1932

Abstract

Elucidating the roles of neuronal cell types for physiology and behavior is essential for understanding brain functions. Perturbation of neuron electrical activity can be used to probe the causal relationship between neuronal cell types and behavior. New genetically encoded neuron perturbation tools have been developed for remotely controlling neuron function using small molecules that activate engineered receptors that can be targeted to cell types using genetic methods. Here we describe recent progress for approaches using genetically engineered receptors that selectively interact with small molecules. Called “chemogenetics,” receptors with diverse cellular functions have been developed that facilitate the selective pharmacological control over a diverse range of cell-signaling processes, including electrical activity, for molecularly defined cell types. These tools have revealed remarkably specific behavioral physiological influences for molecularly defined cell types that are often intermingled with populations having different or even opposite functions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-071013-014048
2014-07-08
2024-05-25
Loading full text...

Full text loading...

/deliver/fulltext/neuro/37/1/annurev-neuro-071013-014048.html?itemId=/content/journals/10.1146/annurev-neuro-071013-014048&mimeType=html&fmt=ahah

Literature Cited

  1. Abdul-Ridha A, Lane JR, Sexton PM, Canals M, Christopoulos A. 2013. Allosteric modulation of a chemogenetically modified G protein–coupled receptor. Mol. Pharmacol. 83:521–30 [Google Scholar]
  2. Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K. 2009. Temporally precise in vivo control of intracellular signalling. Nature 458:1025–29 [Google Scholar]
  3. Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y. et al. 2009. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63:27–39 [Google Scholar]
  4. Allen JA, Roth BL. 2011. Strategies to discover unexpected targets for drugs active at G protein–coupled receptors. Annu. Rev. Pharmacol. Toxicol. 51:117–44 [Google Scholar]
  5. Allen JA, Yost JM, Setola V, Chen X, Sassano MF. et al. 2011. Discovery of β-arrestin-biased dopamine D2 ligands for probing signal transduction pathways essential for antipsychotic efficacy. Proc. Natl. Acad. Sci. USA 108:18488–93 [Google Scholar]
  6. Alvarez-Curto E, Prihandoko R, Tautermann CS, Zwier JM, Pediani JD. et al. 2011a. Developing chemical genetic approaches to explore G protein-coupled receptor function: validation of the use of a receptor activated solely by synthetic ligand (RASSL). Mol. Pharmacol. 80:1033–46 [Google Scholar]
  7. Alvarez-Curto E, Ward RJ, Pediani JD, Milligan G. 2011b. Ligand regulation of the quaternary organization of cell surface M3 muscarinic acetylcholine receptors analyzed by fluorescence resonance energy transfer (FRET) imaging and homogeneous time-resolved FRET. J. Biol. Chem. 285:23318–30 [Google Scholar]
  8. Arenkiel BR, Peca J, Davison IG, Feliciano C, Deisseroth K. et al. 2007. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54:205–18 [Google Scholar]
  9. Armbruster B, Roth B. 2005. Creation of designer biogenic amine receptors via directed molecular evolution. Neuropsychopharmacology 30:S265 [Google Scholar]
  10. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. 2007. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. USA 104:5163–68 [Google Scholar]
  11. Atasoy D, Betley JN, Su HH, Sternson SM. 2012. Deconstruction of a neural circuit for hunger. Nature 488:172–77 [Google Scholar]
  12. Beaulieu JM, Gainetdinov RR, Caron MG. 2009. Akt/GSK3 signaling in the action of psychotropic drugs. Annu. Rev. Pharmacol. Toxicol. 49:327–47 [Google Scholar]
  13. Beaulieu JM, Marion S, Rodriguiz RM, Medvedev IO, Sotnikova TD. et al. 2008. A β-arrestin 2 signaling complex mediates lithium action on behavior. Cell 132:125–36 [Google Scholar]
  14. Bender D, Holschbach M, Stocklin G. 1994. Synthesis of n.c.a. carbon-11 labelled clozapine and its major metabolite clozapine-N-oxide and comparison of their biodistribution in mice. Nucl. Med. Biol. 21:921–25 [Google Scholar]
  15. Bertrand D, Galzi JL, Devillers-Thiery A, Bertrand S, Changeux JP. 1993. Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal α7 nicotinic receptor. Proc. Natl. Acad. Sci. USA 90:6971–75 [Google Scholar]
  16. Bishop AC, Ubersax JA, Petsch DT, Matheos DP, Gray NS. et al. 2000. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407:395–401 [Google Scholar]
  17. Bodnar AL, Cortes-Burgos LA, Cook KK, Dinh DM, Groppi VE. et al. 2005. Discovery and structure-activity relationship of quinuclidine benzamides as agonists of α7 nicotinic acetylcholine receptors. J. Med. Chem. 48:905–8 [Google Scholar]
  18. Bohn LM, Lefkowitz RJ, Gainetdinov RR, Peppel K, Caron MG, Lin FT. 1999. Enhanced morphine analgesia in mice lacking β-arrestin 2. Science 286:2495–98 [Google Scholar]
  19. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. 2005. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8:1263–68 [Google Scholar]
  20. Brancaccio M, Maywood ES, Chesham JE, Loudon AS, Hastings MH. 2013. A Gq-Ca2+ axis controls circuit-level encoding of circadian time in the suprachiasmatic nucleus. Neuron 78:714–28 [Google Scholar]
  21. Breitinger HG, Villmann C, Becker K, Becker CM. 2001. Opposing effects of molecular volume and charge at the hyperekplexia site α1(P250) govern glycine receptor activation and desensitization. J. Biol. Chem. 276:29657–63 [Google Scholar]
  22. Callaway EM, Katz LC. 1993. Photostimulation using caged glutamate reveals functional circuitry in living brain slices. Proc. Natl. Acad. Sci. USA 90:7661–65 [Google Scholar]
  23. Carlezon WA Jr, Thome J, Olson VG, Lane-Ladd SB, Brodkin ES. et al. 1998. Regulation of cocaine reward by CREB. Science 282:2272–75 [Google Scholar]
  24. Chang WC, Ng JK, Nguyen T, Pellissier L, Claeysen S. et al. 2007. Modifying ligand-induced and constitutive signaling of the human 5-HT4 receptor. PLoS ONE 2:e1317 [Google Scholar]
  25. Chen X, Ye H, Kuruvilla R, Ramanan N, Scangos KW. et al. 2005. A chemical-genetic approach to studying neurotrophin signaling. Neuron 46:13–21 [Google Scholar]
  26. Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS. et al. 2013. Structural and molecular interrogation of intact biological systems. Nature 497:332–37 [Google Scholar]
  27. Conklin BR, Hsiao EC, Claeysen S, Dumuis A, Srinivasan S. et al. 2008. Engineering GPCR signaling pathways with RASSLs. Nat. Methods 5:673–78 [Google Scholar]
  28. Coward P, Wada HG, Falk MS, Chan SD, Meng F. et al. 1998. Controlling signaling with a specifically designed Gi-coupled receptor. Proc. Natl. Acad. Sci. USA 95:352–57 [Google Scholar]
  29. Crick F. 1999. The impact of molecular biology on neuroscience. Philos. Trans. R. Soc. B 354:2021–25 [Google Scholar]
  30. Crick FH. 1979. Thinking about the brain. Sci. Am. 241:219–32 [Google Scholar]
  31. Donato F, Rompani SB, Caroni P. 2013. Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504:272–76 [Google Scholar]
  32. Dong S, Rogan SC, Roth BL. 2010. Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. Nat. Protoc. 5:561–73 [Google Scholar]
  33. Ehrengruber MU, Doupnik CA, Xu Y, Garvey J, Jasek MC. et al. 1997. Activation of heteromeric G protein-gated inward rectifier K+ channels overexpressed by adenovirus gene transfer inhibits the excitability of hippocampal neurons. Proc. Natl. Acad. Sci. USA 94:7070–75 [Google Scholar]
  34. Eisele JL, Bertrand S, Galzi JL, Devillers-Thiery A, Changeux JP, Bertrand D. 1993. Chimaeric nicotinic-serotonergic receptor combines distinct ligand binding and channel specificities. Nature 366:479–83 [Google Scholar]
  35. Esposito MS, Capelli P, Arber S. 2014. Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature 508351–56
  36. Farrell MS, Pei Y, Wan Y, Yadav PN, Daigle TL. et al. 2013. A Gαs DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology 38:854–62 [Google Scholar]
  37. Farrell MS, Roth BL. 2013. Pharmacosynthetics: reimagining the pharmacogenetic approach. Brain Res. 1511:6–20 [Google Scholar]
  38. Ferguson SM, Eskenazi D, Ishikawa M, Wanat MJ, Phillips PE. et al. 2011. Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat. Neurosci. 14:22–24 [Google Scholar]
  39. Frazier SJ, Cohen BN, Lester HA. 2013. An engineered glutamate-gated chloride (GluCl) channel for sensitive, consistent neuronal silencing by ivermectin. J. Biol. Chem. 288:21029–42 [Google Scholar]
  40. Galzi JL, Devillers-Thiery A, Hussy N, Bertrand S, Changeux JP, Bertrand D. 1992. Mutations in the channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 359:500–5 [Google Scholar]
  41. Gao ZG, Duong HT, Sonina T, Kim SK, Van Rompaey P. et al. 2006. Orthogonal activation of the reengineered A3 adenosine receptor (neoceptor) using tailored nucleoside agonists. J. Med. Chem. 49:2689–702 [Google Scholar]
  42. Garner AR, Rowland DC, Hwang SY, Baumgaertel K, Roth BL. et al. 2012. Generation of a synthetic memory trace. Science 335:1513–16 [Google Scholar]
  43. Grutter T, de Carvalho LP, Dufresne V, Taly A, Edelstein SJ, Changeux JP. 2005. Molecular tuning of fast gating in pentameric ligand-gated ion channels. Proc. Natl. Acad. Sci. USA 102:18207–12 [Google Scholar]
  44. Guettier JM, Gautam D, Scarselli M, de Azua IR, Li JH. et al. 2009. A chemical-genetic approach to study G protein regulation of β cell function in vivo. Proc. Natl. Acad. Sci. USA 106:19197–202 [Google Scholar]
  45. Guler AD, Rainwater A, Parker JG, Jones GL, Argilli E. et al. 2012. Transient activation of specific neurons in mice by selective expression of the capsaicin receptor. Nat. Commun. 3:746 [Google Scholar]
  46. Gunthorpe MJ, Lummis SC. 2001. Conversion of the ion selectivity of the 5-HT3A receptor from cationic to anionic reveals a conserved feature of the ligand-gated ion channel superfamily. J. Biol. Chem. 276:10977–83 [Google Scholar]
  47. Hama H, Kurokawa H, Kawano H, Ando R, Shimogori T. et al. 2011. Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain. Nat. Neurosci. 14:1481–88 [Google Scholar]
  48. Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR. et al. 2010. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468:270–76 [Google Scholar]
  49. Hibbs RE, Gouaux E. 2011. Principles of activation and permeation in an anion-selective Cys-loop receptor. Nature 474:54–60 [Google Scholar]
  50. Hikosaka O, Wurtz RH. 1985. Modification of saccadic eye movements by GABA-related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. J. Neurophysiol. 53:266–91 [Google Scholar]
  51. Hsiao EC, Boudignon BM, Chang WC, Bencsik M, Peng J. et al. 2008. Osteoblast expression of an engineered Gs-coupled receptor dramatically increases bone mass. Proc. Natl. Acad. Sci. USA 105:1209–14 [Google Scholar]
  52. Hsiao EC, Nguyen TD, Ng JK, Scott MJ, Chang WC. et al. 2011. Constitutive Gs activation using a single-construct tetracycline-inducible expression system in embryonic stem cells and mice. Stem Cell Res. Ther. 2:11 [Google Scholar]
  53. Hwang YW, Miller DL. 1987. A mutation that alters the nucleotide specificity of elongation factor Tu, a GTP regulatory protein. J. Biol. Chem. 262:13081–85 [Google Scholar]
  54. Jacobson KA, Gao ZG, Chen A, Barak D, Kim SA. et al. 2001. Neoceptor concept based on molecular complementarity in GPCRs: a mutant adenosine A3 receptor with selectively enhanced affinity for amine-modified nucleosides. J. Med. Chem. 44:4125–36 [Google Scholar]
  55. Jacobson KA, Ohno M, Duong HT, Kim SK, Tchilibon S. et al. 2005. A neoceptor approach to unraveling microscopic interactions between the human A2A adenosine receptor and its agonists. Chem. Biol. 12:237–47 [Google Scholar]
  56. Jain S, Ruiz de Azua I, Lu H, White MF, Guettier JM, Wess J. 2013. Chronic activation of a designer Gq-coupled receptor improves β cell function. J. Clin. Investig. 123:1750–62 [Google Scholar]
  57. Jann MW, Lam YW, Chang WH. 1994. Rapid formation of clozapine in guinea-pigs and man following clozapine-N-oxide administration. Arch. Int. Pharmacodyn. Ther. 328:243–50 [Google Scholar]
  58. Jansen M, Bali M, Akabas MH. 2008. Modular design of Cys-loop ligand-gated ion channels: functional 5-HT3 and GABA Rho1 receptors lacking the large cytoplasmic M3M4 loop. J. Gen. Physiol. 131:137–46 [Google Scholar]
  59. Karpova AY, Tervo DG, Gray NW, Svoboda K. 2005. Rapid and reversible chemical inactivation of synaptic transmission in genetically targeted neurons. Neuron 48:727–35 [Google Scholar]
  60. Ke MT, Fujimoto S, Imai T. 2013. SeeDB: a simple and morphology-preserving optical clearing agent for neuronal circuit reconstruction. Nat. Neurosci. 16:1154–61 [Google Scholar]
  61. Kelley SP, Dunlop JI, Kirkness EF, Lambert JJ, Peters JA. 2003. A cytoplasmic region determines single-channel conductance in 5-HT3 receptors. Nature 424:321–24 [Google Scholar]
  62. Keramidas A, Moorhouse AJ, French CR, Schofield PR, Barry PH. 2000. M2 pore mutations convert the glycine receptor channel from being anion- to cation-selective. Biophys. J. 79:247–59 [Google Scholar]
  63. Kida S, Josselyn SA, Pena de Ortiz S, Kogan JH, Chevere I. et al. 2002. CREB required for the stability of new and reactivated fear memories. Nat. Neurosci. 5:348–55 [Google Scholar]
  64. Kokel D, Cheung CY, Mills R, Coutinho-Budd J, Huang L. et al. 2013. Photochemical activation of TRPA1 channels in neurons and animals. Nat. Chem. Biol. 9:257–63 [Google Scholar]
  65. Kong D, Tong Q, Ye C, Koda S, Fuller PM. et al. 2012. GABAergic RIP-Cre neurons in the arcuate nucleus selectively regulate energy expenditure. Cell 151:645–57 [Google Scholar]
  66. Kozorovitskiy Y, Saunders A, Johnson CA, Lowell BB, Sabatini BL. 2012. Recurrent network activity drives striatal synaptogenesis. Nature 485:646–50 [Google Scholar]
  67. Krashes M, Koda S, Ye CP, Rogan SC, Adams A. et al. 2011. Rapid, reversible activation of AgRP neurons drives feeding behavior. J. Clin. Investig. 121:1424–28 [Google Scholar]
  68. Krashes MJ, Shah BP, Madara JC, Olson DP, Strochlic DE. et al. 2014. An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507:238–42 [Google Scholar]
  69. Kristiansen K, Kroeze W, Willins D, Gelber E, Savage J. et al. 2000. A highly conserved aspartic acid (D155) anchors the terminal amine moiety of tryptamines and is involved in membrane targeting of the 5-HT2A serotonin receptor but does not participate in activation via a “salt-bridge disruption” mechanism. J. Pharmacol. Exp. Ther. 293:735–46 [Google Scholar]
  70. Lechner HA, Lein ES, Callaway EM. 2002. A genetic method for selective and quickly reversible silencing of mammalian neurons. J. Neurosci. 22:5287–90 [Google Scholar]
  71. Lerchner W, Xiao C, Nashmi R, Slimko EM, van Trigt L. et al. 2007. Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin-gated Cl- channel. Neuron 54:35–49 [Google Scholar]
  72. Li P, Slimko EM, Lester HA. 2002. Selective elimination of glutamate activation and introduction of fluorescent proteins into a Caenorhabditis elegans chloride channel. FEBS Lett. 528:77–82 [Google Scholar]
  73. Li X, Gutierrez DV, Hanson MG, Han J, Mark MD. et al. 2005. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl. Acad. Sci. USA 102:17816–21 [Google Scholar]
  74. Lin D, Boyle MP, Dollar P, Lee H, Lein ES. et al. 2011. Functional identification of an aggression locus in the mouse hypothalamus. Nature 470:221–26 [Google Scholar]
  75. Lin Q, Jiang F, Schultz PG, Gray NS. 2001. Design of allele-specific protein methyltransferase inhibitors. J. Am. Chem. Soc. 123:11608–13 [Google Scholar]
  76. Liu G, Gu B, He X-P, Joshi RB, Wackerle HD. et al. 2013. Transient inhibition of TrkB kinase after status epilepticus prevents development of temporal lobe epilepsy. Neuron 79:31–38 [Google Scholar]
  77. Loffler S, Korber J, Nubbemeyer U, Fehsel K. 2012. Comment on “Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition.”. Science 337:646 author reply 646 [Google Scholar]
  78. Lovett-Barron M, Kaifosh P, Kheirbek MA, Danielson N, Zaremba JD. et al. 2014. Dendritic inhibition in the hippocampus supports fear learning. Science 343:857–63 [Google Scholar]
  79. Lovett-Barron M, Turi GF, Kaifosh P, Lee PH, Bolze F. et al. 2012. Regulation of neuronal input transformations by tunable dendritic inhibition. Nat. Neurosci. 15:423–30 S1–S3 [Google Scholar]
  80. Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S. et al. 1999. β-arrestin-dependent formation of β2 adrenergic receptor-Src protein kinase complexes. Science 283:655–61 [Google Scholar]
  81. Lynagh T, Lynch JW. 2010. An improved ivermectin-activated chloride channel receptor for inhibiting electrical activity in defined neuronal populations. J. Biol. Chem. 285:14890–97 [Google Scholar]
  82. Magnus CJ, Lee PH, Atasoy D, Su HH, Looger LL, Sternson SM. 2011. Chemical and genetic engineering of selective ion channel-ligand interactions. Science 333:1292–96 [Google Scholar]
  83. McKellar QA, Midgley DM, Galbraith EA, Scott EW, Bradley A. 1992. Clinical and pharmacological properties of ivermectin in rabbits and guinea pigs. Vet. Rec. 130:71–73 [Google Scholar]
  84. Mueller KL, Hoon MA, Erlenbach I, Chandrashekar J, Zuker CS, Ryba NJ. 2005. The receptors and coding logic for bitter taste. Nature 434:225–29 [Google Scholar]
  85. Nadeau H, McKinney S, Anderson DJ, Lester HA. 2000. ROMK1 (Kir1.1) causes apoptosis and chronic silencing of hippocampal neurons. J. Neurophysiol. 84:1062–75 [Google Scholar]
  86. Nakajima K, Wess J. 2012. Design and functional characterization of a novel, arrestin-biased designer G protein-coupled receptor. Mol. Pharmacol. 82:575–82 [Google Scholar]
  87. Nawaratne V, Leach K, Suratman N, Loiacono RE, Felder CC. et al. 2008. New insights into the function of M4 muscarinic acetylcholine receptors gained using a novel allosteric modulator and a DREADD (designer receptor exclusively activated by a designer drug). Mol. Pharmacol. 74:1119–31 [Google Scholar]
  88. Parnaudeau S, O'Neill PK, Bolkan SS, Ward RD, Abbas AI. et al. 2013. Inhibition of mediodorsal thalamus disrupts thalamofrontal connectivity and cognition. Neuron 77:1151–62 [Google Scholar]
  89. Pisharath H. 2007. Validation of nitroreductase, a prodrug-activating enzyme, mediated cell death in embryonic zebrafish (Danio rerio). Comp. Med. 57:241–46 [Google Scholar]
  90. Pisharath H, Rhee JM, Swanson MA, Leach SD, Parsons MJ. 2007. Targeted ablation of β cells in the embryonic zebrafish pancreas using E. coli nitroreductase. Mech. Dev. 124:218–29 [Google Scholar]
  91. Pliakas AM, Carlson RR, Neve RL, Konradi C, Nestler EJ, Carlezon WA Jr. 2001. Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J. Neurosci. 21:7397–403 [Google Scholar]
  92. Ray RS, Corcoran AE, Brust RD, Kim JC, Richerson GB. et al. 2011. Impaired respiratory and body temperature control upon acute serotonergic neuron inhibition. Science 333:637–42 [Google Scholar]
  93. Ray RS, Corcoran AE, Brust RD, Soriano LP, Nattie EE, Dymecki SM. 2012. Egr2-neurons control the adult respiratory response to hypercapnia. Brain Res. 1511:115–25 [Google Scholar]
  94. Redfern CH, Coward P, Degtyarev MY, Lee EK, Kwa AT. et al. 1999. Conditional expression and signaling of a specifically designed Gi-coupled receptor in transgenic mice. Nat. Biotechnol. 17:165–69 [Google Scholar]
  95. Revah F, Bertrand D, Galzi JL, Devillers-Thiery A, Mulle C. et al. 1991. Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353:846–49 [Google Scholar]
  96. Rogan SC, Roth BL. 2011. Remote control of neuronal signaling. Pharmacol. Rev. 63:291–315 [Google Scholar]
  97. Sasaki K, Suzuki M, Mieda M, Tsujino N, Roth B, Sakurai T. 2011. Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS ONE 6:e20360 [Google Scholar]
  98. Schmidt C, Li B, Bloodworth L, Erlenbach I, Zeng FY, Wess J. 2003. Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast. Identification of point mutations that “silence” a constitutively active mutant M3 receptor and greatly impair receptor/G protein coupling. J. Biol. Chem. 278:30248–60 [Google Scholar]
  99. Slimko EM, McKinney S, Anderson DJ, Davidson N, Lester HA. 2002. Selective electrical silencing of mammalian neurons in vitro by the use of invertebrate ligand-gated chloride channels. J. Neurosci. 22:7373–79 [Google Scholar]
  100. Small KM, Brown KM, Forbes SL, Liggett SB. 2001. Modification of the β 2-adrenergic receptor to engineer a receptor-effector complex for gene therapy. J. Biol. Chem. 276:31596–601 [Google Scholar]
  101. Stanley BG, Ha LH, Spears LC, Dee MG 2nd. 1993. Lateral hypothalamic injections of glutamate, kainic acid, D,L-α-amino-3-hydroxy-5-methyl-isoxazole propionic acid or N-methyl-D-aspartic acid rapidly elicit intense transient eating in rats. Brain Res. 613:88–95 [Google Scholar]
  102. Strader CD, Gaffney T, Sugg EE, Candelore MR, Keys R. et al. 1991. Allele-specific activation of genetically engineered receptors. J. Biol. Chem. 266:5–8 [Google Scholar]
  103. Strobel SA. 1998. Ribozyme chemogenetics. Biopolymers 48:65–81 [Google Scholar]
  104. Sweger EJ, Casper KB, Scearce-Levie K, Conklin BR, McCarthy KD. 2007. Development of hydrocephalus in mice expressing the Gi-coupled GPCR Ro1 RASSL receptor in astrocytes. J. Neurosci. 27:2309–17 [Google Scholar]
  105. Temburni MK, Blitzblau RC, Jacob MH. 2000. Receptor targeting and heterogeneity at interneuronal nicotinic cholinergic synapses in vivo. J. Physiol. 525:Pt. 121–29 [Google Scholar]
  106. Tian L, Yang Y, Wysocki LM, Arnold AC, Hu A. et al. 2012. Selective esterase-ester pair for targeting small molecules with cellular specificity. Proc. Natl. Acad. Sci. USA 109:4756–61 [Google Scholar]
  107. Ultanir SK, Hertz NT, Li G, Ge WP, Burlingame AL. et al. 2012. Chemical genetic identification of NDR1/2 kinase substrates AAK1 and Rabin8 uncovers their roles in dendrite arborization and spine development. Neuron 73:1127–42 [Google Scholar]
  108. Vrontou S, Wong AM, Rau KK, Koerber HR, Anderson DJ. 2013. Genetic identification of C fibres that detect massage-like stroking of hairy skin in vivo. Nature 493:669–73 [Google Scholar]
  109. Walker DP, Wishka DG, Piotrowski DW, Jia S, Reitz SC. et al. 2006. Design, synthesis, structure-activity relationship, and in vivo activity of azabicyclic aryl amides as α7 nicotinic acetylcholine receptor agonists. Bioorg. Med. Chem. 14:8219–48 [Google Scholar]
  110. Wall NR, Wickersham IR, Cetin A, De La Parra M, Callaway EM. 2010. Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proc. Natl. Acad. Sci. USA 107:21848–53 [Google Scholar]
  111. Westkaemper R, Glennon R, Hyde E, Choudhary M, Khan N, Roth B. 1999. Engineering in a region of bulk tolerance into the 5-HT2A receptor. Eur. J. Med. Chem. 34:441–47 [Google Scholar]
  112. Wulff P, Goetz T, Leppa E, Linden AM, Renzi M. et al. 2007. From synapse to behavior: rapid modulation of defined neuronal types with engineered GABAA receptors. Nat. Neurosci. 10:923–29 [Google Scholar]
  113. Xu J, Zhu Y, Heinemann SF. 2006. Identification of sequence motifs that target neuronal nicotinic receptors to dendrites and axons. J. Neurosci. 26:9780–93 [Google Scholar]
  114. Yagi H, Tan W, Dillenburg-Pilla P, Armando S, Amornphimoltham P. et al. 2011. A synthetic biology approach reveals a CXCR4-G13-Rho signaling axis driving transendothelial migration of metastatic breast cancer cells. Sci. Signal. 4:ra60 [Google Scholar]
  115. Zemelman BV, Lee GA, Ng M, Miesenbock G. 2002. Selective photostimulation of genetically chARGed neurons. Neuron 33:15–22 [Google Scholar]
  116. Zemelman BV, Nesnas N, Lee GA, Miesenbock G. 2003. Photochemical gating of heterologous ion channels: remote control over genetically designated populations of neurons. Proc. Natl. Acad. Sci. USA 100:1352–57 [Google Scholar]
  117. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K. et al. 2007. Multimodal fast optical interrogation of neural circuitry. Nature 446:633–39 [Google Scholar]
  118. Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I. et al. 2003. The receptors for mammalian sweet and umami taste. Cell 115:255–66 [Google Scholar]
/content/journals/10.1146/annurev-neuro-071013-014048
Loading
/content/journals/10.1146/annurev-neuro-071013-014048
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error