1932

Abstract

How is sensory information represented in the brain? A long-standing debate in neural coding is whether and how timing of spikes conveys information to downstream neurons. Although we know that neurons in the olfactory bulb (OB) exhibit rich temporal dynamics, the functional relevance of temporal coding remains hotly debated. Recent recording experiments in awake behaving animals have elucidated highly organized temporal structures of activity in the OB. In addition, the analysis of neural circuits in the piriform cortex (PC) demonstrated the importance of not only OB afferent inputs but also intrinsic PC neural circuits in shaping odor responses. Furthermore, new experiments involving stimulation of the OB with specific temporal patterns allowed for testing the relevance of temporal codes. Together, these studies suggest that the relative timing of neuronal activity in the OB conveys odor information and that neural circuits in the PC possess various mechanisms to decode temporal patterns of OB input.

[Erratum, Closure]

An erratum has been published for this article:
Coding and Transformations in the Olfactory System
Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-071013-013941
2014-07-08
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/neuro/37/1/annurev-neuro-071013-013941.html?itemId=/content/journals/10.1146/annurev-neuro-071013-013941&mimeType=html&fmt=ahah

Literature Cited

  1. Abraham NM, Spors H, Carleton A, Margrie TW, Kuner T, Schaefer AT. 2004. Maintaining accuracy at the expense of speed: Stimulus similarity defines odor discrimination time in mice. Neuron 44:865–76 [Google Scholar]
  2. Angelo K, Rancz EA, Pimentel D, Hundahl C, Hannibal J. et al. 2012. A biophysical signature of network affiliation and sensory processing in mitral cells. Nature 488:375–78 [Google Scholar]
  3. Apicella A, Yuan Q, Scanziani M, Isaacson JS. 2010. Pyramidal cells in piriform cortex receive convergent input from distinct olfactory bulb glomeruli. J. Neurosci. 30:14255–60 [Google Scholar]
  4. Axel R. 1995. The molecular logic of smell. Sci. Am. 273:154–59 [Google Scholar]
  5. Barlow H. 1961. Possible principles underlying the transformations of sensory messages. Sensory Communication W Rosenblith 217–34 Cambridge, MA: MIT Press [Google Scholar]
  6. Barnes DC, Hofacer RD, Zaman AR, Rennaker RL, Wilson DA. 2008. Olfactory perceptual stability and discrimination. Nat. Neurosci. 11:1378–80 [Google Scholar]
  7. Bathellier B, Gschwend O, Carleton A. 2010. Temporal coding in olfaction. The Neurobiology of Olfaction A Menini 329–51 Boca Raton, FL: CRC Press [Google Scholar]
  8. Behabadi BF, Polsky A, Jadi M, Schiller J, Mel BW. 2012. Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites. PLoS Comput. Biol. 8:e1002599 [Google Scholar]
  9. Blumhagen F, Zhu P, Shum J, Schärer Y-P, Yaksi E. et al. 2011. Neuronal filtering of multiplexed odour representations. Nature 479:493–98 [Google Scholar]
  10. Boyd AM, Sturgill JF, Poo C, Isaacson JS. 2012. Cortical feedback control of olfactory bulb circuits. Neuron 76:1161–74 [Google Scholar]
  11. Branco T, Clark BA, Häusser M. 2010. Dendritic discrimination of temporal input sequences in cortical neurons. Science 329:1671–75 [Google Scholar]
  12. Britten KH, Newsome WT, Shadlen MN, Celebrini S, Movshon JA. 1996. A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci. 13:87–100 [Google Scholar]
  13. Brody CD, Hopfield JJ. 2003. Simple networks for spike-timing-based computation, with application to olfactory processing. Neuron 37:843–52 [Google Scholar]
  14. Brown SL, Joseph J, Stopfer M. 2005. Encoding a temporally structured stimulus with a temporally structured neural representation. Nat. Neurosci. 8:1568–76 [Google Scholar]
  15. Buck L, Axel R. 1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–87 [Google Scholar]
  16. Cang J, Isaacson JS. 2003. In vivo whole-cell recording of odor-evoked synaptic transmission in the rat olfactory bulb. J. Neurosci. 23:4108–16 [Google Scholar]
  17. Carey RM, Verhagen JV, Wesson DW, Pírez N, Wachowiak M. 2009. Temporal structure of receptor neuron input to the olfactory bulb imaged in behaving rats. J. Neurophysiol. 101:1073–88 [Google Scholar]
  18. Caron SJC, Ruta V, Abbott LF, Axel R. 2013. Random convergence of olfactory inputs in the Drosophila mushroom body. Nature 497:113–17 [Google Scholar]
  19. Chance FS, Abbott LF. 2000. Divisive inhibition in recurrent networks. Network 11:119–29 [Google Scholar]
  20. Chapuis J, Wilson DA. 2011. Bidirectional plasticity of cortical pattern recognition and behavioral sensory acuity. Nat. Neurosci. 15:155–61 [Google Scholar]
  21. Cury KM, Uchida N. 2010. Robust odor coding via inhalation-coupled transient activity in the mammalian olfactory bulb. Neuron 68:570–85 [Google Scholar]
  22. Davison IG, Ehlers MD. 2011. Neural circuit mechanisms for pattern detection and feature combination in olfactory cortex. Neuron 70:82–94 [Google Scholar]
  23. Davison IG, Katz LC. 2007. Sparse and selective odor coding by mitral/tufted neurons in the main olfactory bulb. J. Neurosci. 27:2091–101 [Google Scholar]
  24. deCharms RC, Zador A. 2000. Neural representation and the cortical code. Annu. Rev. Neurosci. 23:613–47 [Google Scholar]
  25. Dhawale AK, Hagiwara A, Bhalla US, Murthy VN, Albeanu DF. 2010. Non-redundant odor coding by sister mitral cells revealed by light addressable glomeruli in the mouse. Nat. Neurosci. 13:1404–12 [Google Scholar]
  26. Fdez Galán R, Sachse S, Galizia CG, Herz AVM. 2004. Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification. Neural Comput. 16:999–1012 [Google Scholar]
  27. Franks KM, Russo MJ, Sosulski DL, Mulligan AA, Siegelbaum SA, Axel R. 2011. Recurrent circuitry dynamically shapes the activation of piriform cortex. Neuron 72:49–56 [Google Scholar]
  28. Friedrich RW. 2013. Neuronal computations in the olfactory system of zebrafish. Annu. Rev. Neurosci. 36:383–402 [Google Scholar]
  29. Friedrich RW, Korsching SI. 1997. Combinatorial and chemotopic odorant coding in the zebrafish olfactory bulb visualized by optical imaging. Neuron 18:737–52 [Google Scholar]
  30. Friedrich RW, Laurent G. 2001. Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291:889–94 [Google Scholar]
  31. Fukunaga I, Berning M, Kollo M, Schmaltz A, Schaefer AT. 2012. Two distinct channels of olfactory bulb output. Neuron 75:320–29 [Google Scholar]
  32. Gabernet L, Jadhav SP, Feldman DE, Carandini M, Scanziani M. 2005. Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48:315–27 [Google Scholar]
  33. Geffen MN, Broome BM, Laurent G, Meister M. 2009. Neural encoding of rapidly fluctuating odors. Neuron 61:570–86 [Google Scholar]
  34. Ghosh S, Larson SD, Hefzi H, Marnoy Z, Cutforth T. et al. 2011. Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons. Nature 472:217–20 [Google Scholar]
  35. Gire DH, Restrepo D, Sejnowski TJ, Greer C, De Carlos JA. et al. 2013a. Temporal processing in the olfactory system: Can we see a smell?. Neuron 78:416–32 [Google Scholar]
  36. Gire DH, Whitesell JD, Doucette W, Restrepo D. 2013b. Information for decision-making and stimulus identification is multiplexed in sensory cortex. Nat. Neurosci. 16:991–93 [Google Scholar]
  37. Go Y, Niimura Y. 2008. Similar numbers but different repertoires of olfactory receptor genes in humans and chimpanzees. Mol. Biol. Evol. 25:1897–907 [Google Scholar]
  38. Grosmaitre X, Santarelli LC, Tan J, Luo M, Ma M. 2007. Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nat. Neurosci. 10:348–54 [Google Scholar]
  39. Gschwend O, Beroud J, Carleton A. 2012. Encoding odorant identity by spiking packets of rate-invariant neurons in awake mice. PLoS One 7:e30155 [Google Scholar]
  40. Haberly LB. 2001. Parallel-distributed processing in olfactory cortex: new insights from morphological and physiological analysis of neuronal circuitry. Chem. Senses 26:551–76 [Google Scholar]
  41. Haberly LB, Presto S. 1986. Ultrastructural analysis of synaptic relationships of intracellularly stained pyramidal cell axons in piriform cortex. J. Comp. Neurol. 248:464–74 [Google Scholar]
  42. Haberly LB, Price JL. 1978. Association and commissural fiber systems of the olfactory cortex of the rat. J. Comp. Neurol. 178:711–40 [Google Scholar]
  43. Haddad R, Lanjuin A, Madisen L, Zeng H, Murthy VN, Uchida N. 2013. Olfactory cortical neurons read out a relative time code in the olfactory bulb. Nat. Neurosci. 16:949–57 [Google Scholar]
  44. Hallem EA, Carlson JR. 2006. Coding of odors by a receptor repertoire. Cell 125:143–60 [Google Scholar]
  45. Hasselmo ME, Bower JM. 1990. Afferent and association fiber differences in short-term potentiation in piriform (olfactory) cortex of the rat. J. Neurophysiol. 64:179–90 [Google Scholar]
  46. Higley MJ, Contreras D. 2006. Balanced excitation and inhibition determine spike timing during frequency adaptation. J. Neurosci. 26:448–57 [Google Scholar]
  47. Hopfield JJ. 1995. Pattern recognition computation using action potential timing for stimulus representation. Nature 376:33–36 [Google Scholar]
  48. Igarashi KM, Ieki N, An M, Yamaguchi Y, Nagayama S. et al. 2012. Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex. J. Neurosci. 32:7970–85 [Google Scholar]
  49. Illig KR, Haberly LB. 2003. Odor-evoked activity is spatially distributed in piriform cortex. J. Comp. Neurol. 457:361–73 [Google Scholar]
  50. Jin DZ, Seung HS. 2002. Fast computation with spikes in a recurrent neural network. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65:051922 [Google Scholar]
  51. Johnson DM, Illig KR, Behan M, Haberly LB. 2000. New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that “primary” olfactory cortex functions like “association” cortex in other sensory systems. J. Neurosci. 20:6974–82 [Google Scholar]
  52. Jortner RA, Farivar SS, Laurent G. 2007. A simple connectivity scheme for sparse coding in an olfactory system. J. Neurosci. 27:1659–69 [Google Scholar]
  53. Joseph J, Dunn FA, Stopfer M. 2012. Spontaneous olfactory receptor neuron activity determines follower cell response properties. J. Neurosci. 32:2900–10 [Google Scholar]
  54. Junek S, Kludt E, Wolf F, Schild D. 2010. Olfactory coding with patterns of response latencies. Neuron 67:872–84 [Google Scholar]
  55. Kay LM, Laurent G. 1999. Odor- and context-dependent modulation of mitral cell activity in behaving rats. Nat. Neurosci. 2:1003–9 [Google Scholar]
  56. Ketchum KL, Haberly LB. 1993a. Membrane currents evoked by afferent fiber stimulation in rat piriform cortex. I. Current source-density analysis. J. Neurophysiol. 69:248–60 [Google Scholar]
  57. Ketchum KL, Haberly LB. 1993b. Membrane currents evoked by afferent fiber stimulation in rat piriform cortex. II. Analysis with a system model. J. Neurophysiol. 69:261–81 [Google Scholar]
  58. Khan AG, Thattai M, Bhalla US. 2008. Odor representations in the rat olfactory bulb change smoothly with morphing stimuli. Neuron 57:571–85 [Google Scholar]
  59. Kikuta S, Fletcher ML, Homma R, Yamasoba T, Nagayama S. 2013. Odorant response properties of individual neurons in an olfactory glomerular module. Neuron 77:1122–35 [Google Scholar]
  60. Kleinfeld D. 1986. Sequential state generation by model neural networks. Proc. Natl. Acad. Sci. USA 83:9469–73 [Google Scholar]
  61. Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J. 2009. Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325:756–60 [Google Scholar]
  62. Laurent G. 2002. Olfactory network dynamics and the coding of multidimensional signals. Nat. Rev. Neurosci. 3:884–95 [Google Scholar]
  63. Laurent G, Stopfer M, Friedrich RW, Rabinovich MI, Volkovskii A, Abarbanel HDI. 2001. Odor encoding as an active, dynamical process: experiments, computation, and theory. Annu. Rev. Neurosci. 24:263–97 [Google Scholar]
  64. Laurent G, Wehr M, Davidowitz H. 1996. Temporal representations of odors in an olfactory network. J. Neurosci. 16:3837–47 [Google Scholar]
  65. Luna R, Hernández A, Brody CD, Romo R. 2005. Neural codes for perceptual discrimination in primary somatosensory cortex. Nat. Neurosci. 8:1210–19 [Google Scholar]
  66. Luskin MB, Price JL. 1983a. The laminar distribution of intracortical fibers originating in the olfactory cortex of the rat. J. Comp. Neurol. 216:292–302 [Google Scholar]
  67. Luskin MB, Price JL. 1983b. The topographic organization of associational fibers of the olfactory system in the rat, including centrifugal fibers to the olfactory bulb. J. Comp. Neurol. 216:264–91 [Google Scholar]
  68. Lynch G, Shepherd GM, Black Killackey HP. 1986. Synapses, Circuits, and the Beginnings of Memory Cambridge, MA: MIT Press [Google Scholar]
  69. Margrie TW, Schaefer AT. 2003. Theta oscillation coupled spike latencies yield computational vigour in a mammalian sensory system. J. Physiol. 546:363–74 [Google Scholar]
  70. Mazor O, Laurent G. 2005. Transient dynamics versus fixed points in odor representations by locust antennal lobe projection neurons. Neuron 48:661–73 [Google Scholar]
  71. Meister M, Berry MJ 2nd. 1999. The neural code of the retina. Neuron 22:435–50 [Google Scholar]
  72. Meister M, Bonhoeffer T. 2001. Tuning and topography in an odor map on the rat olfactory bulb. J. Neurosci. 21:1351–60 [Google Scholar]
  73. Miura K, Mainen ZF, Uchida N. 2012. Odor representations in olfactory cortex: distributed rate coding and decorrelated population activity. Neuron 74:1087–98 [Google Scholar]
  74. Miyamichi K, Amat F, Moussavi F, Wang C, Wickersham I. et al. 2011. Cortical representations of olfactory input by trans-synaptic tracing. Nature 472:191–96 [Google Scholar]
  75. Moazzezi R, Dayan P. 2008. Change-based inference for invariant discrimination. Network 19:236–52 [Google Scholar]
  76. Moazzezi R, Dayan P. 2010. Change-based inference in attractor nets: linear analysis. Neural Comput. 22:3036–61 [Google Scholar]
  77. Monod B, Mouly AM, Vigouroux M, Holley A. 1989. An investigation of some temporal aspects of olfactory coding with the model of multi-site electrical stimulation of the olfactory bulb in the rat. Behav. Brain Res. 33:51–63 [Google Scholar]
  78. Mori K, Nagao H, Yoshihara Y. 1999. The olfactory bulb: coding and processing of odor molecule information. Science 286:711–15 [Google Scholar]
  79. Nagayama S, Enerva A, Fletcher ML, Masurkar AV, Igarashi KM. et al. 2010. Differential axonal projection of mitral and tufted cells in the mouse main olfactory system. Front. Neural Circuits 4:120 [Google Scholar]
  80. Nara K, Saraiva LR, Ye X, Buck LB. 2011. A large-scale analysis of odor coding in the olfactory epithelium. J. Neurosci. 31:9179–91 [Google Scholar]
  81. O'Connor DH, Hires SA, Guo ZV, Li N, Yu J. et al. 2013. Neural coding during active somatosensation revealed using illusory touch. Nat. Neurosci. 16:958–65 [Google Scholar]
  82. Olender T, Nativ N, Lancet D. 2013. HORDE: comprehensive resource for olfactory receptor genomics. Methods Mol. Biol. 1003:23–38 [Google Scholar]
  83. Olsen SR, Bhandawat V, Wilson RI. 2010. Divisive normalization in olfactory population codes. Neuron 66:287–99 [Google Scholar]
  84. Onoda N, Mori K. 1980. Depth distribution of temporal firing patterns in olfactory bulb related to air-intake cycles. J. Neurophysiol. 44:29–39 [Google Scholar]
  85. Padmanabhan K, Urban NN. 2010. Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. Nat. Neurosci. 13:1276–82 [Google Scholar]
  86. Perez-Orive J, Mazor O, Turner GC, Cassenaer S, Wilson RI, Laurent G. 2002. Oscillations and sparsening of odor representations in the mushroom body. Science 297:359–65 [Google Scholar]
  87. Poo C, Isaacson JS. 2009. Odor representations in olfactory cortex: “sparse” coding, global inhibition, and oscillations. Neuron 62:850–61 [Google Scholar]
  88. Poo C, Isaacson JS. 2011. A major role for intracortical circuits in the strength and tuning of odor-evoked excitation in olfactory cortex. Neuron 72:41–48 [Google Scholar]
  89. Rennaker RL, Chen C-FF, Ruyle AM, Sloan AM, Wilson DA. 2007. Spatial and temporal distribution of odorant-evoked activity in the piriform cortex. J. Neurosci. 27:1534–42 [Google Scholar]
  90. Rinberg D, Koulakov A, Gelperin A. 2006a. Sparse odor coding in awake behaving mice. J. Neurosci. 26:8857–65 [Google Scholar]
  91. Rinberg D, Koulakov A, Gelperin A. 2006b. Speed-accuracy tradeoff in olfaction. Neuron 51:351–58 [Google Scholar]
  92. Rubin BD, Katz LC. 1999. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23:499–511 [Google Scholar]
  93. Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD. 2009. Odor coding by a mammalian receptor repertoire. Sci. Signal. 2:ra9 [Google Scholar]
  94. Schoppa NE, Urban NN. 2003. Dendritic processing within olfactory bulb circuits. Trends Neurosci. 26:501–6 [Google Scholar]
  95. Shepherd GM. 2001. Computational structure of the olfactory system. Olfaction: a Model System for Computational Neuroscience JL Davis, H Eichenbaum 3–42 Cambridge, MA: MIT Press [Google Scholar]
  96. Shepherd GM. 2003. The Synaptic Organization of the Brain New York: Oxford Univ. Press [Google Scholar]
  97. Shusterman R, Smear MC, Koulakov AA, Rinberg D. 2011. Precise olfactory responses tile the sniff cycle. Nat. Neurosci. 14:1039–44 [Google Scholar]
  98. Smear M, Resulaj A, Zhang J, Bozza T, Rinberg D. 2013. Multiple perceptible signals from a single olfactory glomerulus. Nat. Neurosci. 16:1687–91 [Google Scholar]
  99. Smear M, Shusterman R, O'Connor R, Bozza T, Rinberg D. 2011. Perception of sniff phase in mouse olfaction. Nature 479:397–400 [Google Scholar]
  100. Sobel EC, Tank DW. 1993. Timing of odor stimulation does not alter patterning of olfactory bulb unit activity in freely breathing rats. J. Neurophysiol. 69:1331–37 [Google Scholar]
  101. Sompolinsky H, Kanter I. 1986. Temporal association in asymmetric neural networks. Phys. Rev. Lett. 57:2861–64 [Google Scholar]
  102. Sosulski DL, Bloom ML, Cutforth T, Axel R, Datta SR. 2011. Distinct representations of olfactory information in different cortical centres. Nature 472:213–16 [Google Scholar]
  103. Spors H, Grinvald A. 2002. Spatio-temporal dynamics of odor representations in the mammalian olfactory bulb. Neuron 34:301–15 [Google Scholar]
  104. Spors H, Wachowiak M, Cohen LB, Friedrich RW. 2006. Temporal dynamics and latency patterns of receptor neuron input to the olfactory bulb. J. Neurosci. 26:1247–59 [Google Scholar]
  105. Stettler DD, Axel R. 2009. Representations of odor in the piriform cortex. Neuron 63:854–64 [Google Scholar]
  106. Stokes CCA, Isaacson JS. 2010. From dendrite to soma: dynamic routing of inhibition by complementary interneuron microcircuits in olfactory cortex. Neuron 67:452–65 [Google Scholar]
  107. Stopfer M, Jayaraman V, Laurent G. 2003. Intensity versus identity coding in an olfactory system. Neuron 39:991–1004 [Google Scholar]
  108. Suzuki N, Bekkers JM. 2012. Microcircuits mediating feedforward and feedback synaptic inhibition in the piriform cortex. J. Neurosci. 32:919–31 [Google Scholar]
  109. Tank DW, Hopfield JJ. 1987. Neural computation by concentrating information in time. Proc. Natl. Acad. Sci. USA 84:1896–900 [Google Scholar]
  110. Touhara K, Vosshall LB. 2009. Sensing odorants and pheromones with chemosensory receptors. Annu. Rev. Physiol. 71:307–32 [Google Scholar]
  111. Uchida N, Mainen ZF. 2003. Speed and accuracy of olfactory discrimination in the rat. Nat. Neurosci. 6:1224–29 [Google Scholar]
  112. Uchida N, Mainen ZF. 2007. Odor concentration invariance by chemical ratio coding. Front. Syst. Neurosci. 1:3 [Google Scholar]
  113. Uchida N, Takahashi YK, Tanifuji M, Mori K. 2000. Odor maps in the mammalian olfactory bulb: domain organization and odorant structural features. Nat. Neurosci. 3:1035–43 [Google Scholar]
  114. Wehr M, Laurent G. 1996. Odour encoding by temporal sequences of firing in oscillating neural assemblies. Nature 384:162–66 [Google Scholar]
  115. Wilson DA, Sullivan RM. 2011. Cortical processing of odor objects. Neuron 72:506–19 [Google Scholar]
  116. Wilson RI. 2013. Early olfactory processing in Drosophila: mechanisms and principles. Annu. Rev. Neurosci. 36:217–41 [Google Scholar]
  117. Wilson RI, Mainen ZF. 2006. Early events in olfactory processing. Annu. Rev. Neurosci. 29:163–201 [Google Scholar]
  118. Yoshida I, Mori K. 2007. Odorant category profile selectivity of olfactory cortex neurons. J. Neurosci. 27:9105–14 [Google Scholar]
  119. Zariwala HA, Kepecs A, Uchida N, Hirokawa J, Mainen ZF. 2013. The limits of deliberation in a perceptual decision task. Neuron 78:339–51 [Google Scholar]
  120. Zhan C, Luo M. 2010. Diverse patterns of odor representation by neurons in the anterior piriform cortex of awake mice. J. Neurosci. 30:16662–72 [Google Scholar]
/content/journals/10.1146/annurev-neuro-071013-013941
Loading
/content/journals/10.1146/annurev-neuro-071013-013941
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error