1932

Abstract

Daylight vision begins when light activates cone photoreceptors in the retina, creating spatial patterns of neural activity. These cone signals are then combined and processed in downstream neural circuits, ultimately producing visual perception. Recent technical advances have made it possible to deliver visual stimuli to the retina that probe this processing by the visual system at its elementary resolution of individual cones. Physiological recordings from nonhuman primate retinas reveal the spatial organization of cone signals in retinal ganglion cells, including how signals from cones of different types are combined to support both spatial and color vision. Psychophysical experiments with human subjects characterize the visual sensations evoked by stimulating a single cone, including the perception of color. Future combined physiological and psychophysical experiments focusing on probing the elementary visual inputs are likely to clarify how neural processing generates our perception of the visual world.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070918-050233
2019-07-08
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/neuro/42/1/annurev-neuro-070918-050233.html?itemId=/content/journals/10.1146/annurev-neuro-070918-050233&mimeType=html&fmt=ahah

Literature Cited

  1. Aho AC, Donner K, Hyden C, Larsen LO, Reuter T 1988. Low retinal noise in animals with low body temperature allows high visual sensitivity. Nature 334:348–50
    [Google Scholar]
  2. Ala-Laurila P, Rieke F. 2014. Coincidence detection of single-photon responses in the inner retina at the sensitivity limit of vision. Curr. Biol. 24:2888–98
    [Google Scholar]
  3. Amthor FR, Grzywacz NM. 1991. Nonlinearity of the inhibition underlying retinal directional selectivity. Vis. Neurosci. 6:197–206
    [Google Scholar]
  4. Arathorn DW, Yang Q, Vogel CR, Zhang Y, Tiruveedhula P, Roorda A 2007. Retinally stabilized cone-targeted stimulus delivery. Opt. Express 15:13731–44
    [Google Scholar]
  5. Baccus SA. 2007. Timing and computation in inner retinal circuitry. Annu. Rev. Physiol. 69:271–90
    [Google Scholar]
  6. Barlow HB. 1956. Retinal noise and absolute threshold. J. Opt. Soc. Am. 46:634–39
    [Google Scholar]
  7. Barlow HB, Levick WR. 1965. The mechanism of directionally selective units in rabbit's retina. J. Physiol. 178:477–504
    [Google Scholar]
  8. Baylor DA, Nunn BJ, Schnapf JL 1984. The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J. Physiol 357:575–607
    [Google Scholar]
  9. Berntson A, Smith RG, Taylor WR 2004. Transmission of single photon signals through a binary synapse in the mammalian retina. Vis. Neurosci. 21:693–702
    [Google Scholar]
  10. Boehm AE, Levi DM, Privitera CM, Roorda A 2017. Mapping the spatial extent of perceptive fields for flicker adaptation using retinally stabilized stimuli. J. Vis. 17:18 Abstr .)
    [Google Scholar]
  11. Brainard DH, Williams DR, Hofer H 2008. Trichromatic reconstruction from the interleaved cone mosaic: Bayesian model and the color appearance of small spots. J. Vis. 8:15
    [Google Scholar]
  12. Brindley GS. 1970. Physiology of the Retina and Visual Pathway Baltimore, MD: Williams and Wilkins. , 2nd ed..
    [Google Scholar]
  13. Brown SP, He SG, Masland RH 2000. Receptive field microstructure and dendritic geometry of retinal ganglion cells. Neuron 27:371–83
    [Google Scholar]
  14. Bruce KS, Harmening WM, Langston BR, Tuten WS, Roorda A, Sincich LC 2015. Normal perceptual sensitivity arising from weakly reflective cone photoreceptors. Investig. Ophthalmol. Vis. Sci. 56:4431–38
    [Google Scholar]
  15. Bruce KS, Harmening WM, Roorda A, Sincich LC 2014. Cone-by-cone threshold variability in the human retina Paper presented at the Annual Meeting for the Society for Neuroscience Washington, DC: Nov 15–19
    [Google Scholar]
  16. Carroll J, Gray D, Roorda A, Williams DR 2005. Recent advances in retinal imaging with adaptive optics. Opt. Photonics News 16:36–42
    [Google Scholar]
  17. Chichilnisky EJ. 2001. A simple white noise analysis of neuronal light responses. Network Comput. Neural Syst. 12:199–213
    [Google Scholar]
  18. Chichilnisky EJ, Baylor DA. 1999. Receptive-field microstructure of blue-yellow ganglion cells in primate retina. Nat. Neurosci. 2:889–93
    [Google Scholar]
  19. Cohn TE. 1974. New hypothesis to explain why increment threshold exceeds decrement threshold. Vis. Res. 14:1277–79
    [Google Scholar]
  20. Coletta NJ, Williams DR. 1987. Psychophysical estimate of extrafoveal cone spacing. J. Opt. Soc. Am. A 4:1503–13
    [Google Scholar]
  21. Cooper B, Lee BB, Cao DC 2016. Macaque retinal ganglion cell responses to visual patterns: harmonic composition, noise, and psychophysical detectability. J. Neurophysiol. 115:2976–88
    [Google Scholar]
  22. Crook JD, Davenport CM, Peterson BB, Packer OS, Detwiler PB, Dacey DM 2009. Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina. J. Neurosci. 29:8372–87
    [Google Scholar]
  23. Crook JD, Peterson BB, Packer OS, Robinson FR, Troy JB, Dacey DM 2008. Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina. J. Neurosci. 28:11277–91
    [Google Scholar]
  24. Dacey DM. 2004. Origins of perception: retinal ganglion cell diversity and the creation of parallel visual pathways. The Cognitive Neurosciences MS Gazzaniga 281–301 Cambridge, MA: MIT Press. , 4th ed..
    [Google Scholar]
  25. Dacey DM, Crook JD, Packer OS 2014. Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina. Vis. Neurosci. 31:139–51
    [Google Scholar]
  26. Dacey DM, Diller LC, Verweij J, Williams DR 2000. Physiology of L- and M-cone inputs to H1 horizontal cells in the primate retina. J. Opt. Soc. Am. A 17:589–96
    [Google Scholar]
  27. Dacey DM, Lee BB. 1994. The blue-ON opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367:731–35
    [Google Scholar]
  28. Dacey DM, Lee BB, Stafford DK, Pokorny J, Smith VC 1996. Horizontal cells of the primate retina: cone specificity without spectral opponency. Science 271:656–59
    [Google Scholar]
  29. Dalimier E, Dainty C. 2010. Role of ocular aberrations in photopic spatial summation in the fovea. Opt. Lett. 35:589–91
    [Google Scholar]
  30. Davila KD, Geisler WS. 1991. The relative contributions of pre-neural and neural factors to areal summation in the fovea. Vis. Res. 31:1369–80
    [Google Scholar]
  31. Dawis S, Shapley R, Kaplan E, Tranchina D 1984. The receptive field organization of X-cells in the cat: spatiotemporal coupling and asymmetry. Vis. Res. 24:549–64
    [Google Scholar]
  32. De Monasterio FM, Gouras P, Tolhurst DJ 1975. Trichromatic color opponency in ganglion cells of rhesus monkey retina. J. Physiol. 251:197–216
    [Google Scholar]
  33. De Valois RL, De Valois KK 1993. A multistage color model. Vis. Res. 33:1053–65
    [Google Scholar]
  34. Demb JB. 2007. Cellular mechanisms for direction selectivity in the retina. Neuron 55:179–86
    [Google Scholar]
  35. Demb JB, Zaghloul K, Haarsma L, Sterling P 2001. Bipolar cells contribute to nonlinear spatial summation in the brisk-transient (Y) ganglion cell in mammalian retina. J. Neurosci. 21:7447–54
    [Google Scholar]
  36. Derrington AM, Krauskopf J, Lennie P 1984. Chromatic mechanisms in lateral geniculate-nucleus of macaque. J. Physiol. 357:241–65
    [Google Scholar]
  37. Devries SH, Baylor DA. 1997. Mosaic arrangement of ganglion cell receptive fields in rabbit retina. J. Neurophysiol. 78:2048–60
    [Google Scholar]
  38. Diamond JS. 2017. Inhibitory interneurons in the retina: types, circuitry, and function. Annu. Rev. Vis. Sci. 3:1–24
    [Google Scholar]
  39. Doi E, Gauthier JL, Field GD, Shlens J, Sher A et al. 2012. Efficient coding of spatial information in the primate retina. J. Neurosci. 32:16256–64
    [Google Scholar]
  40. Donner K. 1992. Noise and the absolute thresholds of cone and rod vision. Vis. Res. 32:853–66
    [Google Scholar]
  41. Dunn FA, Rieke F. 2006. The impact of photoreceptor noise on retinal gain controls. Curr. Opin. Neurobiol. 16:363–70
    [Google Scholar]
  42. Endeman D, Kamermans M. 2010. Cones perform a non-linear transformation on natural stimuli. J. Physiol. 588:435–46
    [Google Scholar]
  43. Enroth-Cugell C, Robson JG. 1984. Functional characteristics and diversity of cat retinal ganglion cells. Basic characteristics and quantitative description. Investig. Ophthalmol. Vis. Sci. 25:250–67
    [Google Scholar]
  44. Field GD, Chichilnisky EJ. 2007. Information processing in the primate retina: circuitry and coding. Annu. Rev. Neurosci. 30:1–30
    [Google Scholar]
  45. Field GD, Gauthier JL, Sher A, Greschner M, Machado TA et al. 2010. Functional connectivity in the retina at the resolution of photoreceptors. Nature 467:673–77
    [Google Scholar]
  46. Field GD, Rieke F. 2002. Nonlinear signal transfer from mouse rods to bipolar cells and implications for visual sensitivity. Neuron 34:773–85
    [Google Scholar]
  47. Field GD, Sampath AP. 2017. Behavioural and physiological limits to vision in mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372:20160072
    [Google Scholar]
  48. Field GD, Sampath AP, Rieke F 2005. Retinal processing near absolute threshold: from behavior to mechanism. Annu. Rev. Physiol. 67:491–514
    [Google Scholar]
  49. Freeman J, Field GD, Li PH, Greschner M, Gunning DE et al. 2015. Mapping nonlinear receptive field structure in primate retina at single cone resolution. eLife 4:e05241
    [Google Scholar]
  50. Gauthier JL, Field GD, Sher A, Greschner M, Shlens J et al. 2009a. Receptive fields in primate retina are coordinated to sample visual space more uniformly. PLOS Biol 7:747–55
    [Google Scholar]
  51. Gauthier JL, Field GD, Sher A, Shlens J, Greschner M et al. 2009b. Uniform signal redundancy of parasol and midget ganglion cells in primate retina. J. Neurosci. 29:4675–80
    [Google Scholar]
  52. Geisler WS. 1984. Physical limits of acuity and hyperacuity. J. Opt. Soc. Am. A 1:775–82
    [Google Scholar]
  53. Gollisch T. 2013. Features and functions of nonlinear spatial integration by retinal ganglion cells. J. Physiol. Paris 107:338–48
    [Google Scholar]
  54. Gollisch T, Meister M. 2010. Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 65:150–64
    [Google Scholar]
  55. Gouras P. 1968. Identification of cone mechanisms in monkey ganglion cells. J. Physiol. 199:533–47
    [Google Scholar]
  56. Harmening WM, Tiruveedhula P, Roorda A, Sincich LC 2012. Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye. Biomed. Opt. Express 3:2066–77
    [Google Scholar]
  57. Harmening WM, Tuten WS, Roorda A, Sincich LC 2014. Mapping the perceptual grain of the human retina. J. Neurosci. 34:5667–77
    [Google Scholar]
  58. Hecht S, Shlaer S, Pirenne MH 1942. Energy, quanta, and vision. J. Gen. Physiol. 25:819–40
    [Google Scholar]
  59. Helmholtz H. 1896. Treatise on Physiological Optics New York: Dover
    [Google Scholar]
  60. Hering E. 1964 (1878). Outline of a Theory of the Light Sense, transl LM Hurvich, D Jameson Cambridge, MA: Harvard Univ. Press
    [Google Scholar]
  61. Hochstein S, Shapley RM. 1976. Linear and nonlinear spatial subunits in Y cat retinal ganglion cells. J. Physiol. 262:265–84
    [Google Scholar]
  62. Hofer HJ, Blaschke J, Patolia J, Koenig DE 2012. Fixation light hue bias revisited: implications for using adaptive optics to study color vision. Vis. Res. 56:49–56
    [Google Scholar]
  63. Hofer HJ, Carroll J, Neitz J, Neitz M, Williams DR 2005a. Organization of the human trichromatic cone mosaic. J. Neurosci. 25:9669–79
    [Google Scholar]
  64. Hofer HJ, Chen L, Yoon GY, Singer B, Yamauchi Y, Williams DR 2001. Improvement in retinal image quality with dynamic correction of the eye's aberrations. Opt. Express 8:631–43
    [Google Scholar]
  65. Hofer HJ, Singer B, Williams DR 2005b. Different sensations from cones with the same photopigment. J. Vis. 5:444–54
    [Google Scholar]
  66. Jang J, Paik SB. 2017. Interlayer repulsion of retinal ganglion cell mosaics regulates spatial organization of functional maps in the visual cortex. J. Neurosci. 37:12141–52
    [Google Scholar]
  67. Johnson RE, Kerschensteiner D. 2014. Retrograde plasticity and differential competition of bipolar cell dendrites and axons in the developing retina. Curr. Biol. 24:2301–6
    [Google Scholar]
  68. Koenig DE, Hart NW, Hofer HJ 2014. Adaptive optics without altering visual perception. Vis. Res. 97:100–7
    [Google Scholar]
  69. Koenig DE, Hofer HJ. 2011. The absolute threshold of cone vision. J. Vis. 11:21
    [Google Scholar]
  70. Krauskopf J, Srebro R. 1965. Spectral sensitivity of color mechanisms: derivation from fluctuations of color appearance near threshold. Science 150:1477–79
    [Google Scholar]
  71. Kuffler SW. 1953. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16:37–68
    [Google Scholar]
  72. Kuo SP, Schwartz GW, Rieke F 2016. Nonlinear spatiotemporal integration by electrical and chemical synapses in the retina. Neuron 90:320–32
    [Google Scholar]
  73. Lee BB, Cooper B, Cao D 2017. The spatial structure of cone-opponent receptive fields in macaque retina. Vis. Res. 151:141–51
    [Google Scholar]
  74. Lee BB, Shapley RM, Hawken MJ, Sun H 2012. Spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings. J. Opt. Soc. Am. A 29:A223–32
    [Google Scholar]
  75. Li PH, Field GD, Greschner M, Ahn D, Gunning DE et al. 2014. Retinal representation of the elementary visual signal. Neuron 81:130–39
    [Google Scholar]
  76. Liang JZ, Grimm B, Goelz S, Bille JF 1994. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J. Opt. Soc. Am. A 11:71949–57
    [Google Scholar]
  77. Liang JZ, Williams DR. 1997. Aberrations and retinal image quality of the normal human eye. J. Opt. Soc. Am. A 14:2873–83
    [Google Scholar]
  78. Liang JZ, Williams DR, Miller DT 1997. Supernormal vision and high-resolution retinal imaging through adaptive optics. J. Opt. Soc. Am. A 14:2884–92
    [Google Scholar]
  79. Liu JK, Schreyer HM, Onken A, Rozenblit F, Khani MH et al. 2017. Inference of neuronal functional circuitry with spike-triggered non-negative matrix factorization. Nat. Commun. 8:149
    [Google Scholar]
  80. Liu YS, Stevens CF, Sharpee TO 2009. Predictable irregularities in retinal receptive fields. PNAS 106:16499–504
    [Google Scholar]
  81. Maheswaranathan N, Kastner DB, Baccus SA, Ganguli S 2018. Inferring hidden structure in multilayered neural circuits. PLOS Comput. Biol. 14:8e1006291
    [Google Scholar]
  82. Makous W, Carroll J, Wolfing JI, Lin J, Christie N, Williams DR 2006. Retinal microscotomas revealed with adaptive-optics microflashes. Investig. Ophthalmol. Vis. Sci. 47:4160–67
    [Google Scholar]
  83. Martin PR, Lee BB, White AJR, Soloman SG, Ruttiger L 2001. Chromatic sensitivity of ganglion cells in the peripheral primate retina. Nature 410:933–36
    [Google Scholar]
  84. McMahon MJ, Lankheet MJM, Lennie P, Williams DR 2000. Fine structure of parvocellular receptive fields in the primate fovea revealed by laser interferometry. J. Neurosci. 20:2043–53
    [Google Scholar]
  85. Münch TA, da Silveira RA, Siegert S, Viney TJ, Awatramani GB, Roska B 2009. Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat. Neurosci. 12:1308–16
    [Google Scholar]
  86. Olveczky BP, Baccus SA, Meister M 2003. Segregation of object and background motion in the retina. Nature 423:6938401–8
    [Google Scholar]
  87. Passaglia CL, Troy JB, Ruttiger L, Lee BB 2002. Orientation sensitivity of ganglion cells in primate retina. Vis. Res. 42:683–94
    [Google Scholar]
  88. Privitera CM, Sabesan R, Winter S, Tiruveedhula P, Roorda A 2016. Eye-tracking technology for real-time monitoring of transverse chromatic aberration. Opt. Lett. 41:81728–31
    [Google Scholar]
  89. Riccò A. 1877. Relazione fra il minimo angolo visuale e l'intensità luminosa. Mem. Soc. Spettrosc. Ital. 6:B29–58
    [Google Scholar]
  90. Rodieck RW, Stone J. 1965. Analysis of receptive fields of cat retinal ganglion cells. J. Neurophysiol. 28:833–49
    [Google Scholar]
  91. Roorda A, Williams DR. 1999. The arrangement of the three cone classes in the living human eye. Nature 397:520–22
    [Google Scholar]
  92. Sabesan R, Hofer H, Roorda A 2015. Characterizing the human cone photoreceptor mosaic via dynamic photopigment densitometry. PLOS ONE 10:e0144891
    [Google Scholar]
  93. Sabesan R, Schmidt BP, Tuten WS, Roorda A 2016. The elementary representation of spatial and color vision in the human retina. Sci. Adv. 2:e1600797
    [Google Scholar]
  94. Sakitt B. 1972. Counting every quantum. J. Physiol. 223:131–50
    [Google Scholar]
  95. Schmidt BP, Sabesan R, Tuten WS, Neitz J, Roorda A 2018. Sensations from a single M-cone depend on the activity of surrounding S-cones. Sci. Rep. 8:8561
    [Google Scholar]
  96. Schneeweis DM, Schnapf JL. 1999. The photovoltage of macaque cone photoreceptors: adaptation, noise, and kinetics. J. Neurosci. 19:1203–16
    [Google Scholar]
  97. Schwartz GW, Okawa H, Dunn FA, Morgan JL, Kerschensteiner D et al. 2012. The spatial structure of a nonlinear receptive field. Nat. Neurosci. 15:1572–80
    [Google Scholar]
  98. Shah N, Brackbill N, Tikidji-Hamburyan A, Rhoades C, Goetz GA et al. 2016. Novel model-based identification of retinal ganglion cell subunits Paper presented at Annual ARVO Meeting Seattle, WA: May 1–5
    [Google Scholar]
  99. Sincich LC, Sabesan R, Tuten WS, Roorda A, Harmening WM 2016. Functional imaging of cone photoreceptors. Human Color Vision J Kremers, RC Baraas, NJ Marshall 71–104 New York: Springer Int.
    [Google Scholar]
  100. Sincich LC, Zhang Y, Tiruveedhula P, Horton JC, Roorda A 2009. Resolving single cone inputs to visual receptive fields. Nat. Neurosci. 12:967–69
    [Google Scholar]
  101. Smallman HS, MacLeod DIA, He S, Kentridge RW 1996. Fine grain of the neural representation of human spatial vision. J. Neurosci. 16:1852–59
    [Google Scholar]
  102. Soo FS, Schwartz GW, Sadeghi K, Berry MJ II 2011. Fine spatial information represented in a population of retinal ganglion cells. J. Neurosci. 31:2145–55
    [Google Scholar]
  103. Thibos LN, Hong X, Bradley A, Cheng X 2002. Statistical variation of aberration structure and image quality in a normal population of healthy eyes. J. Opt. Soc. Am. A 19:2329–48
    [Google Scholar]
  104. Thompson A, Gribizis A, Chen C, Crair MC 2017. Activity-dependent development of visual receptive fields. Curr. Opin. Neurobiol. 42:136–43
    [Google Scholar]
  105. Thoreson WB, Mangel SC. 2012. Lateral interactions in the outer retina. Prog. Retin. Eye Res. 31:407–41
    [Google Scholar]
  106. Tinsley JN, Molodtsov MI, Prevedel R, Wartmann D, Espigule-Pons J et al. 2016. Direct detection of a single photon by humans. Nat. Commun. 7:12172
    [Google Scholar]
  107. Turner MH, Rieke F. 2016. Synaptic rectification controls nonlinear spatial integration of natural visual inputs. Neuron 90:1257–71
    [Google Scholar]
  108. Tuten WS, Cooper RF, Tiruveedhula P, Dubra A, Roorda A et al. 2018. Spatial summation in the human fovea: Do normal optical aberrations and fixational eye movements have an effect. ? J. Vis. 18:6
    [Google Scholar]
  109. Tuten WS, Harmening WM, Sabesan R, Roorda A, Sincich LC 2017. Spatiochromatic interactions between individual cone photoreceptors in the human retina. J. Neurosci. 37:9498–509
    [Google Scholar]
  110. Tuten WS, Tiruveedhula P, Roorda A 2012. Adaptive optics scanning laser ophthalmoscope-based microperimetry. Optom. Vis. Sci. 89:563–74
    [Google Scholar]
  111. van Rossum MCW, Smith RG 1998. Noise removal at the rod synapse of mammalian retina. Vis. Neurosci. 15:809–21
    [Google Scholar]
  112. Wässle H, Boycott BB, Rohrenbeck J 1989. Horizontal cells in the monkey retina: cone connections and dendritic network. Eur. J. Neurosci. 1:421–35
    [Google Scholar]
  113. Westheimer G. 2012. Optical superresolution and visual hyperacuity. Prog. Retin. Eye Res. 31:467–80
    [Google Scholar]
  114. Westheimer G, McKee SP. 1977. Spatial configurations for visual hyperacuity. Vis. Res. 17:941–47
    [Google Scholar]
  115. Williams DR. 1985. Aliasing in human foveal vision. Vis. Res. 25:195–205
    [Google Scholar]
  116. Williams DR. 1988. Topography of the foveal cone mosaic in the living human eye. Vis. Res. 28:433–54
    [Google Scholar]
  117. Williams DR. 2011. Imaging single cells in the living retina. Vis. Res. 51:1379–96
    [Google Scholar]
  118. Williams DR, Sekiguchi N, Haake W, Brainard D, Packer O 1991. The cost of trichromacy for spatial vision. From Pigments to Perception: Advances in Understanding Visual Processes A Valberg, BB Lee 11–22 New York: Plenum Press
    [Google Scholar]
  119. Winter S, Sabesan R, Tiruveedhula P, Privitera C, Unsbo P et al. 2016. Transverse chromatic aberration across the visual field of the human eye. J. Vis. 16:149
    [Google Scholar]
  120. Wool LE, Crook JD, Troy JB, Packer OS, Zaidi Q, Dacey DM 2018. Nonselective wiring accounts for red-green opponency in midget ganglion cells of the primate retina. J. Neurosci. 38:1520–40
    [Google Scholar]
  121. Yin L, Masella B, Dalkara D, Zhang J, Flannery JG et al. 2014. Imaging light responses of foveal ganglion cells in the living macaque eye. J. Neurosci. 34:6596–605
    [Google Scholar]
  122. Zhou ZJ, Lee S. 2008. Synaptic physiology of direction selectivity in the retina. J. Physiol. 586:4371–76
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-070918-050233
Loading
/content/journals/10.1146/annurev-neuro-070918-050233
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error