1932

Abstract

Acute pain is adaptive, but chronic pain is a global challenge. Many chronic pain syndromes are peripheral in origin and reflect hyperactivity of peripheral pain-signaling neurons. Current treatments are ineffective or only partially effective and in some cases can be addictive, underscoring the need for better therapies. Molecular genetic studies have now linked multiple human pain disorders to voltage-gated sodium channels, including disorders characterized by insensitivity or reduced sensitivity to pain and others characterized by exaggerated pain in response to normally innocuous stimuli. Here, we review recent developments that have enhanced our understanding of pathophysiological mechanisms in human pain and advances in targeting sodium channels in peripheral neurons for the treatment of pain using novel and existing sodium channel blockers.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070918-050144
2019-07-08
2024-05-27
Loading full text...

Full text loading...

/deliver/fulltext/neuro/42/1/annurev-neuro-070918-050144.html?itemId=/content/journals/10.1146/annurev-neuro-070918-050144&mimeType=html&fmt=ahah

Literature Cited

  1. Ahn HS, Dib-Hajj SD, Cox JJ, Tyrrell L, Elmslie FV et al. 2010. A new Nav1.7 sodium channel mutation I234T in a child with severe pain. Eur. J. Pain 14:944–50
    [Google Scholar]
  2. Ahuja S, Mukund S, Deng L, Khakh K, Chang E et al. 2015. Structural basis of Nav1.7 inhibition by an isoform-selective small-molecule antagonist. Science 350:aac5464
    [Google Scholar]
  3. Akopian AN, Sivilotti L, Wood JN 1996. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379:257–62
    [Google Scholar]
  4. Alexandrou AJ, Brown AR, Chapman ML, Estacion M, Turner J et al. 2016. Subtype-selective small molecule inhibitors reveal a fundamental role for Nav1.7 in nociceptor electrogenesis, axonal conduction and presynaptic release. PLOS ONE 11:e0152405
    [Google Scholar]
  5. Amsalem M, Poilbout C, Ferracci G, Delmas P, Padilla F 2018. Membrane cholesterol depletion as a trigger of Nav1.9 channel-mediated inflammatory pain. EMBO J 37:e97349
    [Google Scholar]
  6. Apkarian AV, Baliki MN, Geha PY 2009. Towards a theory of chronic pain. Prog. Neurobiol. 87:81–97
    [Google Scholar]
  7. Baliki MN, Petre B, Torbey S, Herrmann KM, Huang L et al. 2012. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat. Neurosci. 15:1117–19
    [Google Scholar]
  8. Bennett DL, Woods CG. 2014. Painful and painless channelopathies. Lancet Neurol 13:587–99
    [Google Scholar]
  9. Black JA, Cummins TR, Plumpton C, Chen YH, Hormuzdiar W et al. 1999. Upregulation of a silent sodium channel after peripheral, but not central, nerve injury in DRG neurons. J. Neurophysiol. 82:2776–85
    [Google Scholar]
  10. Black JA, Frezel N, Dib-Hajj SD, Waxman SG 2012. Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn. Mol. Pain 8:82
    [Google Scholar]
  11. Black JA, Hoeijmakers JG, Faber CG, Merkies IS, Waxman SG 2013. NaV1.7: stress-induced changes in immunoreactivity within magnocellular neurosecretory neurons of the supraoptic nucleus. Mol. Pain 9:39
    [Google Scholar]
  12. Black JA, Nikolajsen L, Kroner K, Jensen TS, Waxman SG 2008. Multiple sodium channel isoforms and mitogen-activated protein kinases are present in painful human neuromas. Ann. Neurol. 64:644–53
    [Google Scholar]
  13. Blesneac I, Themistocleous AC, Fratter C, Conrad LJ, Ramirez JD et al. 2017. Rare Nav1.7 variants associated with painful diabetic peripheral neuropathy. Pain 159:469–80
    [Google Scholar]
  14. Bouza AA, Isom LL. 2017. Voltage-gated sodium channel β subunits and their related diseases. Voltage-Gated Sodium Channels: Structure, Function and Channelopathies. Handbook of Experimental Pharmacology, Vol. 246 M Chahine 423–50 Cham, Switz: Springer
    [Google Scholar]
  15. Branco T, Tozer A, Magnus CJ, Sugino K, Tanaka S et al. 2016. Near-perfect synaptic integration by Nav1.7 in hypothalamic neurons regulates body weight. Cell 165:1749–61
    [Google Scholar]
  16. Breton H, Cociglio M, Bressolle F, Peyriere H, Blayac JP, Hillaire-Buys D 2005. Liquid chromatography-electrospray mass spectrometry determination of carbamazepine, oxcarbazepine and eight of their metabolites in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 828:80–90
    [Google Scholar]
  17. Brouwer BA, Merkies IS, Gerrits MM, Waxman SG, Hoeijmakers JG, Faber CG 2014. Painful neuropathies: the emerging role of sodium channelopathies. J. Peripher. Nerv. Syst. 19:53–65
    [Google Scholar]
  18. Cao L, McDonnell A, Nitzsche A, Alexandrou A, Saintot PP et al. 2016. Pharmacological reversal of a pain phenotype in iPSC-derived sensory neurons and patients with inherited erythromelalgia. Sci. Transl. Med. 8:335ra56
    [Google Scholar]
  19. Catterall WA. 2017. Forty years of sodium channels: structure, function, pharmacology, and epilepsy. Neurochem. Res. 42:2495–504
    [Google Scholar]
  20. Catterall WA, Kalume F, Oakley JC 2010. NaV1.1 channels and epilepsy. J. Physiol. 588:1849–59
    [Google Scholar]
  21. Chai S, Wan X, Ramirez-Navarro A, Tesar PJ, Kaufman ES et al. 2018. Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. J. Clin. Investig. 128:1043–56
    [Google Scholar]
  22. Chang W, Berta T, Kim YH, Lee S, Lee SY, Ji RR 2018. Expression and role of voltage-gated sodium channels in human dorsal root ganglion neurons with special focus on Nav1.7, species differences, and regulation by paclitaxel. Neurosci. Bull. 34:4–12
    [Google Scholar]
  23. Chen L, Huang J, Zhao P, Persson AK, Dib-Hajj FB et al. 2018. Conditional knockout of NaV1.6 in adult mice ameliorates neuropathic pain. Sci. Rep. 8:3845
    [Google Scholar]
  24. Cheng X, Dib-Hajj SD, Tyrrell L, Waxman SG 2008. Mutation I136V alters electrophysiological properties of the NaV1.7 channel in a family with onset of erythromelalgia in the second decade. Mol. Pain 4:1
    [Google Scholar]
  25. Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E et al. 2006. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–98
    [Google Scholar]
  26. Cummins TR, Dib-Hajj SD, Waxman SG 2004. Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J. Neurosci. 24:8232–36
    [Google Scholar]
  27. Davidson S, Copits BA, Zhang J, Page G, Ghetti A, Gereau RW 4th 2014. Human sensory neurons: membrane properties and sensitization by inflammatory mediators. Pain 155:1861–70
    [Google Scholar]
  28. Deuis JR, Wingerd JS, Winter Z, Durek T, Dekan Z et al. 2016. Analgesic effects of GpTx-1, PF-04856264 and CNV1014802 in a mouse model of NaV1.7-mediated pain. Toxins 8:78
    [Google Scholar]
  29. Deuis JR, Zimmermann K, Romanovsky AA, Possani LD, Cabot PJ et al. 2013. An animal model of oxaliplatin-induced cold allodynia reveals a crucial role for Na1.6 in peripheral pain pathways. Pain 154:1749–57
    [Google Scholar]
  30. Dib-Hajj SD, Black JA, Felts P, Waxman SG 1996. Down-regulation of transcripts for Na channel α-SNS in spinal sensory neurons following axotomy. PNAS 93:14950–54
    [Google Scholar]
  31. Dib-Hajj SD, Black JA, Waxman SG 2015. NaV1.9: a sodium channel linked to human pain. Nat. Rev. Neurosci. 16:511–19
    [Google Scholar]
  32. Dib-Hajj SD, Choi JS, Macala LJ, Tyrrell L, Black JA et al. 2009. Transfection of rat or mouse neurons by biolistics or electroporation. Nat. Protoc. 4:1118–26
    [Google Scholar]
  33. Dib-Hajj SD, Cummins TR, Black JA, Waxman SG 2010. Sodium channels in normal and pathological pain. Annu. Rev. Neurosci. 33:325–47
    [Google Scholar]
  34. Dib-Hajj SD, Geha P, Waxman SG 2017. Sodium channels in pain disorders: pathophysiology and prospects for treatment. Pain 158:Suppl. 1S97–107
    [Google Scholar]
  35. Dib-Hajj SD, Tyrrell L, Cummins TR, Black JA, Wood PM, Waxman SG 1999. Two tetrodotoxin-resistant sodium channels in human dorsal root ganglion neurons. FEBS Lett 462:117–20
    [Google Scholar]
  36. Dib-Hajj SD, Waxman SG. 2010. Isoform-specific and pan-channel partners regulate trafficking and plasma membrane stability; and alter sodium channel gating properties. Neurosci. Lett. 486:84–91
    [Google Scholar]
  37. Dib-Hajj SD, Yang Y, Black JA, Waxman SG 2013. The NaV1.7 sodium channel: from molecule to man. Nat. Rev. Neurosci. 14:49–62
    [Google Scholar]
  38. Drenth JP, Waxman SG. 2007. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J. Clin. Investig. 117:3603–9
    [Google Scholar]
  39. Duan G, Han C, Wang Q, Guo S, Zhang Y et al. 2016. A SCN10A SNP biases human pain sensitivity. Mol. Pain 12: https://doi.org/10.1177/1744806916666083
    [Crossref] [Google Scholar]
  40. Eberhardt M, Nakajima J, Klinger AB, Neacsu C, Huhne K et al. 2014. Inherited pain: Sodium channel Nav1.7 A1632T mutation causes erythromelalgia due to a shift of fast inactivation. J. Biol. Chem. 289:1971–80
    [Google Scholar]
  41. Emery EC, Habib AM, Cox JJ, Nicholas AK, Gribble FM et al. 2015. Novel SCN9A mutations underlying extreme pain phenotypes: unexpected electrophysiological and clinical phenotype correlations. J. Neurosci. 35:7674–81
    [Google Scholar]
  42. Erickson A, Deiteren A, Harrington AM, Garcia-Caraballo S, Castro J et al. 2018. Voltage-gated sodium channels: (NaV)igating the field to determine their contribution to visceral nociception. J. Physiol. 596:785–807
    [Google Scholar]
  43. Estacion M, Dib-Hajj SD, Benke PJ, te Morsche RHM, Eastman EM et al. 2008. Nav1.7 gain-of-function mutations as a continuum: A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J. Neurosci. 28:11079–88
    [Google Scholar]
  44. Faber CG, Hoeijmakers JG, Ahn HS, Cheng X, Han C et al. 2012a. Gain of function NaV1.7 mutations in idiopathic small fiber neuropathy. Ann. Neurol. 71:26–39
    [Google Scholar]
  45. Faber CG, Lauria G, Merkies IS, Cheng X, Han C et al. 2012b. Gain-of-function Nav1.8 mutations in painful neuropathy. PNAS 109:19444–49
    [Google Scholar]
  46. Fertleman CR, Baker MD, Parker KA, Moffatt S, Elmslie FV et al. 2006. SCN9A mutations in paroxysmal extreme pain disorder: Allelic variants underlie distinct channel defects and phenotypes. Neuron 52:767–74
    [Google Scholar]
  47. Fischer TZ, Gilmore ES, Estacion M, Eastman E, Taylor S et al. 2009. A novel Nav1.7 mutation producing carbamazepine-responsive erythromelalgia. Ann. Neurol. 65:733–41
    [Google Scholar]
  48. Geha P, Yang Y, Estacion M, Schulman BR, Tokuno H et al. 2016. Pharmacotherapy for pain in a family with inherited erythromelalgia guided by genomic analysis and functional profiling. JAMA Neurol 73:659–67
    [Google Scholar]
  49. Gingras J, Smith S, Matson DJ, Johnson D, Nye K et al. 2014. Global Nav1.7 knockout mice recapitulate the phenotype of human congenital indifference to pain. PLOS ONE 9:e105895
    [Google Scholar]
  50. Han C, Dib-Hajj SD, Lin Z, Li Y, Eastman EM et al. 2009. Early- and late-onset inherited erythromelalgia: genotype-phenotype correlation. Brain 132:1711–22
    [Google Scholar]
  51. Han C, Estacion M, Huang J, Vasylyev DV, Zhao P et al. 2015a. Human Nav1.8: Enhanced persistent and ramp currents contribute to distinct firing properties of human DRG neurons. J. Neurophysiol. 113:3172–85
    [Google Scholar]
  52. Han C, Hoeijmakers JG, Liu S, Gerrits MM, te Morsche RHM et al. 2012. Functional profiles of SCN9A variants in dorsal root ganglion neurons and superior cervical ganglion neurons correlate with autonomic symptoms in small fibre neuropathy. Brain 135:2613–28
    [Google Scholar]
  53. Han C, Huang J, Waxman SG 2016. Sodium channel Nav1.8: emerging links to human disease. Neurology 86:473–83
    [Google Scholar]
  54. Han C, Themistocleous AC, Estacion M, Dib-Hajj FB, Blesneac I et al. 2018. The novel activity of CBZ as an activation modulator extends from Nav1.7 mutations to the Nav1.8-S242T mutant channel from a patient with painful diabetic neuropathy. Mol. Pharmacol. 94:1256–69
    [Google Scholar]
  55. Han C, Yang Y, de Greef BT, Hoeijmakers JG, Gerrits MM et al. 2015b. The domain II S4-S5 linker in Nav1.9: A missense mutation enhances activation, impairs fast inactivation, and produces human painful neuropathy. Neuromolecular Med 17:158–69
    [Google Scholar]
  56. Han C, Yang Y, te Morsche RHM, Drenth JP, Politei JM et al. 2017. Familial gain-of-function Nav1.9 mutation in a painful channelopathy. J. Neurol. Neurosurg. Psychiatry 88:233–40
    [Google Scholar]
  57. Herzog RI, Cummins TR, Waxman SG 2001. Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J. Neurophysiol. 86:1351–64
    [Google Scholar]
  58. Hockley JR, Boundouki G, Cibert-Goton V, McGuire C, Yip PK et al. 2014. Multiple roles for NaV1.9 in the activation of visceral afferents by noxious inflammatory, mechanical, and human disease-derived stimuli. Pain 155:1962–75
    [Google Scholar]
  59. Hockley JR, Gonzalez-Cano R, McMurray S, Tejada-Giraldez MA, McGuire C et al. 2017. Visceral and somatic pain modalities reveal NaV 1.7–independent visceral nociceptive pathways. J. Physiol. 595:2661–79
    [Google Scholar]
  60. Hoeijmakers JG, Han C, Merkies IS, Macala LJ, Lauria G et al. 2012. Small nerve fibres, small hands and small feet: a new syndrome of pain, dysautonomia and acromesomelia in a kindred with a novel NaV1.7 mutation. Brain 135:345–58
    [Google Scholar]
  61. Huang J, Han C, Estacion M, Vasylyev D, Hoeijmakers JG et al. 2014. Gain-of-function mutations in sodium channel Nav1.9 in painful neuropathy. Brain 137:1627–42
    [Google Scholar]
  62. Huang J, Mis MA, Tanaka B, Adi T, Estacion M et al. 2018. Atypical changes in DRG neuron excitability and complex pain phenotype associated with a Nav1.7 mutation that massively hyperpolarizes activation. Sci. Rep. 8:1811
    [Google Scholar]
  63. Huang J, Vanoye CG, Cutts A, Goldberg YP, Dib-Hajj SD et al. 2017. Sodium channel NaV1.9 mutations associated with insensitivity to pain dampen neuronal excitability. J. Clin. Investig. 127:2805–14
    [Google Scholar]
  64. Inoue H, Nagata N, Kurokawa H, Yamanaka S 2014. iPS cells: a game changer for future medicine. EMBO J 33:409–17
    [Google Scholar]
  65. Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S et al. 2007. A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. PNAS 104:8520–25
    [Google Scholar]
  66. Kanellopoulos AH, Koenig J, Huang H, Pyrski M, Millet Q et al. 2018. Mapping protein interactions of sodium channel NaV1.7 using epitope-tagged gene-targeted mice. EMBO J 37:427–45
    [Google Scholar]
  67. Kim DT, Rossignol E, Najem K, Ospina LH 2015. Bilateral congenital corneal anesthesia in a patient with SCN9A mutation, confirmed primary erythromelalgia, and paroxysmal extreme pain disorder. J. AAPOS 19:478–79
    [Google Scholar]
  68. Kuo CC, Chen RS, Lu L, Chen RC 1997. Carbamazepine inhibition of neuronal Na+ currents: quantitative distinction from phenytoin and possible therapeutic implications. Mol. Pharmacol. 51:1077–83
    [Google Scholar]
  69. Lampert A, Dib-Hajj SD, Tyrrell L, Waxman SG 2006. Size matters: Erythromelalgia mutation S241T in Nav1.7 alters channel gating. J. Biol. Chem. 281:36029–35
    [Google Scholar]
  70. Lampert A, O'Reilly AO, Dib-Hajj SD, Tyrrell L, Wallace BA, Waxman SG 2008. A pore-blocking hydrophobic motif at the cytoplasmic aperture of the closed-state Nav1.7 channel is disrupted by the erythromelalgia-associated F1449V mutation. J. Biol. Chem. 283:24118–27
    [Google Scholar]
  71. Leipold E, Hanson-Kahn A, Frick M, Gong P, Bernstein JA et al. 2015. Cold-aggravated pain in humans caused by a hyperactive NaV1.9 channel mutant. Nat. Commun. 6:10049
    [Google Scholar]
  72. Leipold E, Liebmann L, Korenke GC, Heinrich T, Giesselmann S et al. 2013. A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat. Genet. 45:1399–404
    [Google Scholar]
  73. Li Y, North RY, Rhines LD, Tatsui CE, Rao G et al. 2018. DRG voltage-gated sodium channel 1.7 is upregulated in paclitaxel-induced neuropathy in rats and in humans with neuropathic pain. J. Neurosci. 38:1124–36
    [Google Scholar]
  74. Long SB, Campbell EB, Mackinnon R 2005. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903
    [Google Scholar]
  75. Maarbjerg S, Di Stefano G, Bendtsen L, Cruccu G 2017. Trigeminal neuralgia—diagnosis and treatment. Cephalalgia 37:648–57
    [Google Scholar]
  76. Mantegazza M, Curia G, Biagini G, Ragsdale DS, Avoli M 2010. Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol 9:413–24
    [Google Scholar]
  77. McCormack K, Santos S, Chapman ML, Krafte DS, Marron BE et al. 2013. Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels. PNAS 110:E2724–32
    [Google Scholar]
  78. McDonnell A, Collins S, Ali Z, Iavarone L, Surujbally R et al. 2018. Efficacy of the Nav1.7 blocker PF-05089771 in a randomised, placebo-controlled, double-blind clinical study in subjects with painful diabetic peripheral neuropathy. Pain 159:1465–76
    [Google Scholar]
  79. McDonnell A, Schulman B, Ali Z, Dib-Hajj SD, Brock F et al. 2016. Inherited erythromelalgia due to mutations in SCN9A: natural history, clinical phenotype and somatosensory profile. Brain 139:1052–65
    [Google Scholar]
  80. Meijer IA, Vanasse M, Nizard S, Robitaille Y, Rossignol E 2014. An atypical case of SCN9A mutation presenting with global motor delay and a severe pain disorder. Muscle Nerve 49:134–38
    [Google Scholar]
  81. Michiels JJ, te Morsche RHM, Jansen JBMJ, Drenth JPH 2005. Autosomal dominant erythermalgia associated with a novel mutation in the voltage-gated sodium channel α subunit Nav1.7. Arch. Neurol. 62:1587–90
    [Google Scholar]
  82. Minett MS, Nassar MA, Clark AK, Passmore G, Dickenson AH et al. 2012. Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons. Nat. Commun. 3:791
    [Google Scholar]
  83. Mis MA, Rogers MF, Jeffries AR, Wilbrey AL, Chen L et al. 2018. Differential aging-related changes in neurophysiology and gene expression in IB4-positive and IB4-negative nociceptive neurons. Aging Cell 25:e12795
    [Google Scholar]
  84. Mis MA, Yang Y, Tanaka BS, Gomis-Perez C, Liu S et al. 2019. Resilience to pain: a peripheral component identified using induced pluripotent stem cells and dynamic clamp. J. Neurosci39(3):382–92
    [Google Scholar]
  85. O'Donnell A-M, Coyle D, Puri P 2016. Decreased Nav1.9 channel expression in Hirschsprung's disease. J. Pediatr. Surg. 51:1458–61
    [Google Scholar]
  86. Okuda H, Noguchi A, Kobayashi H, Kondo D, Harada KH et al. 2016. Infantile pain episodes associated with novel Nav1.9 mutations in familial episodic pain syndrome in Japanese families. PLOS ONE 11:e0154827
    [Google Scholar]
  87. Osteen JD, Herzig V, Gilchrist J, Emrick JJ, Zhang C et al. 2016. Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature 534:494–99
    [Google Scholar]
  88. Payandeh J, Scheuer T, Zheng N, Catterall WA 2011. The crystal structure of a voltage-gated sodium channel. Nature 475:353–58
    [Google Scholar]
  89. Payne CE, Brown AR, Theile JW, Loucif AJ, Alexandrou AJC et al. 2015. A novel selective and orally bioavailable NaV1.8 blocker, PF-01247324, attenuates nociception and sensory neuron excitability. Br. J. Pharmacol. 172:2654–70
    [Google Scholar]
  90. Pei Z, Pan Y, Cummins TR 2018. Posttranslational modification of sodium channels. Voltage-Gated Sodium Channels: Structure, Function and Channelopathies. Handbook of Experimental Pharmacology, Vol. 246 M Chahine 101–24 Cham, Switz: Springer
    [Google Scholar]
  91. Persson AK, Black JA, Gasser A, Fischer T, Waxman SG 2010. Sodium-calcium exchanger and multiple sodium channel isoforms in intra-epidermal nerve terminals. Mol. Pain 6:84
    [Google Scholar]
  92. Renganathan M, Cummins TR, Waxman SG 2001. Contribution of Nav1.8 sodium channels to action potential electrogenesis in DRG neurons. J. Neurophysiol. 86:629–40
    [Google Scholar]
  93. Rugiero F, Mistry M, Sage D, Black JA, Waxman SG et al. 2003. Selective expression of a persistent tetrodotoxin-resistant Na+ current and NaV1.9 subunit in myenteric sensory neurons. J. Neurosci. 23:2715–25
    [Google Scholar]
  94. Rush AM, Cummins TR, Waxman SG 2007. Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J. Physiol. 579:1–14
    [Google Scholar]
  95. Rush AM, Dib-Hajj SD, Liu S, Cummins TR, Black JA, Waxman SG 2006. A single sodium channel mutation produces hyper- or hypoexcitability in different types of neurons. PNAS 103:8245–50
    [Google Scholar]
  96. Schmidt D, Jiang QX, MacKinnon R 2006. Phospholipids and the origin of cationic gating charges in voltage sensors. Nature 444:775–79
    [Google Scholar]
  97. Shen H, Li Z, Jiang Y, Pan X, Wu J et al. 2018. Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science 362(6412):eaau2596
    [Google Scholar]
  98. Shen H, Zhou Q, Pan X, Li Z, Wu J, Yan N 2017. Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution. Science 355:eaa14326
    [Google Scholar]
  99. Shields SD, Ahn HS, Yang Y, Han C, Seal RP et al. 2012. NaV1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain 153:2017–30
    [Google Scholar]
  100. Sittl R, Lampert A, Huth T, Schuy ET, Link AS et al. 2012. Anticancer drug oxaliplatin induces acute cooling-aggravated neuropathy via sodium channel subtype NaV1.6-resurgent and persistent current. PNAS 109:6704–9
    [Google Scholar]
  101. Skolnick P, Volkow ND. 2016. Re-energizing the development of pain therapeutics in light of the opioid epidemic. Neuron 92:294–97
    [Google Scholar]
  102. Soliman MA, Aboharb F, Zeltner N, Studer L 2017. Pluripotent stem cells in neuropsychiatric disorders. Mol. Psychiatry 22:1241–49
    [Google Scholar]
  103. Tan ZY, Piekarz AD, Priest BT, Knopp KL, Krajewski JL et al. 2014. Tetrodotoxin-resistant sodium channels in sensory neurons generate slow resurgent currents that are enhanced by inflammatory mediators. J. Neurosci. 34:7190–97
    [Google Scholar]
  104. Tanaka BS, Nguyen PT, Zhou EY, Yang Y, Yarov-Yarovoy V et al. 2017. Gain-of-function mutation of a voltage-gated sodium channel NaV1.7 associated with peripheral pain and impaired limb development. J. Biol. Chem. 292:9262–72
    [Google Scholar]
  105. Tanaka BS, Zhao P, Dib-Hajj FB, Morisset V, Tate S et al. 2016. A gain-of-function mutation in Nav1.6 in a case of trigeminal neuralgia. Mol. Med. 22:338–48
    [Google Scholar]
  106. Tanelian DL, Brose WG. 1991. Neuropathic pain can be relieved by drugs that are use-dependent sodium channel blockers: lidocaine, carbamazepine, and mexiletine. Anesthesiology 74:949–51
    [Google Scholar]
  107. Vasylyev DV, Han C, Zhao P, Dib-Hajj S, Waxman SG 2014. Dynamic-clamp analysis of wild-type human NaV1.7 and erythromelalgia mutant channel L858H. J. Neurophysiol. 111:1429–43
    [Google Scholar]
  108. Wagnon JL, Meisler MH. 2015. Recurrent and non-recurrent mutations of SCN8A in epileptic encephalopathy. Front. Neurol. 6:104
    [Google Scholar]
  109. Wang S, Davis BM, Zwick M, Waxman SG, Albers KM 2005. Reduced thermal sensitivity and Nav1.8 and TRPV1 channel expression in sensory neurons of aged mice. Neurobiol. Aging 27:895–903
    [Google Scholar]
  110. Waxman SG. 2006. Neurobiology: a channel sets the gain on pain. Nature 444:831–32
    [Google Scholar]
  111. Waxman SG, Kocsis JD, Black JA 1994. Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. J. Neurophysiol. 72:466–70
    [Google Scholar]
  112. Woods CG, Babiker MO, Horrocks I, Tolmie J, Kurth I 2015. The phenotype of congenital insensitivity to pain due to the NaV1.9 variant p.L811P. Eur. J. Hum. Genet. 23:561–63
    [Google Scholar]
  113. Xie W, Strong JA, Ye L, Mao J-X, Zhang J-M 2013. Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia. Pain 154:1170–80
    [Google Scholar]
  114. Yan Z, Zhou Q, Wang L, Wu J, Zhao Y et al. 2017. Structure of the Nav1.4-β1 complex from electric eel. Cell 170:470–82.e11
    [Google Scholar]
  115. Yang Y, Adi T, Effraim PR, Chen L, Dib-Hajj SD, Waxman SG 2017. Reverse pharmacogenomics: Carbamazepine normalizes activation and attenuates thermal-induced hyperexcitability of sensory neurons due to Nav1.7 mutation I234T. Br. J. Pharmacol. 175:2261–71
    [Google Scholar]
  116. Yang Y, Dib-Hajj SD, Zhang J, Zhang Y, Tyrrell L et al. 2012. Structural modelling and mutant cycle analysis predict pharmacoresponsiveness of a Nav1.7 mutant channel. Nat. Commun. 3:1186
    [Google Scholar]
  117. Yang Y, Estacion M, Dib-Hajj SD, Waxman SG 2013. Molecular architecture of a sodium channel S6 helix: radial tuning of the voltage-gated sodium channel 1.7 activation gate. J. Biol. Chem. 288:13741–47
    [Google Scholar]
  118. Yang Y, Wang Y, Li S, Xu Z, Li H et al. 2004. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J. Med. Genet. 41:171–74
    [Google Scholar]
  119. Yang YC, Huang CS, Kuo CC 2010. Lidocaine, carbamazepine, and imipramine have partially overlapping binding sites and additive inhibitory effect on neuronal Na+ channels. Anesthesiology 113:160–74
    [Google Scholar]
  120. Yekkirala AS, Roberson DP, Bean BP, Woolf CJ 2017. Breaking barriers to novel analgesic drug development. Nat. Rev. Drug Discov. 16:545–64
    [Google Scholar]
  121. Young GT, Gutteridge A, Fox HD, Wilbrey AL, Cao L et al. 2014. Characterizing human stem cell-derived sensory neurons at the single-cell level reveals their ion channel expression and utility in pain research. Mol. Ther. 22:1530–43
    [Google Scholar]
  122. Yuan J, Matsuura E, Higuchi Y, Hashiguchi A, Nakamura T et al. 2013. Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation. Neurology 80:1641–49
    [Google Scholar]
  123. Zakrzewska JM, Palmer J, Morisset V, Giblin GM, Obermann M et al. 2017. Safety and efficacy of a Nav1.7 selective sodium channel blocker in patients with trigeminal neuralgia: a double-blind, placebo-controlled, randomised withdrawal phase 2a trial. Lancet Neurol 16:291–300
    [Google Scholar]
  124. Zhang X, Priest BT, Belfer I, Gold MS 2017. Voltage-gated Na+ currents in human dorsal root ganglion neurons. eLife 6:e23235
    [Google Scholar]
  125. Zhang XY, Wen J, Yang W, Wang C, Gao L et al. 2013. Gain-of-function mutations in SCN11A cause familial episodic pain. Am. J. Hum. Genet. 93:957–66
    [Google Scholar]
  126. Zheng YM, Wang WF, Li YF, Yu Y, Gao ZB 2018. Enhancing inactivation rather than reducing activation of Nav1.7 channels by a clinically effective analgesic CNV1014802. Acta Pharmacol. Sin. 39:587–96
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-070918-050144
Loading
/content/journals/10.1146/annurev-neuro-070918-050144
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error