1932

Abstract

Light-sheet microscopy is an imaging approach that offers unique advantages for a diverse range of neuroscience applications. Unlike point-scanning techniques such as confocal and two-photon microscopy, light-sheet microscopes illuminate an entire plane of tissue, while imaging this plane onto a camera. Although early implementations of light sheet were optimized for longitudinal imaging of embryonic development in small specimens, emerging implementations are capable of capturing light-sheet images in freely moving, unconstrained specimens and even the intact in vivo mammalian brain. Meanwhile, the unique photobleaching and signal-to-noise benefits afforded by light-sheet microscopy's parallelized detection deliver the ability to perform volumetric imaging at much higher speeds than can be achieved using point scanning. This review describes the basic principles and evolution of light-sheet microscopy, followed by perspectives on emerging applications and opportunities for both imaging large, cleared, and expanded neural tissues and high-speed, functional imaging in vivo.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070918-050357
2019-07-08
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/neuro/42/1/annurev-neuro-070918-050357.html?itemId=/content/journals/10.1146/annurev-neuro-070918-050357&mimeType=html&fmt=ahah

Literature Cited

  1. Ahrens MB, Orger MB, Robson DN, Li JM, Keller PJ 2013. Whole-brain functional imaging at cellular resolution using light-sheet microscopy. Nat. Methods 10:413–20
    [Google Scholar]
  2. Akerboom J, Chen T-W, Wardill TJ, Tian L, Marvin JS et al. 2012. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 32:13819–40
    [Google Scholar]
  3. Bewersdorf J, Pick R, Hell SW 1998. Multifocal multiphoton microscopy. Opt. Lett. 23:655–57
    [Google Scholar]
  4. Botcherby EJ, Juskaitis R, Booth MJ, Wilson T 2007. Aberration-free optical refocusing in high numerical aperture microscopy. Opt. Lett. 32:2007–9
    [Google Scholar]
  5. Bouchard MB, Voleti V, Mendes CS, Lacefield C, Grueber WB et al. 2015. Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms. Nat. Photonics 9:113–19
    [Google Scholar]
  6. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8:1263–68
    [Google Scholar]
  7. Castellano-Munoz M, Peng AW, Salles FT, Ricci AJ 2012. Swept field laser confocal microscopy for enhanced spatial and temporal resolution in live-cell imaging. Microsc. Microanal. 18:753–60
    [Google Scholar]
  8. Cella Zanacchi F, Lavagnino Z, Faretta M, Furia L, Diaspro A 2013. Light-sheet confined super-resolution using two-photon photoactivation. PLOS ONE 8:e67667
    [Google Scholar]
  9. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC 1994. Green fluorescent protein as a marker for gene-expression. Science 263:802–5
    [Google Scholar]
  10. Chatterjee S, Sullivan HA, MacLennan BJ, Xu R, Hou Y et al. 2018. Nontoxic, double-deletion-mutant rabies viral vectors for retrograde targeting of projection neurons. Nat. Neurosci. 21:638–46
    [Google Scholar]
  11. Chen BC, Legant WR, Wang K, Shao L, Milkie DE et al. 2014. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346:1257998
    [Google Scholar]
  12. Chen F, Tillberg PW, Boyden ES 2015. Expansion microscopy. Science 347:543–48
    [Google Scholar]
  13. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090
    [Google Scholar]
  14. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL et al. 2013. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300
    [Google Scholar]
  15. Chhetri RK, Amat F, Wan Y, Hockendorf B, Lemon WC, Keller PJ 2015. Whole-animal functional and developmental imaging with isotropic spatial resolution. Nat. Methods 12:1171–78
    [Google Scholar]
  16. Choi H, Tzeranis DS, Cha JW, Clemenceau P, de Jong SJG et al. 2012. 3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation. Opt. Express 20:26219–35
    [Google Scholar]
  17. Chung K, Deisseroth K. 2013. CLARITY for mapping the nervous system. Nat. Methods 10:508–13
    [Google Scholar]
  18. Cranfill PJ, Sell BR, Baird MA, Allen JR, Lavagnino Z et al. 2016. Quantitative assessment of fluorescent proteins. Nat. Methods 13:557–62
    [Google Scholar]
  19. Dalgarno HIC, Cizmar T, Vettenburg T, Nylk J, Gunn-Moore FJ, Dholakia K 2012. Wavefront corrected light sheet microscopy in turbid media. Appl. Phys. Lett. 100:191108
    [Google Scholar]
  20. Dana H, Mohar B, Sun Y, Narayan S, Gordus A et al. 2016. Sensitive red protein calcium indicators for imaging neural activity. eLife 5:e12727
    [Google Scholar]
  21. Dana H, Shoham S. 2012. Remotely scanned multiphoton temporal focusing by axial grism scanning. Opt. Lett. 37:2913–15
    [Google Scholar]
  22. Dean KM, Roudot P, Welf ES, Danuser G, Fiolka R 2015. Deconvolution-free subcellular imaging with axially swept light sheet microscopy. Biophys. J. 108:2807–15
    [Google Scholar]
  23. Denk W, Strickler JH, Webb WW 1990. Two-photon laser scanning fluorescence microscopy. Science 248:73–76
    [Google Scholar]
  24. Dodt H-U, Leischner U, Schierloh A, Jahrling N, Mauch CP et al. 2007. Ultramicroscopy: three-dimensional visualization of neuronal networks in the whole mouse brain. Nat. Methods 4:331–36
    [Google Scholar]
  25. Dunsby C. 2008. Optically sectioned imaging by oblique plane microscopy. Opt. Express 16:20306–16
    [Google Scholar]
  26. Engelbrecht CJ, Stelzer EHK. 2006. Resolution enhancement in a light-sheet-based microscope (SPIM). Opt. Lett. 31:1477–79
    [Google Scholar]
  27. Engelbrecht CJ, Voigt F, Helmchen F 2010. Miniaturized selective plane illumination microscopy for high-contrast in vivo fluorescence imaging. Opt. Lett. 35:1413–15
    [Google Scholar]
  28. Fahrbach FO, Rohrbach A. 2010. A line scanned light-sheet microscope with phase shaped self-reconstructing beams. Opt. Express 18:24229–44
    [Google Scholar]
  29. Fahrbach FO, Voigt FF, Schmid B, Helmchen F, Huisken J 2013. Rapid 3D light-sheet microscopy with a tunable lens. Opt. Express 21:21010–26
    [Google Scholar]
  30. Fuchs E, Jaffe J, Long R, Azam F 2002. Thin laser light sheet microscope for microbial oceanography. Opt. Express 10:145–54
    [Google Scholar]
  31. Gao R, Asano SM, Upadhyayula S, Pisarev I, Milkie DE et al. 2018. Cortical column and whole brain imaging of neural circuits with molecular contrast and nanoscale resolution. bioRxiv 374140 . https://doi.org/10.1101/374140
    [Crossref]
  32. Gong Y, Huang C, Li JZ, Grewe BF, Zhang Y et al. 2015. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 350:1361–66
    [Google Scholar]
  33. Gräf R, Rietdorf J, Zimmermann T 2005. Live cell spinning disk microscopy. Microscopy Techniques J Rietdorf 57–75 Berlin: Springer
    [Google Scholar]
  34. Grewe BF, Langer D, Kasper H, Kampa BM, Helmchen F 2010. High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nat. Methods 7:399–405
    [Google Scholar]
  35. Gustavsson AK, Petrov PN, Lee MY, Shechtman Y, Moerner WE 2018. 3D single-molecule super-resolution microscopy with a tilted light sheet. Nat. Commun. 9:123
    [Google Scholar]
  36. Heim N, Garaschuk O, Friedrich MW, Mank M, Milos RI et al. 2007. Improved calcium imaging in transgenic mice expressing a troponin C-based biosensor. Nat. Methods 4:127–29
    [Google Scholar]
  37. Hillman EMC, Voleti V, Patel K, Li W, Yu H et al. 2018. High-speed 3D imaging of cellular activity in the brain using axially-extended beams and light sheets. Curr. Opin. Neurobiol. 50:190–200
    [Google Scholar]
  38. Holekamp TF, Turaga D, Holy TE 2008. Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron 57:661–72
    [Google Scholar]
  39. Horton NG, Wang K, Kobat D, Clark CG, Wise FW et al. 2013. In vivo three-photon microscopy of subcortical structures within an intact mouse brain. Nat. Photonics 7:205–9
    [Google Scholar]
  40. Huisken J, Stainier DY. 2007. Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Opt. Lett. 32:2608–10
    [Google Scholar]
  41. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK 2004. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–9
    [Google Scholar]
  42. Keller PJ, Ahrens MB. 2015. Visualizing whole-brain activity and development at the single-cell level using light-sheet microscopy. Neuron 85:462–83
    [Google Scholar]
  43. Keller PJ, Schmidt AD, Santella A, Khairy K, Bao Z et al. 2010. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat. Methods 7:637–42
    [Google Scholar]
  44. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK 2008. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–69
    [Google Scholar]
  45. Kim JS, Greene MJ, Zlateski A, Lee K, Richardson M et al. 2014. Space-time wiring specificity supports direction selectivity in the retina. Nature 509:331–36
    [Google Scholar]
  46. Kim SY, Cho JH, Murray E, Bakh N, Choi H et al. 2015. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. PNAS 112:E6274–83
    [Google Scholar]
  47. Kirshner H, Aguet F, Sage D, Unser M 2013. 3-D PSF fitting for fluorescence microscopy: implementation and localization application. J. Microsc. 249:13–25
    [Google Scholar]
  48. Kobat D, Durst ME, Nishimura N, Wong AW, Schaffer CB, Xu C 2009. Deep tissue multiphoton microscopy using longer wavelength excitation. Opt. Express 17:13354–64
    [Google Scholar]
  49. Kralj JM, Douglass AD, Hochbaum DR, Maclaurin D, Cohen AE 2012. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9:90–95
    [Google Scholar]
  50. Lavagnino Z, Zanacchi FC, Ronzitti E, Diaspro A 2013. Two-photon excitation selective plane illumination microscopy (2PE-SPIM) of highly scattering samples: characterization and application. Opt. Express 21:5998–6008
    [Google Scholar]
  51. Lindek S, Cremer C, Stelzer EH 1996. Confocal theta fluorescence microscopy with annular apertures. Appl. Opt. 35:126–30
    [Google Scholar]
  52. Liu TL, Upadhyayula S, Milkie DE, Singh V, Wang K et al. 2018. Observing the cell in its native state: imaging subcellular dynamics in multicellular organisms. Science 360:eaaq1392
    [Google Scholar]
  53. Mertz J, Kim J. 2010. Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection. J. Biomed. Opt. 15:016027
    [Google Scholar]
  54. Migliori B, Datta MS, Dupre C, Apak MC, Asano S et al. 2018. Light sheet theta microscopy for rapid high-resolution imaging of large biological samples. BMC Biol 16:57
    [Google Scholar]
  55. Murakami TC, Mano T, Saikawa S, Horiguchi SA, Shigeta D et al. 2018. A three-dimensional single-cell-resolution whole-brain atlas using CUBIC-X expansion microscopy and tissue clearing. Nat. Neurosci. 21:625–37
    [Google Scholar]
  56. Nadella KM, Ros H, Baragli C, Griffiths VA, Konstantinou G et al. 2016. Random-access scanning microscopy for 3D imaging in awake behaving animals. Nat. Methods 13:1001–4
    [Google Scholar]
  57. Packer AM, Russell LE, Dalgleish HW, Hausser M 2015. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12:140–46
    [Google Scholar]
  58. Patriarchi T, Cho JR, Merten K, Howe MW, Marley A et al. 2018. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360:eaat4422
    [Google Scholar]
  59. Pepperkok R, Squire A, Geley S, Bastiaens PIH 1999. Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. Curr. Biol. 9:269–74
    [Google Scholar]
  60. Picot A, Dominguez S, Liu C, Chen IW, Tanese D et al. 2018. Temperature rise under two-photon optogenetic brain stimulation. Cell Rep 24:1243–53.e5
    [Google Scholar]
  61. Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA et al. 2011. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat. Methods 8:417–23
    [Google Scholar]
  62. Pnevmatikakis EA, Soudry D, Gao Y, Machado TA, Merel J et al. 2016. Simultaneous denoising, deconvolution, and demixing of calcium imaging data. Neuron 89:285–99
    [Google Scholar]
  63. Podgorski K, Ranganathan G. 2016. Brain heating induced by near-infrared lasers during multiphoton microscopy. J. Neurophysiol. 116:1012–23
    [Google Scholar]
  64. Rajadhyaksha M, Anderson RR, Webb RH 1999. Video-rate confocal scanning laser microscope for imaging human tissues in vivo. Appl. Opt. 38:2105–15
    [Google Scholar]
  65. Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M 2014. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell 159:896–910
    [Google Scholar]
  66. Royer LA, Lemon WC, Chhetri RK, Wan Y, Coleman M et al. 2016. Adaptive light-sheet microscopy for long-term, high-resolution imaging in living organisms. Nat. Biotechnol. 34:1267–78
    [Google Scholar]
  67. Schrodel T, Prevedel R, Aumayr K, Zimmer M, Vaziri A 2013. Brain-wide 3D imaging of neuronal activity in Caenorhabditis elegans with sculpted light. Nat. Methods 10:1013–20
    [Google Scholar]
  68. Siedentopf H, Zsigmondy R. 1902. Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann. Phys. 315:1–39
    [Google Scholar]
  69. Sofroniew NJ, Flickinger D, King J, Svoboda K 2016. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. eLife 5:e14472
    [Google Scholar]
  70. Stelzer EHK, Lindek S. 1994. Fundamental reduction of the observation volume in far-field light-microscopy by detection orthogonal to the illumination axis: confocal theta microscopy. Opt. Commun. 111:536–47
    [Google Scholar]
  71. Tomer R, Khairy K, Amat F, Keller PJ 2012. Quantitative high-speed imaging of entire developing embryos with simultaneous multiview light-sheet microscopy. Nat. Methods 9:755–63
    [Google Scholar]
  72. Tomer R, Lovett-Barron M, Kauvar I, Andalman A, Burns VM et al. 2015. SPED light sheet microscopy: fast mapping of biological system structure and function. Cell 163:1796–806
    [Google Scholar]
  73. Truong TV, Supatto W, Koos DS, Choi JM, Fraser SE 2011. Deep and fast live imaging with two-photon scanned light-sheet microscopy. Nat. Methods 8:757–60
    [Google Scholar]
  74. Vaadia R, Li W, Voleti V, Singhania E, Hillman EMC, Grueber WB 2019. Characterization of proprioceptive system dynamics in behaving Drosophila larvae using high-speed volumetric microscopy. Curr. Biol. 29(6):935–44
    [Google Scholar]
  75. Vaziri A, Shank CV. 2010. Ultrafast widefield optical sectioning microscopy by multifocal temporal focusing. Opt. Express 18:19645–55
    [Google Scholar]
  76. Vettenburg T, Dalgarno HI, Nylk J, Coll-Llado C, Ferrier DE et al. 2014. Light-sheet microscopy using an Airy beam. Nat. Methods 11:541–44
    [Google Scholar]
  77. Voie AH, Spelman FA. 1995. Three-dimensional reconstruction of the cochlea from two-dimensional images of optical sections. Comput. Med. Imaging Graph. 19:377–84
    [Google Scholar]
  78. Watson BO, Nikolenko V, Yuste R 2009. Two-photon imaging with diffractive optical elements. Front. Neural Circuits 3:6
    [Google Scholar]
  79. Weisenburger S, Vaziri A. 2018. A guide to emerging technologies for large-scale and whole-brain optical imaging of neuronal activity. Annu. Rev. Neurosci. 41:431–52
    [Google Scholar]
  80. White JG, Amos WB, Fordham M 1987. An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. J. Cell Biol. 105:41–48
    [Google Scholar]
  81. Wilding D, Pozzi P, Soloviev O, Vdovin G, Sheppard CJ, Verhaegen M 2016. Pupil filters for extending the field-of-view in light-sheet microscopy. Opt. Lett. 41:1205–8
    [Google Scholar]
  82. Wu Y, Chandris P, Winter PW, Kim EY, Jaumouille V et al. 2016. Simultaneous multiview capture and fusion improves spatial resolution in wide-field and light-sheet microscopy. Optica 3:897–910
    [Google Scholar]
  83. Wu Y, Ghitani A, Christensen R, Santella A, Du Z et al. 2011. Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. . PNAS 108:17708–13
    [Google Scholar]
  84. Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen CK et al. 2014. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158:945–58
    [Google Scholar]
  85. Zolnik TA, Sha F, Johenning FW, Schreiter ER, Looger LL et al. 2017. All-optical functional synaptic connectivity mapping in acute brain slices using the calcium integrator CaMPARI. J. Physiol. 595:1465–77
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-070918-050357
Loading
/content/journals/10.1146/annurev-neuro-070918-050357
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error