Neuromodulation underlies many behavioral states and has been extensively studied in small circuits. This has allowed the systematic exploration of how neuromodulatory substances and the neurons that release them can influence circuit function. The physiological state of a network and its level of activity can have profound effects on how the modulators act, a phenomenon known as state dependence. We provide insights from experiments and computational work that show how state dependence can arise and the consequences it can have for cellular and circuit function. These observations pose a general unsolved question that is relevant to all nervous systems: How is robust modulation achieved in spite of animal-to-animal variability and degenerate, nonlinear mechanisms for the production of neuronal and network activity?


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adams WB, Benson JA. 1985. The generation and modulation of endogenous rhythmicity in the Aplysia bursting pacemaker neurone R15. Prog. Biophys. Mol. Biol. 46:1–49 [Google Scholar]
  2. Alekseyenko OV, Chan YB, Li R, Kravitz EA. 2013. Single dopaminergic neurons that modulate aggression in Drosophila. Proc. Natl. Acad. Sci. USA 110:6151–56 [Google Scholar]
  3. Alekseyenko OV, Lee C, Kravitz EA. 2010. Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS ONE 5:e10806 [Google Scholar]
  4. Antonov I, Kandel ER, Hawkins RD. 2010. Presynaptic and postsynaptic mechanisms of synaptic plasticity and metaplasticity during intermediate-term memory formation in Aplysia. J. Neurosci. 30:5781–91 [Google Scholar]
  5. Ayali A, Harris-Warrick RM. 1999. Monoamine control of the pacemaker kernel and cycle frequency in the lobster pyloric network. J. Neurosci. 19:6712–22 [Google Scholar]
  6. Baines RA, Uhler JP, Thompson A, Sweeney ST, Bate M. 2001. Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21:1523–31 [Google Scholar]
  7. Bargmann CI. 2012. Beyond the connectome: how neuromodulators shape neural circuits. Bioessays 34:458–65 [Google Scholar]
  8. Beverly M, Anbil S, Sengupta P. 2011. Degeneracy and neuromodulation among thermosensory neurons contribute to robust thermosensory behaviors in Caenorhabditis elegans. J. Neurosci. 31:11718–27 [Google Scholar]
  9. Birren SJ, Marder E. 2013. Neuroscience. Plasticity in the neurotransmitter repertoire. Science 340:436–37 [Google Scholar]
  10. Blitz DM, Nusbaum MP. 2011. Neural circuit flexibility in a small sensorimotor system. Curr. Opin. Neurobiol. 21:544–52 [Google Scholar]
  11. Boyle MB, Klein M, Smith SJ, Kandel ER. 1984. Serotonin increases intracellular Ca2+ transients in voltage-clamped sensory neurons of Aplysia californica. Proc. Natl. Acad. Sci. USA 81:7642–46 [Google Scholar]
  12. Braha O, Edmonds B, Sacktor T, Kandel ER, Klein M. 1993. The contributions of protein kinase A and protein kinase C to the actions of 5-HT on the L-type Ca2+ current of the sensory neurons in Aplysia. J. Neurosci. 13:1839–51 [Google Scholar]
  13. Brezina V. 2010. Beyond the wiring diagram: signalling through complex neuromodulator networks. Philos. Trans. R. Soc. B 365:2363–74 [Google Scholar]
  14. Briggman KL, Kristan WB. 2008. Multifunctional pattern-generating circuits. Annu. Rev. Neurosci. 31:271–94 [Google Scholar]
  15. Chalasani SH, Kato S, Albrecht DR, Nakagawa T, Abbott LF, Bargmann CI. 2010. Neuropeptide feedback modifies odor-evoked dynamics in Caenorhabditis elegans olfactory neurons. Nat. Neurosci. 13:615–21 [Google Scholar]
  16. Chao MY, Komatsu H, Fukuto HS, Dionne HM, Hart AC. 2004. Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Proc. Natl. Acad. Sci. USA 101:15512–17 [Google Scholar]
  17. Dacks AM, Weiss KR. 2013. Latent modulation: a basis for non-disruptive promotion of two incompatible behaviors by a single network state. J. Neurosci. 33:3786–98 [Google Scholar]
  18. Davis GW. 2006. Homeostatic control of neural activity: from phenomenology to molecular design. Annu. Rev. Neurosci. 29:307–23 [Google Scholar]
  19. Dulcis D, Jamshidi P, Leutgeb S, Spitzer NC. 2013. Neurotransmitter switching in the adult brain regulates behavior. Science 340:449–53 [Google Scholar]
  20. Epstein IR, Marder E. 1990. Multiple modes of a conditional neural oscillator. Biol. Cybern. 63:25–34 [Google Scholar]
  21. Flamm RE, Harris-Warrick RM. 1986. Aminergic modulation in lobster stomatogastric ganglion. II. Target neurons of dopamine, octopamine, and serotonin within the pyloric circuit. J. Neurophysiol. 55:866–81 [Google Scholar]
  22. Flavell SW, Pokala N, Macosko EZ, Albrecht DR, Larsch J, Bargmann CI. 2013. Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Cell 154:1023–35 [Google Scholar]
  23. Friesen WO, Kristan WB. 2007. Leech locomotion: swimming, crawling, and decisions. Curr. Opin. Neurobiol. 17:704–11 [Google Scholar]
  24. Goaillard J-M, Taylor AL, Schulz DJ, Marder E. 2009. Functional consequences of animal-to-animal variation in circuit parameters. Nat. Neurosci. 12:1424–30 [Google Scholar]
  25. Goldman MS, Golowasch J, Marder E, Abbott LF. 2001. Global structure, robustness, and modulation of neuronal models. J. Neurosci. 21:5229–38 [Google Scholar]
  26. Golowasch J, Goldman MS, Abbott LF, Marder E. 2002. Failure of averaging in the construction of a conductance-based neuron model. J. Neurophysiol. 87:1129–31 [Google Scholar]
  27. Golowasch J, Marder E. 1992. Proctolin activates an inward current whose voltage dependence is modified by extracellular Ca2+. J. Neurosci. 12:810–17 [Google Scholar]
  28. Grashow R, Brookings T, Marder E. 2009. Reliable neuromodulation from circuits with variable underlying structure. Proc. Natl. Acad. Sci. USA 106:11742–46 [Google Scholar]
  29. Gutierrez GJ, O'Leary T, Marder E. 2013. Multiple mechanisms switch an electrically coupled, synaptically inhibited neuron between competing rhythmic oscillators. Neuron 77:845–58 [Google Scholar]
  30. Harris G, Mills H, Wragg R, Hapiak V, Castelletto M. et al. 2010. The monoaminergic modulation of sensory-mediated aversive responses in Caenorhabditis elegans requires glutamatergic/peptidergic cotransmission. J. Neurosci. 30:7889–99 [Google Scholar]
  31. Harris-Warrick RM, Coniglio LM, Levini RM, Gueron S, Guckenheimer J. 1995. Dopamine modulation of two subthreshold currents produces phase shifts in activity of an identified motoneuron. J. Neurophysiol. 74:1404–20 [Google Scholar]
  32. Harris-Warrick RM, Flamm RE. 1987. Multiple mechanisms of bursting in a conditional bursting neuron. J. Neurosci. 7:2113–28 [Google Scholar]
  33. Harris-Warrick RM, Johnson BR. 2010. Checks and balances in neuromodulation. Front. Behav. Neurosci. 4:47 [Google Scholar]
  34. Harris-Warrick RM, Marder E. 1991. Modulation of neural networks for behavior. Annu. Rev. Neurosci. 14:39–57 [Google Scholar]
  35. Hooper SL, Marder E. 1987. Modulation of the lobster pyloric rhythm by the peptide proctolin. J. Neurosci. 7:2097–112 [Google Scholar]
  36. Jing J, Vilim FS, Cropper EC, Weiss KR. 2008. Neural analog of arousal: persistent conditional activation of a feeding modulator by serotonergic initiators of locomotion. J. Neurosci. 28:12349–61 [Google Scholar]
  37. Jing J, Vilim FS, Horn CC, Alexeeva V, Hatcher NG. et al. 2007. From hunger to satiety: reconfiguration of a feeding network by Aplysia neuropeptide Y. J. Neurosci. 27:3490–502 [Google Scholar]
  38. Jing J, Weiss KR. 2001. Neural mechanisms of motor program switching in Aplysia. J. Neurosci. 21:7349–62 [Google Scholar]
  39. Kiehn O, Harris-Warrick RM. 1992. 5-HT modulation of hyperpolarization-activated inward current and calcium-dependent outward current in a crustacean motor neuron. J. Neurophysiol. 68:496–508 [Google Scholar]
  40. Kintos N, Nusbaum MP, Nadim F. 2008. A modeling comparison of projection neuron- and neuromodulator-elicited oscillations in a central pattern generating network. J. Comput. Neurosci. 24:374–97 [Google Scholar]
  41. Kramer RH, Levitan IB. 1990. Activity-dependent neuromodulation in Aplysia neuron R15: intracellular calcium antagonizes neurotransmitter responses mediated by cAMP. J. Neurophysiol. 63:1075–88 [Google Scholar]
  42. Kristan WB. 2008. Neuronal decision-making circuits. Curr. Biol. 18:R928–32 [Google Scholar]
  43. Lee S-H, Dan Y. 2012. Neuromodulation of brain states. Neuron 76:209–22 [Google Scholar]
  44. LeMasson G, Marder E, Abbott LF. 1993. Activity-dependent regulation of conductances in model neurons. Science 259:1915–17 [Google Scholar]
  45. Levitan IB. 1988. Modulation of ion channels in neurons and other cells. Annu. Rev. Neurosci. 11:119–36 [Google Scholar]
  46. Liu Q, Liu S, Kodama L, Driscoll MR, Wu MN. 2012. Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr. Biol. 22:2114–23 [Google Scholar]
  47. Liu Z, Golowasch J, Marder E, Abbott LF. 1998. A model neuron with activity-dependent conductances regulated by multiple calcium sensors. J. Neurosci. 18:2309–20 [Google Scholar]
  48. Marder E. 2012. Neuromodulation of neuronal circuits: back to the future. Neuron 76:1–11 [Google Scholar]
  49. Marder E, Bucher D. 2007. Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu. Rev. Physiol. 69:291–316 [Google Scholar]
  50. Marder E, Eisen JS. 1984. Electrically coupled pacemaker neurons respond differently to same physiological inputs and neurotransmitters. J. Neurophysiol. 51:1362–74 [Google Scholar]
  51. Marder E, Thirumalai V. 2002. Cellular, synaptic and network effects of neuromodulation. Neural Netw. 15:479–93 [Google Scholar]
  52. Mills H, Wragg R, Hapiak V, Castelletto M, Zahratka J. et al. 2012. Monoamines and neuropeptides interact to inhibit aversive behaviour in Caenorhabditis elegans. EMBO J. 31:667–78 [Google Scholar]
  53. Morgan PT, Jing J, Vilim FS, Weiss KR. 2002. Interneuronal and peptidergic control of motor pattern switching in Aplysia. J. Neurophysiol. 87:49–61 [Google Scholar]
  54. Morgan PT, Perrins R, Lloyd PE, Weiss KR. 2000. Intrinsic and extrinsic modulation of a single central pattern generating circuit. J. Neurophysiol. 84:1186–93 [Google Scholar]
  55. Nadim F, Brezina V, Destexhe A, Linster C. 2008. State dependence of network output: modeling and experiments. J. Neurosci. 28:11806–13 [Google Scholar]
  56. Nusbaum MP, Blitz DM. 2012. Neuropeptide modulation of microcircuits. Curr. Opin. Neurobiol. 22:592–601 [Google Scholar]
  57. Nusbaum MP, Marder E. 1989. A modulatory proctolin-containing neuron (MPN). II. State-dependent modulation of rhythmic motor activity. J. Neurosci. 9:1600–7 [Google Scholar]
  58. O'Leary T, van Rossum MC, Wyllie DJ. 2010. Homeostasis of intrinsic excitability in hippocampal neurones: dynamics and mechanism of the response to chronic depolarization. J. Physiol. 588:157–70 [Google Scholar]
  59. O'Leary T, Williams AH, Caplan JS, Marder E. 2013. Correlations in ion channel expression emerge from homeostatic tuning rules. Proc. Natl. Acad. Sci. USA 110:E2645–54 [Google Scholar]
  60. O'Leary T, Wyllie DJ. 2011. Neuronal homeostasis: time for a change?. J. Physiol. 589:4811–26 [Google Scholar]
  61. Palmer CR, Kristan WB Jr. 2011. Contextual modulation of behavioral choice. Curr. Opin. Neurobiol. 21:520–26 [Google Scholar]
  62. Pratt KG, Aizenman CD. 2007. Homeostatic regulation of intrinsic excitability and synaptic transmission in a developing visual circuit. J. Neurosci. 27:8268–77 [Google Scholar]
  63. Pratt KG, Watt AJ, Griffith LC, Nelson SB, Turrigiano GG. 2003. Activity-dependent remodeling of presyn-aptic inputs by postsynaptic expression of activated CaMKII. Neuron 39:269–81 [Google Scholar]
  64. Prinz AA, Bucher D, Marder E. 2004. Similar network activity from disparate circuit parameters. Nat. Neurosci. 7:1345–52 [Google Scholar]
  65. Ransdell JL, Nair SS, Schulz DJ. 2013. Neurons within the same network independently achieve conserved output by differentially balancing variable conductance magnitudes. J. Neurosci. 33:9950–56 [Google Scholar]
  66. Rinberg A, Taylor AL, Marder E. 2013. The effects of temperature on the stability of a neuronal oscillator. PLOS Comput. Biol. 9:e1002857 [Google Scholar]
  67. Rodriguez JC, Blitz DM, Nusbaum MP. 2013. Convergent rhythm generation from divergent cellular mechanisms. J. Neurosci. 33:18047–64 [Google Scholar]
  68. Roffman RC, Norris BJ, Calabrese RL. 2012. Animal-to-animal variability of connection strength in the leech heartbeat central pattern generator. J. Neurophysiol. 107:1681–93 [Google Scholar]
  69. Saideman SR, Blitz DM, Nusbaum MP. 2007a. Convergent motor patterns from divergent circuits. J. Neurosci. 27:6664–74 [Google Scholar]
  70. Saideman SR, Christie AE, Torfs P, Huybrechts J, Schoofs L, Nusbaum MP. 2006. Actions of kinin peptides in the stomatogastric ganglion of the crab Cancer borealis. J. Exp. Biol. 209:3664–76 [Google Scholar]
  71. Saideman SR, Ma M, Kutz-Naber KK, Cook A, Torfs P. et al. 2007b. Modulation of rhythmic motor activity by pyrokinin peptides. J. Neurophysiol. 97:579–95 [Google Scholar]
  72. Schulz DJ, Goaillard JM, Marder E. 2006. Variable channel expression in identified single and electrically coupled neurons in different animals. Nat. Neurosci. 9:356–62 [Google Scholar]
  73. Schulz DJ, Goaillard JM, Marder EE. 2007. Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. Proc. Natl. Acad. Sci. USA 104:13187–91 [Google Scholar]
  74. Skiebe P, Schneider H. 1994. Allatostatin peptides in the crab stomatogastric nervous system: inhibition of the pyloric motor pattern and distribution of allatostatin-like immunoreactivity. J. Exp. Biol. 194:195–208 [Google Scholar]
  75. Sobie EA. 2009. Parameter sensitivity analysis in electrophysiological models using multivariable regression. Biophys. J. 96:1264–74 [Google Scholar]
  76. Spitzer N, Cymbalyuk G, Zhang H, Edwards DH, Baro DJ. 2008. Serotonin transduction cascades mediate variable changes in pyloric network cycle frequency in response to the same modulatory challenge. J. Neurophysiol. 99:2844–63 [Google Scholar]
  77. Stangier J, Hilbich C, Beyreuther K, Keller R. 1987. Unusual cardioactive peptide (CCAP) from pericardial organs of the shore crab Carcinus maenas. Proc. Natl. Acad. Sci. USA 84:575–79 [Google Scholar]
  78. Stein W. 2009. Modulation of stomatogastric rhythms. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 195:989–1009 [Google Scholar]
  79. Swensen AM, Bean BP. 2005. Robustness of burst firing in dissociated Purkinje neurons with acute or long-term reductions in sodium conductance. J. Neurosci. 25:3509–20 [Google Scholar]
  80. Swensen AM, Marder E. 2000. Multiple peptides converge to activate the same voltage-dependent current in a central pattern-generating circuit. J. Neurosci. 20:6752–59 [Google Scholar]
  81. Swensen AM, Marder E. 2001. Modulators with convergent cellular actions elicit distinct circuit outputs. J. Neurosci. 21:4050–58 [Google Scholar]
  82. Szabo TM, Chen R, Goeritz ML, Maloney RT, Tang LS. et al. 2011. Distribution and physiological effects of B-type allatostatins (myoinhibitory peptides, MIPs) in the stomatogastric nervous system of the crab, Cancer borealis. J. Comp. Neurol. 519:2658–76 [Google Scholar]
  83. Szücs A, Selverston AI. 2006. Consistent dynamics suggests tight regulation of biophysical parameters in a small network of bursting neurons. J. Neurobiol. 66:1584–601 [Google Scholar]
  84. Taghert PH, Nitabach MN. 2012. Peptide neuromodulation in invertebrate model systems. Neuron 76:82–97 [Google Scholar]
  85. Taylor AL, Goaillard JM, Marder E. 2009. How multiple conductances determine electrophysiological properties in a multicompartment model. J. Neurosci. 29:5573–86 [Google Scholar]
  86. Taylor AL, Hickey TJ, Prinz AA, Marder E. 2006. Structure and visualization of high-dimensional conductance spaces. J. Neurophysiol. 96:891–905 [Google Scholar]
  87. Thompson KJ, Calabrese RL. 1992. FMRFamide effects on membrane properties of heart cells isolated from the leech, Hirudo medicinalis. J. Neurophysiol. 67:280–91 [Google Scholar]
  88. Tobin AE, Calabrese RL. 2005. Myomodulin increases Ih and inhibits the NA/K pump to modulate bursting in leech heart interneurons. J. Neurophysiol. 94:3938–50 [Google Scholar]
  89. Tobin AE, Cruz-Bermúdez ND, Marder E, Schulz DJ. 2009. Correlations in ion channel mRNA in rhythmically active neurons. PLoS ONE 4:e6742 [Google Scholar]
  90. Turrigiano G. 2011. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu. Rev. Neurosci. 34:89–103 [Google Scholar]
  91. Turrigiano GG. 2008. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135:422–35 [Google Scholar]
  92. van den Pol AN. 2012. Neuropeptide transmission in brain circuits. Neuron 76:98–115 [Google Scholar]
  93. Wagenaar DA, Hamilton MS, Huang T, Kristan WB, French KA. 2010. A hormone-activated central pattern generator for courtship. Curr. Biol. 20:487–95 [Google Scholar]
  94. Weimann JM, Skiebe P, Heinzel HG, Soto C, Kopell N. et al. 1997. Modulation of oscillator interactions in the crab stomatogastric ganglion by crustacean cardioactive peptide. J. Neurosci. 17:1748–60 [Google Scholar]
  95. White RS, Nusbaum MP. 2011. The same core rhythm generator underlies different rhythmic motor patterns. J. Neurosci. 31:11484–94 [Google Scholar]
  96. Williams AH, Calkins A, O'Leary T, Symonds R, Marder E, Dickinson PS. 2013. The neuromuscular transform of the lobster cardiac system explains the opposing effects of a neuromodulator on muscle output. J. Neurosci. 33:16565–75 [Google Scholar]
  97. Wragg RT, Hapiak V, Miller SB, Harris GP, Gray J. et al. 2007. Tyramine and octopamine independently inhibit serotonin-stimulated aversive behaviors in Caenorhabditis elegans through two novel amine receptors. J. Neurosci. 27:13402–12 [Google Scholar]
  98. Wu JS, Vilim FS, Hatcher NG, Due MR, Sweedler JV. et al. 2010. Composite modulatory feedforward loop contributes to the establishment of a network state. J. Neurophysiol. 103:2174–84 [Google Scholar]
  99. Yu X, Byrne JH, Baxter DA. 2004. Modeling interactions between electrical activity and second-messenger cascades in Aplysia neuron R15. J. Neurophysiol. 91:2297–311 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error