH, Guard DC, Phan ML. 2000. Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J. Neurophysiol. 83:2315–31 [Google Scholar]
  69. Rivier F, Clarke S. 1997. Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. NeuroImage 6:288–304 [Google Scholar]
  70. Romanski LM, Bates JF, Goldman-Rakic PS. 1999. Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 403:141–57 [Google Scholar]
  71. Saenz M, Langers DR. 2014. Tonotopic mapping of human auditory cortex. Hear. Res. 307:42–52 [Google Scholar]
  72. Sanchez-Panchuelo RM, Francis S, Bowtell R, Schluppeck D. 2010. Mapping human somatosensory cortex in individual subjects with 7T functional MRI. J. Neurophysiol. 103:2544–56 [Google Scholar]
  73. Santoro R, Moerel M, De Martino F, Goebel R, Ugurbil K. et al. 2014. Encoding of natural sounds at multiple spectral and temporal resolutions in the human auditory cortex. PLOS Comp. Biol. 10:e1003412 [Google Scholar]
  74. Schonwiesner M, von Cramon DY, Rubsamen R. 2002. Is it tonotopy after all?. NeuroImage 17:1144–61 [Google Scholar]
  75. Schouten J, Ritsma R, Cardozo B. 1962. Pitch of the residue. J. Acoust. Soc. Am. 34:1418–24 [Google Scholar]
  76. Schreiner CE, Langner G. 1988. Periodicity coding in the inferior colliculus of the cat. II. Topographical organization. J. Neurophysiol. 60:1823–40 [Google Scholar]
  77. Schulze H, Hess A, Ohl FW, Scheich H. 2002. Superposition of horseshoe-like periodicity and linear tonotopic maps in auditory cortex of the Mongolian gerbil. Eur. J. Neurosci. 15:1077–84 [Google Scholar]
  78. Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW. et al. 1995. Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–93 [Google Scholar]
  79. Shamma S. 2001. On the role of space and time in auditory processing. Trends Cogn. Sci. 5:340–48 [Google Scholar]
  80. Shapley R, Hawken M, Xing D. 2007. The dynamics of visual responses in the primary visual cortex. Prog. Brain Res. 165:21–32 [Google Scholar]
  81. Striem-Amit E, Hertz U, Amedi A. 2011. Extensive cochleotopic mapping of human auditory cortical fields obtained with phase-encoding fMRI. PLOS ONE 6:e17832 [Google Scholar]
  82. Sweet RA, Dorph-Petersen KA, Lewis DA. 2005. Mapping auditory core, lateral belt, and parabelt cortices in the human superior temporal gyrus. J. Comp. Neurol. 491:270–89 [Google Scholar]
  83. Talavage TM, Sereno MI, Melcher JR, Ledden PJ, Rosen BR, Dale AM. 2004. Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J. Neurophysiol. 91:1282–96 [Google Scholar]
  84. Tanji K, Leopold DA, Ye FQ, Zhu C, Malloy M. et al. 2010. Effect of sound intensity on tonotopic fMRI maps in the unanesthetized monkey. NeuroImage 49:150–57 [Google Scholar]
  85. Thomas JM, Huber E, Stecker GC, Boynton GM, Saenz M, Fine I. 2015. Population receptive field estimates of human auditory cortex. NeuroImage 105:428–39 [Google Scholar]
  86. Tian B, Rauschecker JP. 2004. Processing of frequency-modulated sounds in the lateral auditory belt cortex of the rhesus monkey. J. Neurophysiol. 92:2993–3013 [Google Scholar]
  87. Upadhyay J, Ducros M, Knaus TA, Lindgren KA, Silver A. et al. 2007. Function and connectivity in human primary auditory cortex: a combined fMRI and DTI study at 3 Tesla. Cereb. Cortex 17:2420–32 [Google Scholar]
  88. Van Essen DC. 2003. Organization of visual areas in macaque and human cerebral cortex. The Visual Neurosciences LM Chalupa, JS Werner 507–21 Boston: Bradford Books [Google Scholar]
  89. von Economo C, Koskinas GN. 1925. Die Cytoarchitectonik der Hirnrinde des erwachsenen Menschen Berlin: Julius-Springer
  90. Wade AR, Brewer AA, Rieger JW, Wandell BA. 2002. Functional measurements of human ventral occipital cortex: retinotopy and colour. Philos. Trans. R. Soc. B 57:963–73 [Google Scholar]
  91. Wandell BA, Brewer AA, Dougherty RF. 2005. Visual field map clusters in human cortex. Philos. Trans. R. Soc. B 360:693–707 [Google Scholar]
  92. Wandell BA, Dumoulin SO, Brewer AA. 2007. Visual field maps in human cortex. Neuron 56:366–83 [Google Scholar]
  93. Wandell BA, Winawer J. 2010. Imaging retinotopic maps in the human brain. Vision Res 51:718–37 [Google Scholar]
  94. Wessinger CM, VanMeter J, Tian B, Van Lare J, Pekar J, Rauschecker JP. 2001. Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J. Cog. Neurosci. 13:1–7 [Google Scholar]
  95. Woods DL, Herron TJ, Cate AD, Yund EW, Stecker GC. et al. 2010. Functional properties of human auditory cortical fields. Front. Syst. Neurosci. 4:155 [Google Scholar]
  96. Zeki S. 2003. Improbable areas in the visual brain. Trends Neurosci 26:23–26 [Google Scholar]
  97. Zeki S, Bartels A. 1999. Toward a theory of visual consciousness. Conscious. Cogn. 8:225–59 [Google Scholar]
/content/journals/10.1146/annurev-neuro-070815-014045
Loading
/content/journals/10.1146/annurev-neuro-070815-014045
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error