1932

Abstract

Peripheral endocrine output relies on either direct or feed-forward multi-order command from the hypothalamus. Efficient coding of endocrine responses is made possible by the many neuronal cell types that coexist in intercalated hypothalamic nuclei and communicate through extensive synaptic connectivity. Although general anatomical and neurochemical features of hypothalamic neurons were described during the past decades, they have yet to be reconciled with recently discovered molecular classifiers and neurogenetic function determination. By interrogating magnocellular as well as parvocellular dopamine, GABA, glutamate, and phenotypically mixed neurons, we integrate available information at the molecular, cellular, network, and endocrine output levels to propose a framework for the comprehensive classification of hypothalamic neurons. Simultaneously, we single out putative neuronal subclasses for which future research can fill in existing gaps of knowledge to rationalize cellular diversity through function-determinant molecular marks in the hypothalamus.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070918-050414
2019-07-08
2024-06-18
Loading full text...

Full text loading...

/deliver/fulltext/neuro/42/1/annurev-neuro-070918-050414.html?itemId=/content/journals/10.1146/annurev-neuro-070918-050414&mimeType=html&fmt=ahah

Literature Cited

  1. Akabayashi A, Koenig JI, Watanabe Y, Alexander JT, Leibowitz SF 1994. Galanin-containing neurons in the paraventricular nucleus: a neurochemical marker for fat ingestion and body weight gain. PNAS 91:10375–79
    [Google Scholar]
  2. Alcaraz-Iborra M, Carvajal F, Lerma-Cabrera JM, Valor LM, Cubero I 2014. Binge-like consumption of caloric and non-caloric palatable substances in ad libitum-fed C57BL/6J mice: pharmacological and molecular evidence of orexin involvement. Behav. Brain Res. 272:93–99
    [Google Scholar]
  3. Alpár A, Zahola P, Hanics J, Hevesi Z, Korchynska S et al. 2018. Hypothalamic CNTF volume transmission shapes cortical noradrenergic excitability upon acute stress. EMBO J 37:21e100087
    [Google Scholar]
  4. Althammer F, Grinevich V. 2017. Diversity of oxytocin neurons: beyond magno- and parvocellular cell types?. J. Neuroendocrinol. 30:e12549
    [Google Scholar]
  5. Aponte Y, Atasoy D, Sternson SM 2011. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci. 14:351–55
    [Google Scholar]
  6. Arimura A, Fishback JB. 1981. Somatostatin: regulation of secretion. Neuroendocrinology 33:246–56
    [Google Scholar]
  7. Armstrong WE. 1995. Morphological and electrophysiological classification of hypothalamic supraoptic neurons. Prog. Neurobiol. 47:291–339
    [Google Scholar]
  8. Atasoy D, Betley JN, Su HH, Sternson SM 2012. Deconstruction of a neural circuit for hunger. Nature 488:172–77
    [Google Scholar]
  9. Baker BL, Yu Y. 1976. Distribution of growth hormone-release-inhibiting hormone (somatostatin) in the rat brain as observed with immunocytochemistry. Anat. Rec. 186:343–55
    [Google Scholar]
  10. Baker RA, Herkenham M. 1995. Arcuate nucleus neurons that project to the hypothalamic paraventricular nucleus: neuropeptidergic identity and consequences of adrenalectomy on mRNA levels in the rat. J. Comp. Neurol. 358:518–30
    [Google Scholar]
  11. Bayer L, Eggermann E, Serafin M, Saint-Mleux B, Machard D et al. 2001. Orexins (hypocretins) directly excite tuberomammillary neurons. Eur. J. Neurosci. 14:1571–75
    [Google Scholar]
  12. Ben-Jonathan N, Hnasko R. 2001. Dopamine as a prolactin (PRL) inhibitor. Endocr. Rev. 22:724–63
    [Google Scholar]
  13. Bjorklund A, Dunnett SB. 2007. Dopamine neuron systems in the brain: an update. Trends Neurosci 30:194–202
    [Google Scholar]
  14. Bjorklund A, Moore RY, Nobin A, Stenevi U 1973. The organization of tubero-hypophyseal and reticulo-infundibular catecholamine neuron systems in the rat brain. Brain Res 51:171–91
    [Google Scholar]
  15. Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A 2006. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49:589–601
    [Google Scholar]
  16. Bourgin P, Huitron-Resendiz S, Spier AD, Fabre V, Morte B et al. 2000. Hypocretin-1 modulates rapid eye movement sleep through activation of locus coeruleus neurons. J. Neurosci. 20:7760–65
    [Google Scholar]
  17. Broberger C, de Lecea L, Sutcliffe JG, Hökfelt T 1998a. Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J. Comp. Neurol. 402:460–74
    [Google Scholar]
  18. Broberger C, Johansen J, Johansson C, Schalling M, Hökfelt T 1998b. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. PNAS 95:15043–48
    [Google Scholar]
  19. Broberger C, Visser TJ, Kuhar MJ, Hökfelt T 1999. Neuropeptide Y innervation and neuropeptide-Y-Y1-receptor-expressing neurons in the paraventricular hypothalamic nucleus of the mouse. Neuroendocrinology 70:295–305
    [Google Scholar]
  20. Buijs RM, Wortel J, Hou Y-X 1995. Colocalization of γ-aminobutyric acid with vasopressin, vasoactive intestinal peptide, and somatostatin in the rat suprachiasmatic nucleus. J. Comp. Neurol. 358:343–52
    [Google Scholar]
  21. Burbridge S, Stewart I, Placzek M 2016. Development of the neuroendocrine hypothalamus. Compr. Physiol. 6:623–43
    [Google Scholar]
  22. Cadwell CR, Palasantza A, Jiang X, Berens P, Deng Q et al. 2016. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotechnol. 34:199–203
    [Google Scholar]
  23. Campbell JN, Macosko EZ, Fenselau H, Pers TH, Lyubetskaya A et al. 2017. A molecular census of arcuate hypothalamus and median eminence cell types. Nat. Neurosci. 20:484–96 The first in-depth analysis of neuronal diversity in the arcuate nucleus by single-cell transcriptomics.
    [Google Scholar]
  24. Canteras NS, Simerly RB, Swanson LW 1994. Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris-Leucoagglutinin study in the rat. J. Comp. Neurol. 348:41–79
    [Google Scholar]
  25. Chao PT, Yang L, Aja S, Moran TH, Bi S 2011. Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab 13:573–83
    [Google Scholar]
  26. Chen G, van den Pol AN 1996. Multiple NPY receptors coexist in pre- and postsynaptic sites: inhibition of GABA release in isolated self-innervating SCN neurons. J. Neurosci. 16:7711–24
    [Google Scholar]
  27. Chen KS, Xu M, Zhang Z, Chang WC, Gaj T et al. 2018. A hypothalamic switch for REM and non-REM sleep. Neuron 97:1168–76.e4
    [Google Scholar]
  28. Choi DC, Furay AR, Evanson NK, Ostrander MM, Ulrich-Lai YM, Herman JP 2007. Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity: implications for the integration of limbic inputs. J. Neurosci. 27:2025–34
    [Google Scholar]
  29. Cristino L, Busetto G, Imperatore R, Ferrandino I, Palomba L et al. 2013. Obesity-driven synaptic remodeling affects endocannabinoid control of orexinergic neurons. PNAS 110:E2229–38
    [Google Scholar]
  30. Cservenak M, Kis V, Keller D, Dimen D, Menyhart L et al. 2017. Maternally involved galanin neurons in the preoptic area of the rat. Brain Struct. Funct. 222:781–98
    [Google Scholar]
  31. Dahlström A, Fuxe K. 1964. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. Suppl. 62: Suppl 2321–55 One of a series of pioneering studies localizing monoaminergic neurons in the brain.
    [Google Scholar]
  32. Date Y, Mondal MS, Matsukura S, Ueta Y, Yamashita H et al. 2000. Distribution of orexin/hypocretin in the rat median eminence and pituitary. Brain Res. Mol. Brain Res. 76:1–6
    [Google Scholar]
  33. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE et al. 1998. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. PNAS 95:322–27
    [Google Scholar]
  34. Deboer T, Overeem S, Visser NA, Duindam H, Frolich M et al. 2004. Convergence of circadian and sleep regulatory mechanisms on hypocretin-1. Neuroscience 129:727–32
    [Google Scholar]
  35. Depczynski B, Nichol K, Fathi Z, Iismaa T, Shine J, Cunningham A 1998. Distribution and characterization of the cell types expressing GALR2 mRNA in brain and pituitary gland. Ann. N. Y. Acad. Sci. 863:120–28
    [Google Scholar]
  36. Dhillon H, Zigman JM, Ye C, Lee CE, McGovern RA et al. 2006. Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49:191–203
    [Google Scholar]
  37. Dierickx K, Vandesande F. 1979. Immunocytochemical localization of somatostatin-containing neurons in the rat hypothalamus. Cell Tissue Res 201:349–59
    [Google Scholar]
  38. Dogterom J, Van Wimersma Greidanus TB, Swabb DF 1977. Evidence for the release of vasopressin and oxytocin into cerebrospinal fluid: measurements in plasma and CSF of intact and hypophysectomized rats. Neuroendocrinology 24:108–18
    [Google Scholar]
  39. Dong Y, Tyszkiewicz JP, Fong TM 2006. Galanin and galanin-like peptide differentially modulate neuronal activities in rat arcuate nucleus neurons. J. Neurophysiol. 95:3228–34
    [Google Scholar]
  40. Du Vigneaud V. 1954. Hormones of the posterior pituitary gland: oxytocin and vasopressin. Harvey Lect 50:1–26 A summary describing the identification of nonapeptide hormones released by magnocellular cells at the neurohypophysis.
    [Google Scholar]
  41. Dube D, Leclerc R, Pelletier G, Arimura Aschally AV 1975. Immunohistochemical detection of growth hormone-release inhibiting hormone (somatostatin) in the guinea-pig brain. Cell Tissue Res 161:385–92
    [Google Scholar]
  42. Elias CF, Lee C, Kelly J, Aschkenasi C, Ahima RS et al. 1998. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 21:1375–85
    [Google Scholar]
  43. Everitt BJ, Meister B, Hökfelt T, Melander T, Terenius L et al. 1986. The hypothalamic arcuate nucleus-median eminence complex: immunohistochemistry of transmitters, peptides and DARPP-32 with special reference to coexistence in dopamine neurons. Brain Res 396:97–155 The first systematic immunohistochemical analysis of neuronal heterogeneity and sites of hormone release in the arcuate nucleus and median eminence, respectively.
    [Google Scholar]
  44. Falck B, Hillarp N-Å, Thieme G, Torp A 1962. Fluorescence of catechol amines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10:348–54
    [Google Scholar]
  45. Falkner AL, Grosenick L, Davidson TJ, Deisseroth K, Lin D 2016. Hypothalamic control of male aggression-seeking behavior. Nat. Neurosci. 19:596–604
    [Google Scholar]
  46. Fenselau H, Campbell JN, Verstegen AMJ, Madara JC, Xu J et al. 2017. A rapidly acting glutamatergic ARC→PVH satiety circuit postsynaptically regulated by α-MSH. Nat. Neurosci. 20:42–51
    [Google Scholar]
  47. Flak JN, Ostrander MM, Tasker JG, Herman JP 2009. Chronic stress-induced neurotransmitter plasticity in the PVN. J. Comp. Neurol. 517:156–65
    [Google Scholar]
  48. Ford GK, Al-Barazanji KA, Wilson S, Jones DN, Harbuz MS, Jessop DS 2005. Orexin expression and function: glucocorticoid manipulation, stress, and feeding studies. Endocrinology 146:3724–31
    [Google Scholar]
  49. Fremeau RT Jr, Caron MG, Blakely RD. 1992. Molecular cloning and expression of a high affinity l-proline transporter expressed in putative glutamatergic pathways of rat brain. Neuron 8:915–26
    [Google Scholar]
  50. Funabashi T, Hagiwara H, Mogi K, Mitsushima D, Shinohara K, Kimura F 2009. Sex differences in the responses of orexin neurons in the lateral hypothalamic area and feeding behavior to fasting. Neurosci. Lett. 463:31–34
    [Google Scholar]
  51. Fuzesi T, Daviu N, Wamsteeker Cusulin JI, Bonin RP, Bains JS 2016. Hypothalamic CRH neurons orchestrate complex behaviours after stress. Nat. Commun. 7:11937
    [Google Scholar]
  52. Fuzik J, Zeisel A, Mate Z, Calvigioni D, Yanagawa Y et al. 2016. Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat. Biotechnol. 34:175–83
    [Google Scholar]
  53. Garfield AS, Li C, Madara JC, Shah BP, Webber E et al. 2015. A neural basis for melanocortin-4 receptor-regulated appetite. Nat. Neurosci. 18:863–71
    [Google Scholar]
  54. Grinevich V, Charlet A. 2017. Oxytocin: pain relief in skin. Pain 158:2061–63
    [Google Scholar]
  55. Hakansson M, de Lecea L, Sutcliffe JG, Yanagisawa M, Meister B 1999. Leptin receptor- and STAT3-immunoreactivities in hypocretin/orexin neurones of the lateral hypothalamus. J. Neuroendocrinol. 11:653–63
    [Google Scholar]
  56. Halasz J, Zelena D, Toth M, Tulogdi A, Mikics E, Haller J 2009. Substance P neurotransmission and violent aggression: the role of tachykinin NK(1) receptors in the hypothalamic attack area. Eur. J. Pharmacol. 611:35–43
    [Google Scholar]
  57. Hara J, Beuckmann CT, Nambu T, Willie JT, Chemelli RM et al. 2001. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30:345–54
    [Google Scholar]
  58. Harris GC, Aston-Jones G. 2006. Arousal and reward: a dichotomy in orexin function. Trends Neurosci 29:571–77
    [Google Scholar]
  59. Hashikawa K, Hashikawa Y, Tremblay R, Zhang J, Feng JE et al. 2017. Esr1+ cells in the ventromedial hypothalamus control female aggression. Nat. Neurosci. 20:1580–90
    [Google Scholar]
  60. Hashikawa Y, Hashikawa K, Falkner AL, Lin D 2017. Ventromedial hypothalamus and the generation of aggression. Front. Syst. Neurosci. 11:94
    [Google Scholar]
  61. Hassani OK, Lee MG, Jones BE 2009. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle. PNAS 106:2418–22
    [Google Scholar]
  62. Hawke Z, Ivanov TR, Bechtold DA, Dhillon H, Lowell BB, Luckman SM 2009. PACAP neurons in the hypothalamic ventromedial nucleus are targets of central leptin signaling. J. Neurosci. 29:14828–35
    [Google Scholar]
  63. Hökfelt T, Martensson R, Bjorklund A, Kleinau S, Goldstein M 1984. Distribution maps of tyrosine-hydroxylase-immunoreactive neurons in the rat brain. Handbook of Chemical Neuroanatomy: Classical Transmitters in the CNS Part 2, ed. A Björklund, T Hökfelt 277–379 Amsterdam: Elsevier
    [Google Scholar]
  64. Horvath TL, Gao XB. 2005. Input organization and plasticity of hypocretin neurons: possible clues to obesity's association with insomnia. Cell Metab 1:279–86
    [Google Scholar]
  65. Hrabovszky E, Liposits Z. 1994. Galanin-containing axons synapse on tyrosine hydroxylase-immunoreactive neurons in the hypothalamic arcuate nucleus of the rat. Brain Res 652:49–55
    [Google Scholar]
  66. Hrabovszky E, Wittmann G, Turi GF, Liposits Z, Fekete C 2005. Hypophysiotropic thyrotropin-releasing hormone and corticotropin-releasing hormone neurons of the rat contain vesicular glutamate transporter-2. Endocrinology 146:341–47
    [Google Scholar]
  67. Hunt NJ, Waters KA, Rodriguez ML, Machaalani R 2015. Decreased orexin (hypocretin) immunoreactivity in the hypothalamus and pontine nuclei in sudden infant death syndrome. Acta Neuropathol 130:185–98
    [Google Scholar]
  68. Insel TR. 2010. The challenge of translation in social neuroscience: a review of oxytocin, vasopressin, and affiliative behavior. Neuron 65:768–79
    [Google Scholar]
  69. Jaroslawska J, Chabowska-Kita A, Kaczmarek MM, Kozak LP 2015. Npvf: hypothalamic biomarker of ambient temperature independent of nutritional status. PLOS Genet 11:e1005287
    [Google Scholar]
  70. Jarvie BC, Hentges ST. 2012. Expression of GABAergic and glutamatergic phenotypic markers in hypothalamic proopiomelanocortin neurons. J. Comp. Neurol. 520:3863–76
    [Google Scholar]
  71. Kakizawa K, Watanabe M, Mutoh H, Okawa Y, Yamashita M et al. 2016. A novel GABA-mediated corticotropin-releasing hormone secretory mechanism in the median eminence. Sci. Adv. 2:e1501723
    [Google Scholar]
  72. Katsouni E, Sakkas P, Zarros A, Skandali N, Liapi C 2009. The involvement of substance P in the induction of aggressive behavior. Peptides 30:1586–91
    [Google Scholar]
  73. Klockener T, Hess S, Belgardt BF, Paeger L, Verhagen LA et al. 2011. High-fat feeding promotes obesity via insulin receptor/PI3K-dependent inhibition of SF-1 VMH neurons. Nat. Neurosci. 14:911–18
    [Google Scholar]
  74. Knobloch HS, Charlet A, Hoffmann LC, Eliava M, Khrulev S et al. 2012. Evoked axonal oxytocin release in the central amygdala attenuates fear response. Neuron 73:553–66 Evidence for oxytocin-containing magnocellular neurons to project, besides the neurohypophysis, to extrahypothalamic areas with the innervation of the central amygdala critical in fear suppression.
    [Google Scholar]
  75. Knobloch HS, Grinevich V. 2014. Evolution of oxytocin pathways in the brain of vertebrates. Front. Behav. Neurosci. 8:31
    [Google Scholar]
  76. Koblinger K, Fuzesi T, Ejdrygiewicz J, Krajacic A, Bains JS, Whelan PJ 2014. Characterization of A11 neurons projecting to the spinal cord of mice. PLOS ONE 9:e109636
    [Google Scholar]
  77. Koch M, Varela L, Kim JG, Kim JD, Hernandez-Nuno F et al. 2015. Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature 519:45–50
    [Google Scholar]
  78. Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC et al. 2011. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Investig. 121:1424–28 An early study showing that chemogenetic activation of agouti-related, peptide-containing neurons is sufficient to induce feeding, while their inactivation reduces food intake.
    [Google Scholar]
  79. Krashes MJ, Shah BP, Madara JC, Olson DP, Strochlic DE et al. 2014. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507:238–42
    [Google Scholar]
  80. Krieger MS, Conrad LC, Pfaff DW 1979. An autoradiographic study of the efferent connections of the ventromedial nucleus of the hypothalamus. J. Comp. Neurol. 183:785–815
    [Google Scholar]
  81. Kurrasch DM, Cheung CC, Lee FY, Tran PV, Hata K, Ingraham HA 2007. The neonatal ventromedial hypothalamus transcriptome reveals novel markers with spatially distinct patterning. J. Neurosci. 27:13624–34
    [Google Scholar]
  82. Lam BYH, Cimino I, Polex-Wolf J, Kohnke SN, Rimmington D et al. 2017. Heterogeneity of hypothalamic pro-opiomelanocortin-expressing neurons revealed by single-cell RNA sequencing. Mol. Metab. 6:383–92
    [Google Scholar]
  83. Landry M, Aman K, Hökfelt T 1998. Galanin-R1 receptor in anterior and mid-hypothalamus: distribution and regulation. J. Comp. Neurol. 399:321–40
    [Google Scholar]
  84. Lang R, Gundlach AL, Holmes FE, Hobson SA, Wynick D et al. 2015. Physiology, signaling, and pharmacology of galanin peptides and receptors: three decades of emerging diversity. Pharmacol. Rev. 67:118–75
    [Google Scholar]
  85. Laque A, Yu S, Qualls-Creekmore E, Gettys S, Schwartzenburg C et al. 2015. Leptin modulates nutrient reward via inhibitory galanin action on orexin neurons. Mol. Metab. 4:706–17
    [Google Scholar]
  86. Lawrence AJ, Cowen MS, Yang HJ, Chen F, Oldfield B 2006. The orexin system regulates alcohol-seeking in rats. Br. J. Pharmacol. 148:752–59
    [Google Scholar]
  87. Lee H, Kim DW, Remedios R, Anthony TE, Chang A et al. 2014. Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature 509:627–32
    [Google Scholar]
  88. Leibowitz SF, Akabayashi A, Alexander JT, Wang J 1998. Gonadal steroids and hypothalamic galanin and neuropeptide Y: role in eating behavior and body weight control in female rats. Endocrinology 139:1771–80
    [Google Scholar]
  89. Lin D, Boyle MP, Dollar P, Lee H, Lein ES et al. 2011. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221–26
    [Google Scholar]
  90. Liu J, Merkle FT, Gandhi AV, Gagnon JA, Woods IG et al. 2015. Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9. Development 142:1113–24
    [Google Scholar]
  91. Ludwig M, Leng G. 2006. Dendritic peptide release and peptide-dependent behaviours. Nat. Rev. Neurosci. 7:126–36
    [Google Scholar]
  92. Luo SX, Huang J, Li Q, Mohammad H, Lee CY et al. 2018. Regulation of feeding by somatostatin neurons in the tuberal nucleus. Science 361:76–81
    [Google Scholar]
  93. Madelaine R, Lovett-Barron M, Halluin C, Andalman AS, Liang J et al. 2017. The hypothalamic NPVF circuit modulates ventral raphe activity during nociception. Sci. Rep. 7:41528
    [Google Scholar]
  94. Martínez de Morentin PB, González-García I, Martins L, Lage R, Fernández-Mallo D et al. 2014. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab 20:41–53
    [Google Scholar]
  95. Maslow AH. 1943. A theory of human motivation. Physiol. Rev. 50:370–96
    [Google Scholar]
  96. Meister B, Hökfelt T. 1988. Peptide- and transmitter-containing neurons in the mediobasal hypothalamus and their relation to GABAergic systems: possible roles in control of prolactin and growth hormone secretion. Synapse 2:585–605
    [Google Scholar]
  97. Melander T, Hökfelt T, Rokaeus A 1986. Distribution of galaninlike immunoreactivity in the rat central nervous system. J. Comp. Neurol. 248:475–517
    [Google Scholar]
  98. Melnikova VI, Raison D, Hardin-Pouzet H, Ugrumov MV, Calas A, Grange-Messent V 2006. Noradrenergic regulation of galanin expression in the supraoptic nucleus in the rat hypothalamus. An ex vivo study. J. Neurosci. Res. 83:857–63
    [Google Scholar]
  99. Menendez JA, Atrens DM, Leibowitz SF 1992. Metabolic effects of galanin injections into the paraventricular nucleus of the hypothalamus. Peptides 13:323–27
    [Google Scholar]
  100. Mennicken F, Hoffert C, Pelletier M, Ahmad S, O'Donnell D 2002. Restricted distribution of galanin receptor 3 (GalR3) mRNA in the adult rat central nervous system. J. Chem. Neuroanat. 24:257–68
    [Google Scholar]
  101. Menon R, Grund T, Zoicas I, Althammer F, Fiedler D et al. 2018. Oxytocin signaling in the lateral septum prevents social fear during lactation. Curr. Biol. 28:1066–78.e6
    [Google Scholar]
  102. Merchenthaler I. 1991. The hypophysiotropic galanin system of the rat brain. Neuroscience 44:643–54
    [Google Scholar]
  103. Merchenthaler I, Lopez FJ, Lennard DE, Negro-Vilar A 1991. Sexual differences in the distribution of neurons coexpressing galanin and luteinizing hormone-releasing hormone in the rat brain. Endocrinology 129:1977–86
    [Google Scholar]
  104. Musatov S, Chen W, Pfaff DW, Kaplitt MG, Ogawa S 2006. RNAi-mediated silencing of estrogen receptor α in the ventromedial nucleus of hypothalamus abolishes female sexual behaviors. PNAS 103:10456–60
    [Google Scholar]
  105. Noble EE, Hahn JD, Konanur VR, Hsu TM, Page SJ et al. 2018. Control of feeding behavior by cerebral ventricular volume transmission of melanin-concentrating hormone. Cell Metab 28:55–68.e7
    [Google Scholar]
  106. Pagani JH, Zhao M, Cui Z, Avram SK, Caruana DA et al. 2015. Role of the vasopressin 1b receptor in rodent aggressive behavior and synaptic plasticity in hippocampal area CA2. Mol. Psychiatry 20:490–99
    [Google Scholar]
  107. Peyron C, Faraco J, Rogers W, Ripley B, Overeem S et al. 2000. A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat. Med. 6:991–97
    [Google Scholar]
  108. Romanov RA, Alpár A, Zhang MD, Zeisel A, Calas A et al. 2015. A secretagogin locus of the mammalian hypothalamus controls stress hormone release. EMBO J 34:36–54
    [Google Scholar]
  109. Romanov RA, Zeisel A, Bakker J, Girach F, Hellysaz A et al. 2017. Molecular interrogation of hypothalamic organization reveals distinct dopamine neuronal subtypes. Nat. Neurosci. 20:176–88
    [Google Scholar]
  110. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM et al. 1998. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–85 Simultaneously with de Lecea et al. (1998), this study discovered orexin-A and -B as well as their receptors, their localization in the lateral and posterior hypothalamus, and their stimulatory effect on food intake.
    [Google Scholar]
  111. Saper CB, Swanson LW, Cowan WM 1976. The efferent connections of the ventromedial nucleus of the hypothalamus of the rat. J. Comp. Neurol. 169:409–42 An autoradiographic study using 3H-labeled amino acids producing a high-resolution map of output pathways of the ventromedial hypothalamic nucleus.
    [Google Scholar]
  112. Sawchenko PE, Swanson LW. 1982. Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. J. Comp. Neurol. 205:260–72
    [Google Scholar]
  113. Scott N, Prigge M, Yizhar O, Kimchi T 2015. A sexually dimorphic hypothalamic circuit controls maternal care and oxytocin secretion. Nature 525:519–22
    [Google Scholar]
  114. Segal JP, Stallings NR, Lee CE, Zhao L, Socci N et al. 2005. Use of laser-capture microdissection for the identification of marker genes for the ventromedial hypothalamic nucleus. J. Neurosci. 25:4181–88
    [Google Scholar]
  115. Seth A, Stanley S, Dhillo W, Murphy K, Ghatei M, Bloom S 2003. Effects of galanin-like peptide on food intake and the hypothalamo-pituitary-thyroid axis. Neuroendocrinology 77:125–31
    [Google Scholar]
  116. Siddiq A, Gueorguiev M, Samson C, Hercberg S, Heude B et al. 2007. Single nucleotide polymorphisms in the neuropeptide Y2 receptor (NPY2R) gene and association with severe obesity in French white subjects. Diabetologia 50:574–84
    [Google Scholar]
  117. Simmons DM, Swanson LW. 2009. Comparison of the spatial distribution of seven types of neuroendocrine neurons in the rat paraventricular nucleus: toward a global 3D model. J. Comp. Neurol. 516:423–41
    [Google Scholar]
  118. Sohn JW, Xu Y, Jones JE, Wickman K, Williams KW, Elmquist JK 2011. Serotonin 2C receptor activates a distinct population of arcuate pro-opiomelanocortin neurons via TRPC channels. Neuron 71:488–97
    [Google Scholar]
  119. Son SJ, Filosa JA, Potapenko ES, Biancardi VC, Zheng H et al. 2013. Dendritic peptide release mediates interpopulation crosstalk between neurosecretory and preautonomic networks. Neuron 78:1036–49
    [Google Scholar]
  120. Stagkourakis S, Spigolon G, Williams P, Protzmann J, Fisone G, Broberger C 2018. A neural network for intermale aggression to establish social hierarchy. Nat. Neurosci. 21:834–42
    [Google Scholar]
  121. Steiger A, Antonijevic IA, Bohlhalter S, Frieboes RM, Friess E, Murck H 1998. Effects of hormones on sleep. Horm. Res. 49:125–30
    [Google Scholar]
  122. Sternson SM, Shepherd GM, Friedman JM 2005. Topographic mapping of VMH → arcuate nucleus microcircuits and their reorganization by fasting. Nat. Neurosci. 8:1356–63
    [Google Scholar]
  123. Swanson LW, Kuypers HG. 1980a. A direct projection from the ventromedial nucleus and retrochiasmatic area of the hypothalamus to the medulla and spinal cord of the rat. Neurosci. Lett. 17:307–12
    [Google Scholar]
  124. Swanson LW, Kuypers HG. 1980b. The paraventricular nucleus of the hypothalamus: cytoarchitectonic subdivisions and organization of projections to the pituitary, dorsal vagal complex, and spinal cord as demonstrated by retrograde fluorescence double-labeling methods. J. Comp. Neurol. 194:555–70 Retrograde fluorescent dye labeling delineated three magnocellular and five parvocellular subdivisions of the paraventricular nucleus and their differential efferent projections.
    [Google Scholar]
  125. Swanson LW, Sawchenko PE. 1980. Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology 31:410–17
    [Google Scholar]
  126. Takahashi K, Wang QP, Guan JL, Kayama Y, Shioda S, Koyama Y 2005. State-dependent effects of orexins on the serotonergic dorsal raphe neurons in the rat. Regul. Pept. 126:43–47
    [Google Scholar]
  127. Tamura T, Irahara M, Tezuka M, Kiyokawa M, Aono T 1999. Orexins, orexigenic hypothalamic neuropeptides, suppress the pulsatile secretion of luteinizing hormone in ovariectomized female rats. Biochem. Biophys. Res. Commun. 264:759–62
    [Google Scholar]
  128. Terry LC, Martin JB. 1981. The effects of lateral hypothalamic-medial forebrain stimulation and somatostatin antiserum on pulsatile growth hormone secretion in freely behaving rats: evidence for a dual regulatory mechanism. Endocrinology 109:622–27
    [Google Scholar]
  129. Toda C, Kim JD, Impellizzeri D, Cuzzocrea S, Liu ZW, Diano S 2016. UCP2 regulates mitochondrial fission and ventromedial nucleus control of glucose responsiveness. Cell 164:872–83
    [Google Scholar]
  130. Toda C, Santoro A, Kim JD, Diano S 2017. POMC neurons: from birth to death. Annu. Rev. Physiol. 79:209–36
    [Google Scholar]
  131. Todd WD, Fenselau H, Wang JL, Zhang R, Machado NL et al. 2018. A hypothalamic circuit for the circadian control of aggression. Nat. Neurosci. 21:717–24
    [Google Scholar]
  132. Toossi H, Del Cid-Pellitero E, Stroh T, Jones BE 2012. Somatostatin varicosities contain the vesicular GABA transporter and contact orexin neurons in the hypothalamus. Eur. J. Neurosci. 36:3388–95
    [Google Scholar]
  133. Ugrumov M, Taxi J, Pronina T, Kurina A, Sorokin A et al. 2014. Neurons expressing individual enzymes of dopamine synthesis in the mediobasal hypothalamus of adult rats: functional significance and topographic interrelations. Neuroscience 277:45–54
    [Google Scholar]
  134. Villalobos C, Núñez L, Garcia-Sancho J 1996. Functional glutamate receptors in a subpopulation of anterior pituitary cells. FASEB J 10:654–60
    [Google Scholar]
  135. Vittoz NM, Berridge CW. 2006. Hypocretin/orexin selectively increases dopamine efflux within the prefrontal cortex: involvement of the ventral tegmental area. Neuropsychopharmacology 31:384–95
    [Google Scholar]
  136. Vong L, Ye C, Yang Z, Choi B, Chua S Jr, Lowell BB 2011. Leptin action on GABAergic neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 71:142–54
    [Google Scholar]
  137. Webling KE, Runesson J, Bartfai T, Langel U 2012. Galanin receptors and ligands. Front. Endocrinol. 3:146
    [Google Scholar]
  138. Whitnall MH, Mezey E, Gainer H 1985. Co-localization of corticotropin-releasing factor and vasopressin in median eminence neurosecretory vesicles. Nature 317:248–50
    [Google Scholar]
  139. Williams G, Bing C, Cai XJ, Harrold JA, King PJ, Liu XH 2001. The hypothalamus and the control of energy homeostasis: different circuits, different purposes. Physiol. Behav. 74:683–701
    [Google Scholar]
  140. Williams KW, Margatho LO, Lee CE, Choi M, Lee S et al. 2010. Segregation of acute leptin and insulin effects in distinct populations of arcuate proopiomelanocortin neurons. J. Neurosci. 30:2472–79
    [Google Scholar]
  141. Wittmann G, Lechan RM, Liposits Z, Fekete C 2005. Glutamatergic innervation of corticotropin-releasing hormone- and thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. Brain Res 1039:53–62
    [Google Scholar]
  142. Wu Z, Autry AE, Bergan JF, Watabe-Uchida M, Dulac CG 2014. Galanin neurons in the medial preoptic area govern parental behaviour. Nature 509:325–30
    [Google Scholar]
  143. Wynick D, Hammond PJ, Akinsanya KO, Bloom SR 1993. Galanin regulates basal and oestrogen-stimulated lactotroph function. Nature 364:529–32
    [Google Scholar]
  144. Xie Y, Dorsky RI. 2017. Development of the hypothalamus: conservation, modification and innovation. Development 144:1588–99
    [Google Scholar]
  145. Xu C, Fan CM. 2007. Allocation of paraventricular and supraoptic neurons requires Sim1 function: a role for a Sim1 downstream gene PlexinC1. Mol. Endocrinol 21:1234–45
    [Google Scholar]
  146. Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K et al. 2013. Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342:85–90
    [Google Scholar]
  147. Yang CF, Chiang MC, Gray DC, Prabhakaran M, Alvarado M et al. 2013. Sexually dimorphic neurons in the ventromedial hypothalamus govern mating in both sexes and aggression in males. Cell 153:896–909
    [Google Scholar]
  148. Zeisel A, Hochgerner H, Lonnerberg P, Johnsson A, Memic F et al. 2018. Molecular architecture of the mouse nervous system. Cell 174:999–1014.e22
    [Google Scholar]
  149. Zhang X, van den Pol AN 2016. Hypothalamic arcuate nucleus tyrosine hydroxylase neurons play orexigenic role in energy homeostasis. Nat. Neurosci. 19:1341–47 The authors demonstrate contributions of arcuate dopamine neurons to food intake and their ability to synaptically corelease GABA and dopamine.
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-070918-050414
Loading
/content/journals/10.1146/annurev-neuro-070918-050414
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error