1932

Abstract

Neuronal circuits that regulate movement are distributed throughout the nervous system. The brainstem is an important interface between upper motor centers involved in action planning and circuits in the spinal cord ultimately leading to execution of body movements. Here we focus on recent work using genetic and viral entry points to reveal the identity of functionally dedicated and frequently spatially intermingled brainstem populations essential for action diversification, a general principle conserved throughout evolution. Brainstem circuits with distinct organization and function control skilled forelimb behavior, orofacial movements, and locomotion. They convey regulatory parameters to motor output structures and collaborate in the construction of complex natural motor behaviors. Functionally tuned brainstem neurons for different actions serve as important integrators of synaptic inputs from upstream centers, including the basal ganglia and cortex, to regulate and modulate behavioral function in different contexts.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070918-050201
2019-07-08
2024-05-21
Loading full text...

Full text loading...

/deliver/fulltext/neuro/42/1/annurev-neuro-070918-050201.html?itemId=/content/journals/10.1146/annurev-neuro-070918-050201&mimeType=html&fmt=ahah

Literature Cited

  1. Alaynick WA, Jessell TM, Pfaff SL 2011. Snapshot: spinal cord development. Cell 146:178–78.e1
    [Google Scholar]
  2. Alstermark B, Ekerot CF. 2013. The lateral reticular nucleus: a precerebellar centre providing the cerebellum with overview and integration of motor functions at systems level. A new hypothesis. J. Physiol. 591:5453–58
    [Google Scholar]
  3. Alstermark B, Isa T, Pettersson LG, Sasaki S 2007. The C3-C4 propriospinal system in the cat and monkey: a spinal pre-motoneuronal centre for voluntary motor control. Acta Physiol 189:123–40
    [Google Scholar]
  4. Alstermark B, Kummel H. 1986. Transneuronal labelling of neurones projecting to forelimb motoneurones in cats performing different movements. Brain Res 376:387–91
    [Google Scholar]
  5. Alstermark B, Lindstrom S, Lundberg A, Sybirska E 1981a. Integration in descending motor pathways controlling the forelimb in the cat: 8. Ascending projection to the lateral reticular nucleus from C3-C4 propriospinal also projecting to forelimb motoneurones. Exp. Brain Res. 42:282–98
    [Google Scholar]
  6. Alstermark B, Lundberg A, Norrsell U, Sybirska E 1981b. Integration in descending motor pathways controlling the forelimb in the cat: 9. Differential behavioural defects after spinal cord lesions interrupting defined pathways from higher centres to motoneurones. Exp. Brain Res. 42:299–318
    [Google Scholar]
  7. Arber S. 2012. Motor circuits in action: specification, connectivity, and function. Neuron 74:975–89
    [Google Scholar]
  8. Arber S, Costa RM. 2018. Connecting neuronal circuits for movement. Science 360:1403–4
    [Google Scholar]
  9. Azim E, Jiang J, Alstermark B, Jessell TM 2014. Skilled reaching relies on a V2a propriospinal internal copy circuit. Nature 508:357–63
    [Google Scholar]
  10. Baker SN. 2011. The primate reticulospinal tract, hand function and functional recovery. J. Physiol. 589:5603–12
    [Google Scholar]
  11. Baker SN, Zaaimi B, Fisher KM, Edgley SA, Soteropoulos DS 2015. Pathways mediating functional recovery. Prog. Brain Res. 218:389–412
    [Google Scholar]
  12. Barbera G, Liang B, Zhang L, Gerfen CR, Culurciello E et al. 2016. Spatially compact neural clusters in the dorsal striatum encode locomotion relevant information. Neuron 92:202–13
    [Google Scholar]
  13. Bjursten LM, Norrsell K, Norrsell U 1976. Behavioural repertory of cats without cerebral cortex from infancy. Exp. Brain Res. 25:115–30
    [Google Scholar]
  14. Bouvier J, Caggiano V, Leiras R, Caldeira V, Bellardita C et al. 2015. Descending command neurons in the brainstem that halt locomotion. Cell 163:1191–203
    [Google Scholar]
  15. Buford JA, Davidson AG. 2004. Movement-related and preparatory activity in the reticulospinal system of the monkey. Exp. Brain Res. 159:284–300
    [Google Scholar]
  16. Caggiano V, Leiras R, Goñi-Erro H, Masini D, Bellardita C et al. 2018. Midbrain circuits that set locomotor speed and gait selection. Nature 553:455–60
    [Google Scholar]
  17. Cande J, Namiki S, Qiu J, Korff W, Card GM et al. 2018. Optogenetic dissection of descending behavioral control in Drosophila. . eLife 7:e34275
    [Google Scholar]
  18. Capelli P, Pivetta C, Esposito MS, Arber S 2017. Locomotor speed control circuits in the caudal brainstem. Nature 551:373–77
    [Google Scholar]
  19. Crone SA, Quinlan KA, Zagoraiou L, Droho S, Restrepo CE et al. 2008. Genetic ablation of V2a ipsilateral interneurons disrupts left-right locomotor coordination in mammalian spinal cord. Neuron 60:70–83
    [Google Scholar]
  20. Crone SA, Zhong G, Harris-Warrick R, Sharma K 2009. In mice lacking V2a interneurons, gait depends on speed of locomotion. J. Neurosci. 29:7098–109
    [Google Scholar]
  21. Cui Y, Kam K, Sherman D, Janczewski WA, Zheng Y, Feldman JL 2016. Defining preBotzinger complex rhythm- and pattern-generating neural microcircuits in vivo. Neuron 91:602–14
    [Google Scholar]
  22. Del Negro CA, Funk GD, Feldman JL 2018. Breathing matters. Nat. Rev. Neurosci. 19:351–67
    [Google Scholar]
  23. Dellow PG, Lund JP. 1971. Evidence for central timing of rhythmical mastication. J. Physiol. 215:1–13
    [Google Scholar]
  24. Deschenes M, Takatoh J, Kurnikova A, Moore JD, Demers M et al. 2016. Inhibition, not excitation, drives rhythmic whisking. Neuron 90:374–87
    [Google Scholar]
  25. Drew T, Dubuc R, Rossignol S 1986. Discharge patterns of reticulospinal and other reticular neurons in chronic, unrestrained cats walking on a treadmill. J. Neurophysiol. 55:375–401
    [Google Scholar]
  26. Dum RP, Strick PL. 1991. The origin of corticospinal projections from the premotor areas in the frontal lobe. J. Neurosci. 11:667–89
    [Google Scholar]
  27. Esposito MS, Capelli P, Arber S 2014. Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature 508:351–56
    [Google Scholar]
  28. Evans DA, Stempel AV, Vale R, Ruehle S, Lefler Y, Branco T 2018. A synaptic threshold mechanism for computing escape decisions. Nature 558:590–94
    [Google Scholar]
  29. Feldman JL, Del Negro CA, Gray PA 2013. Understanding the rhythm of breathing: so near, yet so far. Annu. Rev. Physiol. 75:423–52
    [Google Scholar]
  30. Fregosi M, Contestabile A, Badoud S, Borgognon S, Cottet J et al. 2018. Changes of motor corticobulbar projections following different lesion types affecting the central nervous system in adult macaque monkeys. Eur. J. Neurosci. 48:2050–70
    [Google Scholar]
  31. Giber K, Diana MA, Plattner V, Dugue GP, Bokor H et al. 2015. A subcortical inhibitory signal for behavioral arrest in the thalamus. Nat. Neurosci. 18:562–68
    [Google Scholar]
  32. Giovannucci A, Badura A, Deverett B, Najafi F, Pereira TD et al. 2017. Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning. Nat. Neurosci. 20:727–34
    [Google Scholar]
  33. Goulding M. 2009. Circuits controlling vertebrate locomotion: moving in a new direction. Nat. Rev. Neurosci. 10:507–18
    [Google Scholar]
  34. Gronenberg W, Strausfeld NJ. 1990. Descending neurons supplying the neck and flight motor of Diptera: physiological and anatomical characteristics. J. Comp. Neurol. 302:973–91
    [Google Scholar]
  35. Guthrie S. 2007. Patterning and axon guidance of cranial motor neurons. Nat. Rev. Neurosci. 8:859–71
    [Google Scholar]
  36. Han W, Tellez LA, Rangel MJ Jr, Motta SC, Zhang X et al. 2017. Integrated control of predatory hunting by the central nucleus of the amygdala. Cell 168:311–24.e18
    [Google Scholar]
  37. Hayashi M, Hinckley CA, Driscoll SP, Moore NJ, Levine AJ et al. 2018. Graded arrays of spinal and supraspinal V2a interneuron subtypes underlie forelimb and hindlimb motor control. Neuron 97:869–84.e5
    [Google Scholar]
  38. Heiney SA, Kim J, Augustine GJ, Medina JF 2014. Precise control of movement kinematics by optogenetic inhibition of Purkinje cell activity. J. Neurosci. 34:2321–30
    [Google Scholar]
  39. Hinsey JC, Ranson SW, McNattin MD 1930. The role of the hypothalamus and mesencephalon in locomotion. Arch. Neurol. Psychiatry 23:1–43
    [Google Scholar]
  40. Hsu CT, Bhandawat V. 2016. Organization of descending neurons in Drosophila melanogaster. Sci. Rep 6:20259
    [Google Scholar]
  41. Huang CC, Sugino K, Shima Y, Guo C, Bai S et al. 2013. Convergence of pontine and proprioceptive streams onto multimodal cerebellar granule cells. eLife 2:e00400
    [Google Scholar]
  42. Illert M, Lundberg A, Padel Y, Tanaka R 1978. Integration in descending motor pathways controlling the forelimb in the cat: 5. Properties of and monosynaptic excitatory convergence on C3–C4 propriospinal neurones. Exp. Brain Res. 33:101–30
    [Google Scholar]
  43. Jarratt H, Hyland B. 1999. Neuronal activity in rat red nucleus during forelimb reach-to-grasp movements. Neuroscience 88:629–42
    [Google Scholar]
  44. Jin X, Costa RM. 2015. Shaping action sequences in basal ganglia circuits. Curr. Opin. Neurobiol. 33:188–96
    [Google Scholar]
  45. Jin X, Tecuapetla F, Costa RM 2014. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17:423–30
    [Google Scholar]
  46. Jones BE. 1995. Reticular formation: cytoarchitecture, transmitters and projections. The Rat Nervous System G Paxinos 155–71 San Diego: Academic
    [Google Scholar]
  47. Jordan LM. 1998. Initiation of locomotion in mammals. Ann. N. Y. Acad. Sci. 860:83–93
    [Google Scholar]
  48. Josset N, Roussel M, Lemieux M, Lafrance-Zoubga D, Rastqar A, Bretzner F 2018. Distinct contributions of mesencephalic locomotor region nuclei to locomotor control in the freely behaving mouse. Curr. Biol. 28:884–901.e3
    [Google Scholar]
  49. Juvin L, Gratsch S, Trillaud-Doppia E, Gariepy JF, Buschges A, Dubuc R 2016. A specific population of reticulospinal neurons controls the termination of locomotion. Cell Rep 15:2377–86
    [Google Scholar]
  50. Kiehn O. 2016. Decoding the organization of spinal circuits that control locomotion. Nat. Rev. Neurosci. 17:224–38
    [Google Scholar]
  51. Kimura Y, Satou C, Fujioka S, Shoji W, Umeda K et al. 2013. Hindbrain V2a neurons in the excitation of spinal locomotor circuits during zebrafish swimming. Curr. Biol. 23:843–49
    [Google Scholar]
  52. Kinoshita M, Matsui R, Kato S, Hasegawa T, Kasahara H et al. 2012. Genetic dissection of the circuit for hand dexterity in primates. Nature 487:235–38
    [Google Scholar]
  53. Klaus A, Martins GJ, Paixao VB, Zhou P, Paninski L, Costa RM 2017. The spatiotemporal organization of the striatum encodes action space. Neuron 95:1171–80.e7
    [Google Scholar]
  54. Kleinfeld D, Deschenes M, Wang F, Moore JD 2014. More than a rhythm of life: breathing as a binder of orofacial sensation. Nat. Neurosci. 17:647–51
    [Google Scholar]
  55. Kolta A, Brocard F, Verdier D, Lund JP 2007. A review of burst generation by trigeminal main sensory neurons. Arch. Oral Biol. 52:325–28
    [Google Scholar]
  56. Kurnikova A, Moore JD, Liao SM, Deschenes M, Kleinfeld D 2017. Coordination of orofacial motor actions into exploratory behavior by rat. Curr. Biol. 27:688–96
    [Google Scholar]
  57. Kuypers HG. 1964. The descending pathways to the spinal cord, their anatomy and function. Prog. Brain Res. 11:178–202
    [Google Scholar]
  58. Kuypers HG. 1981. Anatomy of the descending pathways. Compr. Physiol. 2:597–666
    [Google Scholar]
  59. Kuypers HG, Lawrence DG. 1967. Cortical projections to the red nucleus and the brain stem in the Rhesus monkey. Brain Res 4:151–88
    [Google Scholar]
  60. Lee KH, Mathews PJ, Reeves AM, Choe KY, Jami SA et al. 2015. Circuit mechanisms underlying motor memory formation in the cerebellum. Neuron 86:529–40
    [Google Scholar]
  61. Lemon RN. 2008. Descending pathways in motor control. Annu. Rev. Neurosci. 31:195–218
    [Google Scholar]
  62. Levine AJ, Lewallen KA, Pfaff SL 2012. Spatial organization of cortical and spinal neurons controlling motor behavior. Curr. Opin. Neurobiol. 22:812–21
    [Google Scholar]
  63. Li N, Chen TW, Guo ZV, Gerfen CR, Svoboda K 2015. A motor cortex circuit for motor planning and movement. Nature 519:51–56
    [Google Scholar]
  64. Li N, Daie K, Svoboda K, Druckmann S 2016. Robust neuronal dynamics in premotor cortex during motor planning. Nature 532:459–64
    [Google Scholar]
  65. Li P, Janczewski WA, Yackle K, Kam K, Pagliardini S et al. 2016. The peptidergic control circuit for sighing. Nature 530:293–97
    [Google Scholar]
  66. Li Y, Zeng J, Zhang J, Yue C, Zhong W et al. 2018. Hypothalamic circuits for predation and evasion. Neuron 97:911–24.e5
    [Google Scholar]
  67. Low AYT, Thanawalla AR, Yip AKK, Kim J, Wong KLL et al. 2018. Precision of discrete and rhythmic forelimb movements requires a distinct neuronal subpopulation in the interposed anterior nucleus. Cell Rep 22:2322–33
    [Google Scholar]
  68. Marder E, Bucher D. 2001. Central pattern generators and the control of rhythmic movements. Curr. Biol. 11:R986–96
    [Google Scholar]
  69. McElvain LE, Friedman B, Karten HJ, Svoboda K, Wang F et al. 2018. Circuits in the rodent brainstem that control whisking in concert with other orofacial motor actions. Neuroscience 368:152–70
    [Google Scholar]
  70. McFarland DH, Lund JP. 1993. An investigation of the coupling between respiration, mastication, and swallowing in the awake rabbit. J. Neurophysiol. 69:95–108
    [Google Scholar]
  71. Medina JF. 2011. The multiple roles of Purkinje cells in sensori-motor calibration: to predict, teach and command. Curr. Opin. Neurobiol. 21:616–22
    [Google Scholar]
  72. Mena-Segovia J, Bolam JP. 2017. Rethinking the pedunculopontine nucleus: from cellular organization to function. Neuron 94:7–18
    [Google Scholar]
  73. Moore JD, Deschenes M, Furuta T, Huber D, Smear MC et al. 2013. Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature 497:205–10
    [Google Scholar]
  74. Moore JD, Kleinfeld D, Wang F 2014. How the brainstem controls orofacial behaviors comprised of rhythmic actions. Trends Neurosci 37:370–80
    [Google Scholar]
  75. Mori S, Sakamoto T, Ohta Y, Takakusaki K, Matsuyama K 1989. Site-specific postural and locomotor changes evoked in awake, freely moving intact cats by stimulating the brainstem. Brain Res 505:66–74
    [Google Scholar]
  76. Morquette P, Kolta A. 2014. How do we walk and chew gum at the same time?. eLife 3:e03235
    [Google Scholar]
  77. Morris R, Tosolini AP, Goldstein JD, Whishaw IQ 2011. Impaired arpeggio movement in skilled reaching by rubrospinal tract lesions in the rat: a behavioral/anatomical fractionation. J. Neurotrauma 28:2439–51
    [Google Scholar]
  78. Mosberger AC, Miehlbradt JC, Bjelopoljak N, Schneider MP, Wahl AS et al. 2018. Axotomized corticospinal neurons increase supra-lesional innervation and remain crucial for skilled reaching after bilateral pyramidotomy. Cereb. Cortex 28:625–43
    [Google Scholar]
  79. Naganuma K, Inoue M, Yamamura K, Hanada K, Yamada Y 2001. Tongue and jaw muscle activities during chewing and swallowing in freely behaving rabbits. Brain Res 915:185–94
    [Google Scholar]
  80. Namiki S, Dickinson MH, Wong AM, Korff W, Card GM 2018. The functional organization of descending sensory-motor pathways in Drosophila. . eLife 7:e34272
    [Google Scholar]
  81. Newman DB. 1985a. Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. I. Medullary nuclei. J. Hirnforsch. 26:187–226
    [Google Scholar]
  82. Newman DB. 1985b. Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. II. Pontine and mesencephalic nuclei. J. Hirnforsch. 26:385–418
    [Google Scholar]
  83. Niell CM, Stryker MP. 2010. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65:472–79
    [Google Scholar]
  84. Orlovsky GN, Deliagina TG, Grillner S 1999. Neuronal Control of Locomotion: From Mollusc to Man Oxford, UK: Oxford Univ. Press
  85. Parker JG, Marshall JD, Ahanonu B, Wu YW, Kim TH et al. 2018. Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature 557:177–82
    [Google Scholar]
  86. Peters AJ, Lee J, Hedrick NG, O'Neil K, Komiyama T 2017. Reorganization of corticospinal output during motor learning. Nat. Neurosci. 20:1133–41
    [Google Scholar]
  87. Pivetta C, Esposito MS, Sigrist M, Arber S 2014. Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin. Cell 156:537–48
    [Google Scholar]
  88. Roh J, Cheung VC, Bizzi E 2011. Modules in the brain stem and spinal cord underlying motor behaviors. J. Neurophysiol. 106:1363–78
    [Google Scholar]
  89. Roseberry TK, Lee AM, Lalive AL, Wilbrecht L, Bonci A, Kreitzer AC 2016. Cell-type-specific control of brainstem locomotor circuits by basal ganglia. Cell 164:526–37
    [Google Scholar]
  90. Rossi MA, Li HE, Lu D, Kim IH, Bartholomew RA et al. 2016. A GABAergic nigrotectal pathway for coordination of drinking behavior. Nat. Neurosci. 19:742–48
    [Google Scholar]
  91. Ryczko D, Dubuc R. 2013. The multifunctional mesencephalic locomotor region. Curr. Pharm. Des. 19:4448–70
    [Google Scholar]
  92. Sacrey LA, Alaverdashvili M, Whishaw IQ 2009. Similar hand shaping in reaching-for-food (skilled reaching) in rats and humans provides evidence of homology in release, collection, and manipulation movements. Behav. Brain Res. 204:153–61
    [Google Scholar]
  93. Schepens B, Drew T. 2004. Independent and convergent signals from the pontomedullary reticular formation contribute to the control of posture and movement during reaching in the cat. J. Neurophysiol. 92:2217–38
    [Google Scholar]
  94. Shefchyk SJ, Jell RM, Jordan LM 1984. Reversible cooling of the brainstem reveals areas required for mesencephalic locomotor region evoked treadmill locomotion. Exp. Brain Res. 56:257–62
    [Google Scholar]
  95. Shepherd GM. 2013. Corticostriatal connectivity and its role in disease. Nat. Rev. Neurosci. 14:278–91
    [Google Scholar]
  96. Shik ML, Orlovsky GN. 1976. Neurophysiology of locomotor automatism. Physiol. Rev. 56:465–501
    [Google Scholar]
  97. Skinner RD, Garcia-Rill E. 1984. The mesencephalic locomotor region (MLR) in the rat. Brain Res 323:385–89
    [Google Scholar]
  98. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL 1991. Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726–29
    [Google Scholar]
  99. Soteropoulos DS, Williams ER, Baker SN 2012. Cells in the monkey ponto-medullary reticular formation modulate their activity with slow finger movements. J. Physiol. 590:4011–27
    [Google Scholar]
  100. Sreenivasan V, Karmakar K, Rijli FM, Petersen CC 2015. Parallel pathways from motor and somatosensory cortex for controlling whisker movements in mice. Eur. J. Neurosci. 41:354–67
    [Google Scholar]
  101. Stanek ET, Cheng S, Takatoh J, Han BX, Wang F 2014. Monosynaptic premotor circuit tracing reveals neural substrates for oro-motor coordination. eLife 3:e02511
    [Google Scholar]
  102. Stepien AE, Tripodi M, Arber S 2010. Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells. Neuron 68:456–72
    [Google Scholar]
  103. Takakusaki K, Chiba R, Nozu T, Okumura T 2016. Brainstem control of locomotion and muscle tone with special reference to the role of the mesopontine tegmentum and medullary reticulospinal systems. J. Neural Transm. 123:695–729
    [Google Scholar]
  104. Takatoh J, Nelson A, Zhou X, Bolton MM, Ehlers MD et al. 2013. New modules are added to vibrissal premotor circuitry with the emergence of exploratory whisking. Neuron 77:346–60
    [Google Scholar]
  105. Tecuapetla F, Jin X, Lima SQ, Costa RM 2016. Complementary contributions of striatal projection pathways to action initiation and execution. Cell 166:703–15
    [Google Scholar]
  106. Tovote P, Fadok JP, Luthi A 2015. Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16:317–31
    [Google Scholar]
  107. Travers JB, DiNardo LA, Karimnamazi H 2000. Medullary reticular formation activity during ingestion and rejection in the awake rat. Exp. Brain Res. 130:78–92
    [Google Scholar]
  108. Tripodi M, Stepien AE, Arber S 2011. Motor antagonism exposed by spatial segregation and timing of neurogenesis. Nature 479:61–66
    [Google Scholar]
  109. Ueno M, Nakamura Y, Li J, Gu Z, Niehaus J et al. 2018. Corticospinal circuits from the sensory and motor cortices differentially regulate skilled movements through distinct spinal interneurons. Cell Rep 23:1286–300.e7
    [Google Scholar]
  110. Valverde F. 1961. Reticular formation of the pons and medulla oblongata. A Golgi study. J. Comp. Neurol. 116:71–99
    [Google Scholar]
  111. Wagner MJ, Kim TH, Savall J, Schnitzer MJ, Luo L 2017. Cerebellar granule cells encode the expectation of reward. Nature 544:96–100
    [Google Scholar]
  112. Wang X, Liu Y, Li X, Zhang Z, Yang H et al. 2017. Deconstruction of corticospinal circuits for goal-directed motor skills. Cell 171:440–55.e14
    [Google Scholar]
  113. Weber F, Chung S, Beier KT, Xu M, Luo L, Dan Y 2015. Control of REM sleep by ventral medulla GABAergic neurons. Nature 526:435–38
    [Google Scholar]
  114. Welzl H, Bures J. 1977. Lick-synchronized breathing in rats. Physiol. Behav. 18:751–53
    [Google Scholar]
  115. Whelan PJ. 1996. Control of locomotion in the decerebrate cat. Prog. Neurobiol. 49:481–515
    [Google Scholar]
  116. Whishaw IQ, Gorny B, Sarna J 1998. Paw and limb use in skilled and spontaneous reaching after pyramidal tract, red nucleus and combined lesions in the rat: behavioral and anatomical dissociations. Behav. Brain Res. 93:167–83
    [Google Scholar]
  117. Whishaw IQ, Pellis SM. 1990. The structure of skilled forelimb reaching in the rat: a proximally driven movement with a single distal rotatory component. Behav. Brain Res. 41:49–59
    [Google Scholar]
  118. Wickersham IR, Lyon DC, Barnard RJ, Mori T, Finke S et al. 2007. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53:639–47
    [Google Scholar]
  119. Wu J, Capelli P, Bouvier J, Goulding M, Arber S, Fortin G 2017. A V0 core neuronal circuit for inspiration. Nat. Commun. 8:544
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-070918-050201
Loading
/content/journals/10.1146/annurev-neuro-070918-050201
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error