Maps serve as a ubiquitous organizing principle in the mammalian brain. In several sensory systems, such as audition, vision, and somatosensation, topographic maps are evident throughout multiple levels of brain pathways. Topographic maps, like retinotopy and tonotopy, persist from the receptor surface up to the cortex. Other maps, such as those of orientation preference in the visual cortex, are first created in the cortex itself. Despite the prevalence of topographic maps, it is still not clear what function they subserve. Although maps are topographically smooth at the macroscale, they are often locally heterogeneous. Here, we review studies describing the anatomy and physiology of topographic maps across various spatial scales, from the smooth macroscale to the heterogeneous local microarchitecture, with emphasis on maps of the visual and auditory systems. We discuss the potential advantages of local heterogeneity in brain maps, how they reflect complex cortical connectivity, and how they may impact sensory coding and local computations.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abbott LF, Dayan P. 1999. The effect of correlated variability on the accuracy of a population code. Neural Comput. 11:91–101 [Google Scholar]
  2. Ahissar E, Vaadia E, Ahissar M, Bergman H, Arieli A, Abeles M. 1992. Dependence of cortical plasticity on correlated activity of single neurons and on behavioral context. Science 257:1412–15 [Google Scholar]
  3. Alonso JM, Martinez LM. 1998. Functional connectivity between simple cells and complex cells in cat striate cortex. Nat. Neurosci. 1:395–403 [Google Scholar]
  4. Andermann ML, Gilfoy NB, Goldey GJ, Sachdev RN, Wolfel M. et al. 2013. Chronic cellular imaging of entire cortical columns in awake mice using microprisms. Neuron 80:900–13 [Google Scholar]
  5. Atencio CA, Schreiner CE. 2010. Columnar connectivity and laminar processing in cat primary auditory cortex. PLOS ONE 5:e9521 [Google Scholar]
  6. Atencio CA, Sharpee TO, Schreiner CE. 2008. Cooperative nonlinearities in auditory cortical neurons. Neuron 58:956–66 [Google Scholar]
  7. Averbeck BB, Latham PE, Pouget A. 2006. Neural correlations, population coding and computation. Nat. Rev. Neurosci. 7:358–66 [Google Scholar]
  8. Bair W, Zohary E, Newsome WT. 2001. Correlated firing in macaque visual area MT: time scales and relationship to behavior. J. Neurosci. 21:1676–97 [Google Scholar]
  9. Bandyopadhyay S, Shamma SA, Kanold PO. 2010. Dichotomy of functional organization in the mouse auditory cortex. Nat. Neurosci. 13:361–68 [Google Scholar]
  10. Bao S, Chan VT, Merzenich MM. 2001. Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature 412:79–83 [Google Scholar]
  11. Bar-Yosef O, Nelken I. 2007. The effects of background noise on the neural responses to natural sounds in cat primary auditory cortex. Front. Comput. Neurosci. 1:3 [Google Scholar]
  12. Bar-Yosef O, Rotman Y, Nelken I. 2002. Responses of neurons in cat primary auditory cortex to bird chirps: effects of temporal and spectral context. J. Neurosci. 22:8619–32 [Google Scholar]
  13. Basole A, White LE, Fitzpatrick D. 2003. Mapping multiple features in the population response of visual cortex. Nature 423:986–90 [Google Scholar]
  14. Bathellier B, Ushakova L, Rumpel S. 2012. Discrete neocortical dynamics predict behavioral categorization of sounds. Neuron 76:435–49 [Google Scholar]
  15. Binzegger T, Douglas RJ, Martin KA. 2004. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24:8441–53 [Google Scholar]
  16. Bizley JK, Cohen YE. 2013. The what, where and how of auditory-object perception. Nat. Rev. Neurosci. 14:693–707 [Google Scholar]
  17. Bonhoeffer T, Grinvald A. 1991. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353:429–31 [Google Scholar]
  18. Bonin V, Histed MH, Yurgenson S, Reid RC. 2011. Local diversity and fine-scale organization of receptive fields in mouse visual cortex. J. Neurosci. 31:18506–21 [Google Scholar]
  19. Bosking WH, Zhang Y, Schofield B, Fitzpatrick D. 1997. Orientation selectivity and the arrangement of horizontal connections in tree shrew striate cortex. J. Neurosci. 17:2112–27 [Google Scholar]
  20. Carandini M, Demb JB, Mante V, Tolhurst DJ, Dan Y. et al. 2005. Do we know what the early visual system does?. J. Neurosci. 25:10577–97 [Google Scholar]
  21. Caron SJ, Ruta V, Abbott LF, Axel R. 2013. Random convergence of olfactory inputs in the Drosophila mushroom body. Nature 497:113–17 [Google Scholar]
  22. Chang EF, Merzenich MM. 2003. Environmental noise retards auditory cortical development. Science 300:498–502 [Google Scholar]
  23. Chapman B, Zahs KR, Stryker MP. 1991. Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex. J. Neurosci. 11:1347–58 [Google Scholar]
  24. Chavane F, Sharon D, Jancke D, Marre O, Frégnac Y, Grinvald A. 2011. Lateral spread of orientation selectivity in V1 is controlled by intracortical cooperativity. Front. Syst. Neurosci. 5:4 [Google Scholar]
  25. Chechik G, Anderson MJ, Bar-Yosef O, Young ED, Tishby N, Nelken I. 2006. Reduction of information redundancy in the ascending auditory pathway. Neuron 51:359–68 [Google Scholar]
  26. Chechik G, Nelken I. 2012. Auditory abstraction from spectro-temporal features to coding auditory entities. PNAS 109:18968–73 [Google Scholar]
  27. Chelaru MI, Dragoi V. 2008. Efficient coding in heterogeneous neuronal populations. PNAS 105:16344–49 [Google Scholar]
  28. Chen C-C, Lu J, Zuo Y. 2014. Spatiotemporal dynamics of dendritic spines in the living brain. Front. Neuroanat. 8:28 [Google Scholar]
  29. Chen X, Gabitto M, Peng Y, Ryba NJ, Zuker CS. 2011. A gustotopic map of taste qualities in the mammalian brain. Science 333:1262–66 [Google Scholar]
  30. Chisum HJ, Mooser F, Fitzpatrick D. 2003. Emergent properties of layer 2/3 neurons reflect the collinear arrangement of horizontal connections in tree shrew visual cortex. J. Neurosci. 23:2947–60 [Google Scholar]
  31. Chklovskii DB, Koulakov AA. 2004. Maps in the brain: What can we learn from them?. Annu. Rev. Neurosci. 27:369–92 [Google Scholar]
  32. Cogan SF. 2008. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10:275–309 [Google Scholar]
  33. Cohen L, Koffman N, Meiri H, Yarom Y, Lampl I, Mizrahi A. 2013. Time-lapse electrical recordings of single neurons from the mouse neocortex. PNAS 110:5665–70 [Google Scholar]
  34. Cohen L, Rothschild G, Mizrahi A. 2011. Multisensory integration of natural odors and sounds in the auditory cortex. Neuron 72:357–69 [Google Scholar]
  35. Cohen MR, Maunsell JH. 2009. Attention improves performance primarily by reducing interneuronal correlations. Nat. Neurosci. 12:1594–600 [Google Scholar]
  36. da Costa NM, Martin KA. 2010. Whose cortical column would that be?. Front. Neuroanat. 4:16 [Google Scholar]
  37. da Silveira RA, Berry MJ II. 2013. High-fidelity coding with correlated neurons. arXiv 1307.3591 [q-bio.NC]
  38. de Villers-Sidani E, Chang EF, Bao S, Merzenich MM. 2007. Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. J. Neurosci. 27:180–89 [Google Scholar]
  39. DeAngelis GC, Ghose GM, Ohzawa I, Freeman RD. 1999. Functional micro-organization of primary visual cortex: receptive field analysis of nearby neurons. J. Neurosci. 19:4046–64 [Google Scholar]
  40. Dear PH, Cook PR. 1993. Happy mapping: linkage mapping using a physical analogue of meiosis. Nucleic Acids Res. 21:13–20 [Google Scholar]
  41. DeBruyn EJ, Casagrande VA, Beck PD, Bonds AB. 1993. Visual resolution and sensitivity of single cells in the primary visual cortex (V1) of a nocturnal primate (bush baby): correlations with cortical layers and cytochrome oxidase patterns. J. Neurophysiol. 69:3–18 [Google Scholar]
  42. Deneve S, Latham PE, Pouget A. 1999. Reading population codes: a neural implementation of ideal observers. Nat. Neurosci. 2:740–45 [Google Scholar]
  43. Dombeck DA, Graziano MS, Tank DW. 2009. Functional clustering of neurons in motor cortex determined by cellular resolution imaging in awake behaving mice. J. Neurosci. 29:13751–60 [Google Scholar]
  44. Douglas RJ, Martin KA. 2004. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27:419–51 [Google Scholar]
  45. Douglas RJ, Martin KA. 2007. Mapping the matrix: the ways of neocortex. Neuron 56:226–38 [Google Scholar]
  46. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM. et al. 1998. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77 [Google Scholar]
  47. Druckmann S, Hill S, Schürmann F, Markram H, Segev I. 2013. A hierarchical structure of cortical interneuron electrical diversity revealed by automated statistical analysis. Cereb. Cortex 23:2994–3006 [Google Scholar]
  48. Ecker AS, Berens P, Keliris GA, Bethge M, Logothetis NK, Tolias AS. 2010. Decorrelated neuronal firing in cortical microcircuits. Science 327:584–87 [Google Scholar]
  49. Ecker AS, Berens P, Tolias AS, Bethge M. 2011. The effect of noise correlations in populations of diversely tuned neurons. J. Neurosci. 31:14272–83 [Google Scholar]
  50. Eggermont JJ, Smith GM. 1996. Neural connectivity only accounts for a small part of neural correlation in auditory cortex. Exp. Brain Res. 110:379–91 [Google Scholar]
  51. Ehret G, Riecke S. 2002. Mice and humans perceive multiharmonic communication sounds in the same way. PNAS 99:479–82 [Google Scholar]
  52. Frankland PW, Bontempi B. 2005. The organization of recent and remote memories. Nat. Rev. Neurosci. 6:119–30 [Google Scholar]
  53. Fritz J, Shamma S, Elhilali M, Klein D. 2003. Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat. Neurosci. 6:1216–23 [Google Scholar]
  54. Fu M, Zuo Y. 2011. Experience-dependent structural plasticity in the cortex. Trends Neurosci. 34:177–87 [Google Scholar]
  55. Gawne TJ, Kjaer TW, Hertz JA, Richmond BJ. 1996. Adjacent visual cortical complex cells share about 20% of their stimulus-related information. Cereb. Cortex 6:482–89 [Google Scholar]
  56. Gilbert CD, Wiesel TN. 1989. Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci. 9:2432–42 [Google Scholar]
  57. Graf AB, Kohn A, Jazayeri M, Movshon JA. 2011. Decoding the activity of neuronal populations in macaque primary visual cortex. Nat. Neurosci. 14:239–45 [Google Scholar]
  58. Guo W, Chambers AR, Darrow KN, Hancock KE, Shinn-Cunningham BG, Polley DB. 2012. Robustness of cortical topography across fields, laminae, anesthetic states, and neurophysiological signal types. J. Neurosci. 32:9159–72 [Google Scholar]
  59. Harris KD, Bartho P, Chadderton P, Curto C, de la Rocha J. et al. 2011. How do neurons work together? Lessons from auditory cortex. Hear Res. 271:37–53 [Google Scholar]
  60. Harvey CD, Coen P, Tank DW. 2012. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484:62–68 [Google Scholar]
  61. Heimel JA, Van Hooser SD, Nelson SB. 2005. Laminar organization of response properties in primary visual cortex of the gray squirrel (Sciurus carolinensis). J. Neurophysiol. 94:3538–54 [Google Scholar]
  62. Holtmaat A, Svoboda K. 2009. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10:647–58 [Google Scholar]
  63. Hong W, Luo L. 2014. Genetic control of wiring specificity in the fly olfactory system. Genetics 196:17–29 [Google Scholar]
  64. Horton JC, Adams DL. 2005. The cortical column: a structure without a function. Philos. Trans. R. Soc. B 360:837–62 [Google Scholar]
  65. Hromádka T, DeWeese MR, Zador AM. 2008. Sparse representation of sounds in the unanesthetized auditory cortex. PLOS Biol. 6:e16 [Google Scholar]
  66. Huang X, Elyada YM, Bosking WH, Walker T, Fitzpatrick D. 2014. Optogenetic assessment of horizontal interactions in primary visual cortex. J. Neurosci. 34:4976–90 [Google Scholar]
  67. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54 [Google Scholar]
  68. Hubel DH, Wiesel TN. 1965. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28:229–89 [Google Scholar]
  69. Hubel DH, Wiesel TN. 1968. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195:215–43 [Google Scholar]
  70. Issa JB, Haeffele BD, Agarwal A, Bergles DE, Young ED, Yue DT. 2014. Multiscale optical Ca2+ imaging of tonal organization in mouse auditory cortex. Neuron 83:944–59 [Google Scholar]
  71. Issa NP, Trepel C, Stryker MP. 2000. Spatial frequency maps in cat visual cortex. J. Neurosci. 20:8504–14 [Google Scholar]
  72. Jefferis GS, Marin EC, Stocker RF, Luo L. 2001. Target neuron prespecification in the olfactory map of Drosophila. Nature 414:204–8 [Google Scholar]
  73. Jia H, Rochefort NL, Chen X, Konnerth A. 2010. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464:1307–12 [Google Scholar]
  74. Jin J, Wang Y, Swadlow HA, Alonso JM. 2011. Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex. Nat. Neurosci. 14:232–38 [Google Scholar]
  75. Jin JZ, Weng C, Yeh CI, Gordon JA, Ruthazer ES. et al. 2008. On and off domains of geniculate afferents in cat primary visual cortex. Nat. Neurosci. 11:88–94 [Google Scholar]
  76. Kaas JH. 2008. The evolution of the complex sensory and motor systems of the human brain. Brain Res. Bull. 75:384–90 [Google Scholar]
  77. Kaas JH. 2011. The evolution of auditory cortex: the core areas. The Auditory Cortex JA Winer, CE Schreiner 407–27 New York: Springer [Google Scholar]
  78. Kaas JH. 2012. Evolution of columns, modules, and domains in the neocortex of primates. PNAS 109:Suppl. 110655–60 [Google Scholar]
  79. Kaas JH, Krubitzer LA, Chino YM, Langston AL, Polley EH, Blair N. 1990. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248:229–31 [Google Scholar]
  80. Kampa BM, Roth MM, Gobel W, Helmchen F. 2011. Representation of visual scenes by local neuronal populations in layer 2/3 of mouse visual cortex. Front. Neural Circuits 5:18 [Google Scholar]
  81. Kanold PO, Nelken I, Polley DB. 2014. Local versus global scales of organization in auditory cortex. Trends Neurosci. 37:502–10 [Google Scholar]
  82. Kara P, Boyd JD. 2009. A micro-architecture for binocular disparity and ocular dominance in visual cortex. Nature 458:627–31 [Google Scholar]
  83. Karlsson MP, Frank LM. 2009. Awake replay of remote experiences in the hippocampus. Nat. Neurosci. 12:913–18 [Google Scholar]
  84. Karmarkar UR, Dan Y. 2006. Experience-dependent plasticity in adult visual cortex. Neuron 52:577–85 [Google Scholar]
  85. Kay JN, De la Huerta I, Kim I-J, Zhang Y, Yamagata M. et al. 2011. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. J. Neurosci. 31:7753–62 [Google Scholar]
  86. Kerr JN, de Kock CP, Greenberg DS, Bruno RM, Sakmann B, Helmchen F. 2007. Spatial organization of neuronal population responses in layer 2/3 of rat barrel cortex. J. Neurosci. 27:13316–28 [Google Scholar]
  87. Kerr JN, Denk W. 2008. Imaging in vivo: watching the brain in action. Nat. Rev. Neurosci. 9:195–205 [Google Scholar]
  88. Kilgard MP, Merzenich MM. 1998. Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–18 [Google Scholar]
  89. Kisvarday ZF, Toth E, Rausch M, Eysel UT. 1997. Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cereb. Cortex 7:605–18 [Google Scholar]
  90. Ko H, Hofer SB, Pichler B, Buchanan KA, Sjöström PJ, Mrsic-Flogel TD. 2011. Functional specificity of local synaptic connections in neocortical networks. Nature 473:87–91 [Google Scholar]
  91. Komiyama T, Sato TR, O'Connor DH, Zhang YX, Huber D. et al. 2010. Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice. Nature 464:1182–96 [Google Scholar]
  92. LeVay S, McConnell SK. 1982. ON and OFF layers in the lateral geniculate nucleus of the mink. Nature 300:350–51 [Google Scholar]
  93. London M, Hausser M. 2005. Dendritic computation. Annu. Rev. Neurosci. 28:503–32 [Google Scholar]
  94. López-Muñoz F, Boya J, Alamo C. 2006. Neuron theory, the cornerstone of neuroscience, on the centenary of the Nobel Prize award to Santiago Ramón y Cajal. Brain Res. Bull. 70:391–405 [Google Scholar]
  95. Luo L, Callaway EM, Svoboda K. 2008. Genetic dissection of neural circuits. Neuron 57:634–60 [Google Scholar]
  96. Luo L, Flanagan JG. 2007. Development of continuous and discrete neural maps. Neuron 56:284–300 [Google Scholar]
  97. Malach R, Amir Y, Harel M, Grinvald A. 1993. Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. PNAS 90:10469–73 [Google Scholar]
  98. Malach R, Levy I, Hasson U. 2002. The topography of high-order human object areas. Trends Cogn. Sci. 6:176–84 [Google Scholar]
  99. Martin KA, Schroder S. 2013. Functional heterogeneity in neighboring neurons of cat primary visual cortex in response to both artificial and natural stimuli. J. Neurosci. 33:7325–44 [Google Scholar]
  100. Martinez LM, Alonso JM. 2001. Construction of complex receptive fields in cat primary visual cortex. Neuron 32:515–25 [Google Scholar]
  101. Martinez LM, Alonso JM, Reid RC, Hirsch JA. 2002. Laminar processing of stimulus orientation in cat visual cortex. J. Physiol. 540:321–33 [Google Scholar]
  102. Martinez LM, Wang Q, Reid RC, Pillai C, Alonso JM. et al. 2005. Receptive field structure varies with layer in the primary visual cortex. Nat. Neurosci. 8:372–79 [Google Scholar]
  103. McConnell SK, LeVay S. 1984. Segregation of on- and off-center afferents in mink visual cortex. PNAS 81:1590–93 [Google Scholar]
  104. McDermott JH, Schemitsch M, Simoncelli EP. 2013. Summary statistics in auditory perception. Nat. Neurosci. 16:493–98 [Google Scholar]
  105. Michel MM, Chen Y, Geisler WS, Seidemann E. 2013. An illusion predicted by V1 population activity implicates cortical topography in shape perception. Nat. Neurosci. 16:1477–83 [Google Scholar]
  106. Mitani A, Shimokouchi M, Itoh K, Nomura S, Kudo M, Mizuno N. 1985. Morphology and laminar organization of electrophysiologically identified neurons in the primary auditory cortex in the cat. J. Comp. Neurol. 235:430–47 [Google Scholar]
  107. Mitchell JF, Sundberg KA, Reynolds JH. 2009. Spatial attention decorrelates intrinsic activity fluctuations in macaque area V4. Neuron 63:879–88 [Google Scholar]
  108. Miyamichi K, Amat F, Moussavi F, Wang C, Wickersham I. et al. 2010. Cortical representations of olfactory input by trans-synaptic tracing. Nature 472:191–96 [Google Scholar]
  109. Mizrahi A, Shalev A, Nelken I. 2014. Single neuron and population coding of natural sounds in auditory cortex. Curr. Opin. Neurobiol. 24:103–10 [Google Scholar]
  110. Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A. et al. 1996. Visualizing an olfactory sensory map. Cell 87:675–86 [Google Scholar]
  111. Mooser F, Bosking WH, Fitzpatrick D. 2004. A morphological basis for orientation tuning in primary visual cortex. Nat. Neurosci. 7:872–79 [Google Scholar]
  112. Mountcastle VB. 1957. Modality and topographic properties of single neurons of cat's somatic sensory cortex. J. Neurophysiol. 20:408–34 [Google Scholar]
  113. Mrsic-Flogel TD, Hofer SB, Ohki K, Reid RC, Bonhoeffer T, Hubener M. 2007. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity. Neuron 54:961–72 [Google Scholar]
  114. Nauhaus I, Nielsen KJ, Disney AA, Callaway EM. 2012. Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex. Nat. Neurosci. 15:1683–90 [Google Scholar]
  115. Neafsey E, Bold E, Haas G, Hurley-Gius K, Quirk G. et al. 1986. The organization of the rat motor cortex: a microstimulation mapping study. Brain Res. Rev. 11:77–96 [Google Scholar]
  116. Nelken I. 2004. Processing of complex stimuli and natural scenes in the auditory cortex. Curr. Opin. Neurobiol. 14:474–80 [Google Scholar]
  117. Nelken I, Bizley JK, Nodal FR, Ahmed B, King AJ, Schnupp JW. 2008. Responses of auditory cortex to complex stimuli: functional organization revealed using intrinsic optical signals. J. Neurophysiol. 99:1928–41 [Google Scholar]
  118. Niell CM, Stryker MP. 2008. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28:7520–36 [Google Scholar]
  119. O'Keefe J, Burgess N, Donnett JG, Jeffery KJ, Maguire EA. 1998. Place cells, navigational accuracy, and the human hippocampus. Philos. Trans. R. Soc. B 353:1333–40 [Google Scholar]
  120. Oberlaender M, de Kock CP, Bruno RM, Ramirez A, Meyer HS. et al. 2012. Cell type–specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex. Cereb. Cortex 22:2375–91 [Google Scholar]
  121. Obermayer K, Blasdel GG. 1993. Geometry of orientation and ocular dominance columns in monkey striate cortex. J. Neurosci. 13:4114–29 [Google Scholar]
  122. Ohki K, Chung S, Ch'ng YH, Kara P, Reid RC. 2005. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433:597–603 [Google Scholar]
  123. Penfield W, Rasmussen T. 1950. The Cerebral Cortex of Man: A Clinical Study of Localization of Function New York: Macmillan
  124. Perin R, Berger TK, Markram H. 2011. A synaptic organizing principle for cortical neuronal groups. PNAS 108:5419–24 [Google Scholar]
  125. Peters AJ, Chen SX, Komiyama T. 2014. Emergence of reproducible spatiotemporal activity during motor learning. Nature 510:263–67 [Google Scholar]
  126. Pouget A, Dayan P, Zemel R. 2000. Information processing with population codes. Nat. Rev. Neurosci. 1:125–32 [Google Scholar]
  127. Rall W. 1995. The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall with Commentaries Cambridge, MA: MIT Press
  128. Read HL, Winer JA, Schreiner CE. 2002. Functional architecture of auditory cortex. Curr. Opin. Neurobiol. 12:433–40 [Google Scholar]
  129. Recanzone GA, Schreiner C, Merzenich MM. 1993. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13:87–103 [Google Scholar]
  130. Redish AD. 2001. The hippocampal debate: Are we asking the right questions?. Behav. Brain Res. 127:81–98 [Google Scholar]
  131. Reich DS, Mechler F, Victor JD. 2001. Independent and redundant information in nearby cortical neurons. Science 294:2566–68 [Google Scholar]
  132. Reid RC. 2012. From functional architecture to functional connectomics. Neuron 75:209–17 [Google Scholar]
  133. Renart A, de la Rocha J, Bartho P, Hollender L, Parga N. et al. 2010. The asynchronous state in cortical circuits. Science 327:587–90 [Google Scholar]
  134. Reyes AD. 2011. Synaptic short-term plasticity in auditory cortical circuits. Hearing Res. 279:60–66 [Google Scholar]
  135. Rochefort NL, Garaschuk O, Milos RI, Narushima M, Marandi N. et al. 2009. Sparsification of neuronal activity in the visual cortex at eye-opening. PNAS 106:15049–54 [Google Scholar]
  136. Romo R, Hernandez A, Zainos A, Salinas E. 2003. Correlated neuronal discharges that increase coding efficiency during perceptual discrimination. Neuron 38:649–57 [Google Scholar]
  137. Rothschild G, Cohen L, Mizrahi A, Nelken I. 2013. Elevated correlations in neuronal ensembles of mouse auditory cortex following parturition. J. Neurosci. 33:12851–61 [Google Scholar]
  138. Rothschild G, Nelken I, Mizrahi A. 2010. Functional organization and population dynamics in the mouse primary auditory cortex. Nat. Neurosci. 13:353–60 [Google Scholar]
  139. Sakata S, Harris KD. 2009. Laminar structure of spontaneous and sensory-evoked population activity in auditory cortex. Neuron 64:404–18 [Google Scholar]
  140. Salinas E, Abbott L. 1994. Vector reconstruction from firing rates. J. Comput. Neurosci. 1:89–107 [Google Scholar]
  141. Sato TR, Gray NW, Mainen ZF, Svoboda K. 2007. The functional microarchitecture of the mouse barrel cortex. PLOS Biol. 5:e189 [Google Scholar]
  142. Schieber MH. 2001. Constraints on somatotopic organization in the primary motor cortex. J. Neurophysiol. 86:2125–43 [Google Scholar]
  143. Schieber MH, Hibbard LS. 1993. How somatotopic is the motor cortex hand area?. Science 261:489–92 [Google Scholar]
  144. Schreiner CE, Mendelson JR, Sutter ML. 1992. Functional topography of cat primary auditory cortex: representation of tone intensity. Exp. Brain Res. 92:105–22 [Google Scholar]
  145. Schreiner CE, Polley DB. 2014. Auditory map plasticity: diversity in causes and consequences. Curr. Opin. Neurobiol. 24:143–56 [Google Scholar]
  146. Schreiner CE, Read HL, Sutter ML. 2000. Modular organization of frequency integration in primary auditory cortex. Annu. Rev. Neurosci. 23:501–29 [Google Scholar]
  147. Schreiner CE, Winer JA. 2007. Auditory cortex mapmaking: principles, projections, and plasticity. Neuron 56:356–65 [Google Scholar]
  148. Schuett S, Bonhoeffer T, Hübener M. 2002. Mapping retinotopic structure in mouse visual cortex with optical imaging. J. Neurosci. 22:6549–59 [Google Scholar]
  149. Seung HS, Sompolinsky H. 1993. Simple models for reading neuronal population codes. PNAS 90:10749–53 [Google Scholar]
  150. Shamir M. 2014. Emerging principles of population coding: in search for the neural code. Curr. Opin. Neurobiol. 25:140–48 [Google Scholar]
  151. Shamir M, Sompolinsky H. 2006. Implications of neuronal diversity on population coding. Neural Comput. 18:1951–86 [Google Scholar]
  152. Sheth BR, Sharma J, Rao SC, Sur M. 1996. Orientation maps of subjective contours in visual cortex. Science 274:2110–15 [Google Scholar]
  153. Sincich LC, Horton JC. 2005. The circuitry of V1 and V2: integration of color, form, and motion. Annu. Rev. Neurosci. 28:303–26 [Google Scholar]
  154. Sinden RR. 1994. DNA Structure and Function New York: Academic
  155. Smith MA, Kohn A. 2008. Spatial and temporal scales of neuronal correlation in primary visual cortex. J. Neurosci. 28:12591–603 [Google Scholar]
  156. Smith SL, Hausser M. 2010. Parallel processing of visual space by neighboring neurons in mouse visual cortex. Nat. Neurosci. 13:1144–49 [Google Scholar]
  157. Smith SL, Smith IT, Branco T, Häusser M. 2013. Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature 503:115–20 [Google Scholar]
  158. Sompolinsky H, Yoon H, Kang K, Shamir M. 2001. Population coding in neuronal systems with correlated noise. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64:051904 [Google Scholar]
  159. Stettler DD, Axel R. 2009. Representations of odor in the piriform cortex. Neuron 63:854–64 [Google Scholar]
  160. Stiebler I, Neulist R, Fichtel I, Ehret G. 1997. The auditory cortex of the house mouse: left-right differences, tonotopic organization and quantitative analysis of frequency representation. J. Comp. Physiol. A 181:559–71 [Google Scholar]
  161. Stryker MP, Zahs KR. 1983. On and off sublaminae in the lateral geniculate nucleus of the ferret. J. Neurosci. 3:1943–51 [Google Scholar]
  162. Sugimoto S, Sakurada M, Horikawa J, Taniguchi I. 1997. The columnar and layer-specific response properties of neurons in the primary auditory cortex of Mongolian gerbils. Hear Res. 112:175–85 [Google Scholar]
  163. Swindale NV. 2000. How many maps are there in visual cortex?. Cereb. Cortex 10:633–43 [Google Scholar]
  164. Theunissen FE, Elie JE. 2014. Neural processing of natural sounds. Nat. Rev. Neurosci. 15:355–66 [Google Scholar]
  165. Van Hooser SD, Roy A, Rhodes HJ, Culp JH, Fitzpatrick D. 2013. Transformation of receptive field properties from lateral geniculate nucleus to superficial V1 in the tree shrew. J. Neurosci. 33:11494–505 [Google Scholar]
  166. Wandell BA, Dumoulin SO, Brewer AA. 2007. Visual field maps in human cortex. Neuron 56:366–83 [Google Scholar]
  167. Wandell BA, Winawer J. 2011. Imaging retinotopic maps in the human brain. Vision Res. 51:718–37 [Google Scholar]
  168. Wilson MA, McNaughton BL. 1994. Reactivation of hippocampal ensemble memories during sleep. Science 265:676–79 [Google Scholar]
  169. Winkowski DE, Kanold PO. 2013. Laminar transformation of frequency organization in auditory cortex. J. Neurosci. 33:1498–508 [Google Scholar]
  170. Yaron A, Hershenhoren I, Nelken I. 2012. Sensitivity to complex statistical regularities in rat auditory cortex. Neuron 76:603–15 [Google Scholar]
  171. Yen S-C, Baker J, Gray CM. 2007. Heterogeneity in the responses of adjacent neurons to natural stimuli in cat striate cortex. J. Neurophysiol. 97:1326–41 [Google Scholar]
  172. Yoshimura Y, Dantzker JL, Callaway EM. 2005. Excitatory cortical neurons form fine-scale functional networks. Nature 433:868–73 [Google Scholar]
  173. Zahs KR, Stryker MP. 1988. Segregation of ON and OFF afferents to ferret visual cortex. J. Neurophysiol. 59:1410–29 [Google Scholar]
  174. Zohary E, Shadlen MN, Newsome WT. 1994. Correlated neuronal discharge rate and its implications for psychophysical performance. Nature 370:140–43 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error