Inhibitory neurons dominate the intrinsic circuits in the visual thalamus. Interneurons in the lateral geniculate nucleus innervate relay cells and each other densely to provide powerful inhibition. The visual sector of the overlying thalamic reticular nucleus receives input from relay cells and supplies feedback inhibition to them in return. Together, these two inhibitory circuits influence all information transmitted from the retina to the primary visual cortex. By contrast, relay cells make few local connections. This review explores the role of thalamic inhibition from the dual perspectives of feature detection and information theory. For example, we describe how inhibition sharpens tuning for spatial and temporal features of the stimulus and how it might enhance image perception. We also discuss how inhibitory circuits help to reduce redundancy in signals sent downstream and, at the same time, are adapted to maximize the amount of information conveyed to the cortex.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Acuna-Goycolea C, Brenowitz SD, Regehr WG. 2008. Active dendritic conductances dynamically regulate GABA release from thalamic interneurons. Neuron 57:420–31 [Google Scholar]
  2. Alitto HJ, Usrey WM. 2005. Dynamic properties of thalamic neurons for vision. Prog. Brain Res. 149:83–90 [Google Scholar]
  3. Alitto HJ, Usrey WM. 2008. Origin and dynamics of extraclassical suppression in the lateral geniculate nucleus of the macaque monkey. Neuron 57:135–46 [Google Scholar]
  4. Alitto HJ, Weyand TG, Usrey WM. 2005. Distinct properties of stimulus-evoked bursts in the lateral geniculate nucleus. J. Neurosci. 25:514–23 [Google Scholar]
  5. Azouz R, Gray CM, Nowak LG, McCormick DA. 1997. Physiological properties of inhibitory interneurons in cat striate cortex. Cereb. Cortex 7:534–45 [Google Scholar]
  6. Babadi B, Casti A, Xiao Y, Kaplan E, Paninski L. 2010. A generalized linear model of the impact of direct and indirect inputs to the lateral geniculate nucleus. J. Vis. 10:22 [Google Scholar]
  7. Barlow HB. 1961. The coding of sensory messages. Current Problems in Animal Behaviour WH Thorpe, OL Zangwill 330–60 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  8. Barlow HB. 1981. Critical limiting factors in the design of the eye and visual cortex. Proc. R. Soc. B 212:1–34 [Google Scholar]
  9. Barlow HB, Fitzhugh R, Kuffler SW. 1957. Dark adaptation, absolute threshold and Purkinje shift in single units of the cat's retina. J. Physiol. 137:327–37 [Google Scholar]
  10. Bernander O, Douglas RJ, Martin KA, Koch C. 1991. Synaptic background activity influences spatiotemporal integration in single pyramidal cells. PNAS 88:11569–73 [Google Scholar]
  11. Bickford ME, Carden WB, Patel NC. 1999. Two types of interneurons in the cat visual thalamus are distinguished by morphology, synaptic connections, and nitric oxide synthase content. J. Comp. Neurol. 413:83–100 [Google Scholar]
  12. Bickford ME, Wei H, Eisenback MA, Chomsung RD, Slusarczyk AS, Dankowsi AB. 2008. Synaptic organization of thalamocortical axon collaterals in the perigeniculate nucleus and dorsal lateral geniculate nucleus. J. Comp. Neurol. 508:264–85 [Google Scholar]
  13. Binzegger T, Douglas RJ, Martin KA. 2004. A quantitative map of the circuit of cat primary visual cortex. J. Neurosci. 24:8441–53 [Google Scholar]
  14. Blasdel GG, Fitzpatrick D. 1984. Physiological organization of layer 4 in macaque striate cortex. J. Neurosci. 4:880–95 [Google Scholar]
  15. Blitz DM, Regehr WG. 2005. Timing and specificity of feed-forward inhibition within the LGN. Neuron 45:917–28 [Google Scholar]
  16. Bonin V, Histed MH, Yurgenson S, Reid RC. 2011. Local diversity and fine-scale organization of receptive fields in mouse visual cortex. J. Neurosci. 31:18506–21 [Google Scholar]
  17. Bonin V, Mante V, Carandini M. 2005. The suppressive field of neurons in lateral geniculate nucleus. J. Neurosci. 25:10844–56 [Google Scholar]
  18. Borg-Graham LJ, Monier C, Fregnac Y. 1998. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393:369–73 [Google Scholar]
  19. Brickley SG, Mody I. 2012. Extrasynaptic GABAA receptors: their function in the CNS and implications for disease. Neuron 73:23–34 [Google Scholar]
  20. Bright DP, Aller MI, Brickley SG. 2007. Synaptic release generates a tonic GABAA receptor-mediated conductance that modulates burst precision in thalamic relay neurons. J. Neurosci. 27:2560–69 [Google Scholar]
  21. Bullier J, Norton TT. 1979. Comparison of receptive-field properties of X and Y ganglion cells with X and Y lateral geniculate cells in the cat. J. Neurophysiol. 42:274–91 [Google Scholar]
  22. Butts DA, Weng C, Jin J, Alonso JM, Paninski L. 2011. Temporal precision in the visual pathway through the interplay of excitation and stimulus-driven suppression. J. Neurosci. 31:11313–27 [Google Scholar]
  23. Carandini M, Horton JC, Sincich LC. 2007. Thalamic filtering of retinal spike trains by postsynaptic summation. J. Vis. 7:201–11 [Google Scholar]
  24. Cardin JA, Palmer LA, Contreras D. 2007. Stimulus feature selectivity in excitatory and inhibitory neurons in primary visual cortex. J. Neurosci. 27:10333–44 [Google Scholar]
  25. Casale AE, McCormick DA. 2011. Active action potential propagation but not initiation in thalamic interneuron dendrites. J. Neurosci. 31:18289–302 [Google Scholar]
  26. Casti A, Hayot F, Xiao Y, Kaplan E. 2008. A simple model of retina-LGN transmission. J. Comput. Neurosci. 24:235–52 [Google Scholar]
  27. Chandler DM, Field DJ. 2007. Estimates of the information content and dimensionality of natural scenes from proximity distributions. J. Opt. Soc. Am. A 24:922–41 [Google Scholar]
  28. Chen C, Regehr WG. 2000. Developmental remodeling of the retinogeniculate synapse. Neuron 28:955–66 [Google Scholar]
  29. Chow K, Blum JS, Blum RA. 1950. Cell ratios in the thalamo-cortical visual system of Macaca mulatta. J. Comp. Neurol. 92:227–39 [Google Scholar]
  30. Cope DW, Hughes SW, Crunelli V. 2005. GABAA receptor-mediated tonic inhibition in thalamic neurons. J. Neurosci. 25:11553–63 [Google Scholar]
  31. Cox CL, Zhou Q, Sherman SM. 1998. Glutamate locally activates dendritic outputs of thalamic interneurons. Nature 394:478–82 [Google Scholar]
  32. Crandall SR, Cox CL. 2012. Local dendrodendritic inhibition regulates fast synaptic transmission in visual thalamus. J. Neurosci. 32:2513–22 [Google Scholar]
  33. Crick F. 1984. Function of the thalamic reticular complex: the searchlight hypothesis. PNAS 81:4586–90 [Google Scholar]
  34. Crunelli V, Haby M, Jassik-Gerschenfeld D, Leresche N, Pirchio M. 1988. Cl- and K+-dependent inhibitory postsynaptic potentials evoked by interneurones of the rat lateral geniculate nucleus. J. Physiol. 399:153–76 [Google Scholar]
  35. Cucchiaro JB, Uhlrich DJ, Sherman SM. 1991. Electron-microscopic analysis of synaptic input from the perigeniculate nucleus to the A-laminae of the lateral geniculate nucleus in cats. J. Comp. Neurol. 310:316–36 [Google Scholar]
  36. Dan Y, Atick JJ, Reid RC. 1996. Efficient coding of natural scenes in the lateral geniculate nucleus: experimental test of a computational theory. J. Neurosci. 16:3351–62 [Google Scholar]
  37. Dankowski A, Bickford ME. 2003. Inhibitory circuitry involving Y cells and Y retinal terminals in the C laminae of the cat dorsal lateral geniculate nucleus. J. Comp. Neurol. 460:368–79 [Google Scholar]
  38. Datskovskaia A, Carden WB, Bickford ME. 2001. Y retinal terminals contact interneurons in the cat dorsal lateral geniculate nucleus. J. Comp. Neurol. 430:85–100 [Google Scholar]
  39. DeFelipe J, López-Cruz PL, Benavides-Piccione R, Bielza C, Larrañaga P. et al. 2013. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat. Rev. Neurosci. 14:202–16 [Google Scholar]
  40. Denning KS, Reinagel P. 2005. Visual control of burst priming in the anesthetized lateral geniculate nucleus. J. Neurosci. 25:3531–38 [Google Scholar]
  41. Dubin MW, Cleland BG. 1977. Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat. J. Neurophysiol. 40:410–27 [Google Scholar]
  42. Eglen SJ, Diggle PJ, Troy JB. 2005. Homotypic constraints dominate positioning of on- and off-center beta retinal ganglion cells. Vis. Neurosci. 22:859–71 [Google Scholar]
  43. Enroth-Cugell C, Robson JG. 1966. The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. 187:517–52 [Google Scholar]
  44. Ferster D. 1986. Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex. J. Neurosci. 6:1284–301 [Google Scholar]
  45. Ferster D, Chung S, Wheat H. 1996. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 380:249–52 [Google Scholar]
  46. Field DJ. 1987. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4:2379–94 [Google Scholar]
  47. Fitzpatrick D, Penny GR, Schmechel DE. 1984. Glutamic acid decarboxylase-immunoreactive neurons and terminals in the lateral geniculate nucleus of the cat. J. Neurosci. 4:1809–29 [Google Scholar]
  48. Frishman LJ, Levine MW. 1983. Statistics of the maintained discharge of cat retinal ganglion cells. J. Physiol. 339:475–94 [Google Scholar]
  49. Gilbert CD. 1977. Laminar differences in receptive field properties of cells in cat primary visual cortex. J. Physiol. 268:391–421 [Google Scholar]
  50. Gilbert CD, Wiesel TN. 1979. Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature 280:120–25 [Google Scholar]
  51. Govindaiah G, Cox CL. 2006. Metabotropic glutamate receptors differentially regulate GABAergic inhibition in thalamus. J. Neurosci. 26:13443–53 [Google Scholar]
  52. Granseth B, Lindstrom S. 2003. Unitary EPSCs of corticogeniculate fibers in the rat dorsal lateral geniculate nucleus in vitro. J. Neurophysiol. 89:2952–60 [Google Scholar]
  53. Guillery RW. 1969a. The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat. Z. Zellforsch. Mikrosk. Anat. 96:1–38 [Google Scholar]
  54. Guillery RW. 1969b. A quantitative study of synaptic interconnections in the dorsal lateral geniculate nucleus of the cat. Z. Zellforsch. Mikrosk. Anat. 96:39–48 [Google Scholar]
  55. Haider B, Krause MR, Duque A, Yu Y, Touryan J. et al. 2010. Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation. Neuron 65:107–21 [Google Scholar]
  56. Hall SE, Mitchell DE. 1991. Grating acuity of cats measured with detection and discrimination tasks. Behav. Brain Res. 44:1–9 [Google Scholar]
  57. Hamos JE, Van Horn SC, Raczkowski D, Sherman SM. 1987. Synaptic circuits involving an individual retinogeniculate axon in the cat. J. Comp. Neurol. 259:165–92 [Google Scholar]
  58. Hamos JE, Van Horn SC, Raczkowski D, Uhlrich DJ, Sherman SM. 1985. Synaptic connectivity of a local circuit neurone in lateral geniculate nucleus of the cat. Nature 317:618–21 [Google Scholar]
  59. Hangya B, Pi HJ, Kvitsiani D, Ranade SP, Kepecs A. 2014. From circuit motifs to computations: mapping the behavioral repertoire of cortical interneurons. Curr. Opin. Neurobiol. 26:117–24 [Google Scholar]
  60. Hirsch JA. 2003. Synaptic physiology and receptive field structure in the early visual pathway of the cat. Cereb. Cortex 13:63–69 [Google Scholar]
  61. Hirsch JA, Alonso JM, Reid RC, Martinez LM. 1998. Synaptic integration in striate cortical simple cells. J. Neurosci. 18:9517–28 [Google Scholar]
  62. Hirsch JA, Martinez LM. 2006a. Circuits that build visual cortical receptive fields. Trends Neurosci. 29:30–39 [Google Scholar]
  63. Hirsch JA, Martinez LM. 2006b. Laminar processing in the visual cortical column. Curr. Opin. Neurobiol. 16:377–84 [Google Scholar]
  64. Hirsch JA, Martinez LM, Alonso JM, Desai K, Pillai C, Pierre C. 2002. Synaptic physiology of the flow of information in the cat's visual cortex in vivo. J. Physiol. 540:335–50 [Google Scholar]
  65. Hirsch JA, Martinez LM, Pillai C, Alonso JM, Wang Q, Sommer FT. 2003. Functionally distinct inhibitory neurons at the first stage of visual cortical processing. Nat. Neurosci. 6:1300–8 [Google Scholar]
  66. Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500–44 [Google Scholar]
  67. Hubel DH. 1960. Single unit activity in lateral geniculate body and optic tract of unrestrained cats. J. Physiol. 150:91–104 [Google Scholar]
  68. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54 [Google Scholar]
  69. Hubel DH, Wiesel TN. 1968. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195:215–43 [Google Scholar]
  70. Huguenard J, Prince D. 1992. A novel T-type current underlies prolonged Ca2+-dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J. Neurosci. 12:3804–17 [Google Scholar]
  71. Humphrey AL, Murthy A. 1999. Cell types and response timings in the medial interlaminar nucleus and C-layers of the cat lateral geniculate nucleus. Vis. Neurosci. 16:513–25 [Google Scholar]
  72. Ide LS. 1982. The fine structure of the perigeniculate nucleus in the cat. J. Comp. Neurol. 210:317–34 [Google Scholar]
  73. Jahnsen H, Llinas R. 1984. Electrophysiological properties of guinea-pig thalamic neurones: an in vitro study. J. Physiol. 349:205–26 [Google Scholar]
  74. Jia F, Yue M, Chandra D, Homanics GE, Goldstein PA, Harrison NL. 2008. Isoflurane is a potent modulator of extrasynaptic GABAA receptors in the thalamus. J. Pharmacol. Exp. Ther. 324:1127–35 [Google Scholar]
  75. Jin J, Wang Y, Swadlow HA, Alonso JM. 2011. Population receptive fields of ON and OFF thalamic inputs to an orientation column in visual cortex. Nat. Neurosci. 14:232–38 [Google Scholar]
  76. Jones HE, Sillito AM. 1994. The length-response properties of cells in the feline perigeniculate nucleus. Eur. J. Neurosci. 6:1199–204 [Google Scholar]
  77. Kaplan E, Purpura K, Shapley RM. 1987. Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. J. Physiol. 391:267–88 [Google Scholar]
  78. Kerlin AM, Andermann ML, Berezovskii VK, Reid RC. 2010. Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67:858–71 [Google Scholar]
  79. Koepsell K, Wang X, Vaingankar V, Wei Y, Wang Q. et al. 2009. Retinal oscillations carry visual information to cortex. Front. Syst. Neurosci. 3:4 [Google Scholar]
  80. Kuffler SW. 1953. Discharge patterns and functional organization of the mammalian retina. J. Neurophysiol. 16:37–68 [Google Scholar]
  81. Kuhlman SJ, Tring E, Trachtenberg JT. 2011. Fast-spiking interneurons have an initial orientation bias that is lost with vision. Nat. Neurosci. 14:1121–23 [Google Scholar]
  82. Lam YW, Sherman SM. 2011. Functional organization of the thalamic input to the thalamic reticular nucleus. J. Neurosci. 31:6791–99 [Google Scholar]
  83. Landisman CE, Long MA, Beierlein M, Deans MR, Paul DL, Connors BW. 2002. Electrical synapses in the thalamic reticular nucleus. J. Neurosci. 22:1002–9 [Google Scholar]
  84. Lee S-H, Kwan AC, Zhang S, Phoumthipphavong V, Flannery JG. et al. 2012. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488:379–83 [Google Scholar]
  85. Lesica NA, Stanley GB. 2004. Encoding of natural scene movies by tonic and burst spikes in the lateral geniculate nucleus. J. Neurosci. 24:10731–40 [Google Scholar]
  86. Lesica NA, Weng C, Jin J, Yeh CI, Alonso JM, Stanley GB. 2006. Dynamic encoding of natural luminance sequences by LGN bursts. PLOS Biol. 4:e209 [Google Scholar]
  87. Levick WR, Cleland BG, Dubin MW. 1972. Lateral geniculate neurons of cat: retinal inputs and physiology. Invest. Ophthalmol. 11:302–11 [Google Scholar]
  88. Lien AD, Scanziani M. 2013. Tuned thalamic excitation is amplified by visual cortical circuits. Nat. Neurosci. 16:1315–23 [Google Scholar]
  89. Liu BH, Li P, Sun YJ, Li YT, Zhang LI, Tao HW. 2009. Intervening inhibition underlies simple-cell receptive field structure in visual cortex. Nat. Neurosci. 13:89–96 [Google Scholar]
  90. Long MA, Landisman CE, Connors BW. 2004. Small clusters of electrically coupled neurons generate synchronous rhythms in the thalamic reticular nucleus. J. Neurosci. 24:341–49 [Google Scholar]
  91. Lovett-Barron M, Losonczy A. 2014. Behavioral consequences of GABAergic neuronal diversity. Curr. Opin. Neurobiol. 26:27–33 [Google Scholar]
  92. Madarasz M, Gerle J, Hajdu F, Somogyi G, Tombol T. 1978. Quantitative histological studies on the lateral geniculate nucleus in the cat. II. Cell numbers and densities in the several layers. J. Hirnforsch. 19:159–64 [Google Scholar]
  93. Marr D, Hildreth E. 1980. Theory of edge detection. Proc. R. Soc. B 207:187–217 [Google Scholar]
  94. Martinez LM, Alonso JM, Reid RC, Hirsch JA. 2002. Laminar processing of stimulus orientation in cat visual cortex. J. Physiol. 540:321–33 [Google Scholar]
  95. Martinez LM, Molano-Mazon M, Wang X, Sommer FT, Hirsch JA. 2014. Statistical wiring of thalamic receptive fields optimizes spatial sampling of the retinal image. Neuron 81:943–56 [Google Scholar]
  96. Martinez LM, Wang Q, Reid RC, Pillai C, Alonso JM. et al. 2005. Receptive field structure varies with layer in the primary visual cortex. Nat. Neurosci. 8:372–79 [Google Scholar]
  97. Mastronarde DN. 1987. Two classes of single-input X-cells in cat lateral geniculate nucleus. I. Receptive-field properties and classification of cells. J. Neurophysiol. 57:357–80 [Google Scholar]
  98. Mastronarde DN, Humphrey AL, Saul AB. 1991. Lagged Y cells in the cat lateral geniculate nucleus. Vis. Neurosci. 7:191–200 [Google Scholar]
  99. McAlonan K, Cavanaugh J, Wurtz RH. 2006. Attentional modulation of thalamic reticular neurons. J. Neurosci. 26:4444–50 [Google Scholar]
  100. McAlonan K, Cavanaugh J, Wurtz RH. 2008. Guarding the gateway to cortex with attention in visual thalamus. Nature 456:391–94 [Google Scholar]
  101. Montero VM. 1986. Localization of gamma-aminobutyric acid (GABA) in type 3 cells and demonstration of their source to F2 terminals in the cat lateral geniculate nucleus: a Golgi-electron-microscopic GABA-immunocytochemical study. J. Comp. Neurol. 254:228–45 [Google Scholar]
  102. Montero VM. 1987. Ultrastructural identification of synaptic terminals from the axon of type 3 interneurons in the cat lateral geniculate nucleus. J. Comp. Neurol. 264:268–83 [Google Scholar]
  103. Niell CM, Stryker MP. 2008. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28:7520–36 [Google Scholar]
  104. Niell CM, Stryker MP. 2010. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65:472–79 [Google Scholar]
  105. Nienborg H, Hasenstaub A, Nauhaus I, Taniguchi H, Huang ZJ, Callaway EM. 2013. Contrast dependence and differential contributions from somatostatin- and parvalbumin-expressing neurons to spatial integration in mouse V1. J. Neurosci. 33:11145–54 [Google Scholar]
  106. Ohara PT, Lieberman AR. 1993. Some aspects of the synaptic circuitry underlying inhibition in the ventrobasal thalamus. J. Neurocytol. 22:815–25 [Google Scholar]
  107. Olshausen BA, Field DJ. 1996. Natural image statistics and efficient coding. Network 7:333–39 [Google Scholar]
  108. Pasik P, Pasik T, Hámori J. 1976. Synapses between interneurons in the lateral geniculate nucleus of monkeys. Exp. Brain Res. 25:1–13 [Google Scholar]
  109. Peters A, Payne BR. 1993. Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb. Cortex 3:69–78 [Google Scholar]
  110. Pfeffer CK, Xue M, He M, Huang ZJ, Scanziani M. 2013. Inhibition of inhibition in visual cortex: the logic of connections between molecularly distinct interneurons. Nat. Neurosci. 16:1068–76 [Google Scholar]
  111. Pressler RT, Regehr WG. 2013. Metabotropic glutamate receptors drive global persistent inhibition in the visual thalamus. J. Neurosci. 33:2494–506 [Google Scholar]
  112. Reid RC, Alonso JM. 1995. Specificity of monosynaptic connections from thalamus to visual cortex. Nature 378:281–84 [Google Scholar]
  113. Ruderman DL, Bialek W. 1992. Seeing beyond the Nyquist limit. Neural Comput. 4:682–90 [Google Scholar]
  114. Runyan CA, Schummers J, Van Wart A, Kuhlman SJ, Wilson NR. et al. 2010. Response features of parvalbumin-expressing interneurons suggest precise roles for subtypes of inhibition in visual cortex. Neuron 67:847–57 [Google Scholar]
  115. Sanchez-Vives MV, Bal T, McCormick DA. 1997. Inhibitory interactions between perigeniculate GABAergic neurons. J. Neurosci. 17:8894–908 [Google Scholar]
  116. Sanderson KJ. 1971. Visual field projection columns and magnification factors in the lateral geniculate nucleus of the cat. Exp. Brain Res. 13:159–77 [Google Scholar]
  117. Sanderson KJ, Bishop PO, Darian-Smith I. 1971. The properties of the binocular receptive fields of lateral geniculate neurons. Exp. Brain Res. 13:178–207 [Google Scholar]
  118. Saul AB, Humphrey AL. 1990. Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. J. Neurophysiol. 64:206–24 [Google Scholar]
  119. Seabrook TA, Krahe TE, Govindaiah G, Guido W. 2013. Interneurons in the mouse visual thalamus maintain a high degree of retinal convergence throughout postnatal development. Neural Dev. 8:24 [Google Scholar]
  120. Shapley RM, Victor JD. 1980. The effect of contrast on the non-linear response of the Y cell. J. Physiol. 302:535–47 [Google Scholar]
  121. Shapley RM, Victor JD. 1981. How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. J. Physiol. 318:161–79 [Google Scholar]
  122. Sherman SM. 2001. Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci. 24:122–26 [Google Scholar]
  123. Sherman SM. 2004. Interneurons and triadic circuitry of the thalamus. Trends Neurosci. 27:670–75 [Google Scholar]
  124. Sillito AM, Jones HE. 2008. The role of the thalamic reticular nucleus in visual processing. Thalamus Related Syst. 4:1–12 [Google Scholar]
  125. Simoncelli EP, Olshausen BA. 2001. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24:1193–216 [Google Scholar]
  126. Sincich LC, Adams DL, Economides JR, Horton JC. 2007. Transmission of spike trains at the retinogeniculate synapse. J. Neurosci. 27:2683–92 [Google Scholar]
  127. Sincich LC, Horton JC, Sharpee TO. 2009. Preserving information in neural transmission. J. Neurosci. 29:6207–16 [Google Scholar]
  128. Smith SL, Hausser M. 2010. Parallel processing of visual space by neighboring neurons in mouse visual cortex. Nat. Neurosci. 13:1144–49 [Google Scholar]
  129. So YT, Shapley R. 1981. Spatial tuning of cells in and around lateral geniculate nucleus of the cat: X and Y relay cells and perigeniculate interneurons. J. Neurophysiol. 45:107–20 [Google Scholar]
  130. Stepanyants A, Hirsch JA, Martinez LM, Kisvarday ZF, Ferecsko AS, Chklovskii DB. 2008. Local potential connectivity in cat primary visual cortex. Cereb. Cortex 18:13–28 [Google Scholar]
  131. Steriade M, McCormick DA, Sejnowski TJ. 1993. Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–85 [Google Scholar]
  132. Swadlow HA, Gusev AG. 2001. The impact of ‘bursting’ thalamic impulses at a neocortical synapse. Nat. Neurosci. 4:402–8 [Google Scholar]
  133. Szentágothai J, Hamori J, Tombol T. 1966. Degeneration and electron microscope analysis of the synaptic glomeruli in the lateral geniculate body. Exp. Brain Res. 2:283–301 [Google Scholar]
  134. Taniguchi H, He M, Wu P, Kim S, Paik R. et al. 2011. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71:995–1013 [Google Scholar]
  135. Tavazoie SF, Reid RC. 2000. Diverse receptive fields in the lateral geniculate nucleus during thalamocortical development. Nat. Neurosci. 3:608–16 [Google Scholar]
  136. Troyer TW, Krukowski AE, Priebe NJ, Miller KD. 1998. Contrast-invariant orientation tuning in cat visual cortex: thalamocortical input tuning and correlation-based intracortical connectivity. J. Neurosci. 18:5908–27 [Google Scholar]
  137. Uhlrich DJ, Cucchiaro JB, Humphrey AL, Sherman SM. 1991. Morphology and axonal projection patterns of individual neurons in the cat perigeniculate nucleus. J. Neurophysiol. 65:1528–41 [Google Scholar]
  138. Usrey WM, Reppas JB, Reid RC. 1998. Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus. Nature 395:384–87 [Google Scholar]
  139. Usrey WM, Reppas JB, Reid RC. 1999. Specificity and strength of retinogeniculate connections. J. Neurophysiol. 82:3527–40 [Google Scholar]
  140. Usrey WM, Sceniak MP, Chapman B. 2003. Receptive fields and response properties of neurons in layer 4 of ferret visual cortex. J. Neurophysiol. 89:1003–15 [Google Scholar]
  141. Vaingankar V, Soto-Sanchez C, Wang X, Sommer FT, Hirsch JA. 2012. Neurons in the thalamic reticular nucleus are selective for diverse and complex visual features. Front. Integr. Neurosci. 6:118 [Google Scholar]
  142. Van Horn SC, Erisir A, Sherman SM. 2000. Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. J. Comp. Neurol. 416:509–20 [Google Scholar]
  143. Vigeland LE, Contreras D, Palmer LA. 2013. Synaptic mechanisms of temporal diversity in the lateral geniculate nucleus of the thalamus. J. Neurosci. 33:1887–96 [Google Scholar]
  144. Wang S, Bickford ME, Van Horn SC, Erisir A, Godwin DW, Sherman SM. 2001. Synaptic targets of thalamic reticular nucleus terminals in the visual thalamus of the cat. J. Comp. Neurol. 440:321–41 [Google Scholar]
  145. Wang X, Hirsch JA, Sommer FT. 2010. Recoding of sensory information across the retinothalamic synapse. J. Neurosci. 30:13567–77 [Google Scholar]
  146. Wang X, Sommer FT, Hirsch JA. 2011a. Inhibitory circuits for visual processing in thalamus. Curr. Opin. Neurobiol. 21:726–33 [Google Scholar]
  147. Wang X, Vaingankar V, Sanchez CS, Sommer FT, Hirsch JA. 2011b. Thalamic interneurons and relay cells use complementary synaptic mechanisms for visual processing. Nat. Neurosci. 14:224–31 [Google Scholar]
  148. Wang X, Wei Y, Vaingankar V, Wang Q, Koepsell K. et al. 2007. Feedforward excitation and inhibition evoke dual modes of firing in the cat's visual thalamus during naturalistic viewing. Neuron 55:465–78 [Google Scholar]
  149. Wässle H, Peichl L, Boycott BB. 1983. Mosaics and territories of cat retinal ganglion cells. Prog. Brain Res. 58:183–90 [Google Scholar]
  150. Werblin FS. 2010. Six different roles for crossover inhibition in the retina: correcting the nonlinearities of synaptic transmission. Vis. Neurosci. 27:1–8 [Google Scholar]
  151. Westheimer G. 1975. Visual acuity and hyperacuity. Invest. Ophthalmol. 14:570–72 [Google Scholar]
  152. Wiesel TN. 1959. Recording inhibition and excitation in the cat's retinal ganglion cells with intracellular electrodes. Nature 183:264–65 [Google Scholar]
  153. Wilson J. 1989. Synaptic organization of individual neurons in the macaque lateral geniculate nucleus. J. Neurosci. 9:2931–53 [Google Scholar]
  154. Wolfe J, Palmer LA. 1998. Temporal diversity in the lateral geniculate nucleus of cat. Vis. Neurosci. 15:653–75 [Google Scholar]
  155. Xue JT, Carney T, Ramoa AS, Freeman RD. 1988. Binocular interaction in the perigeniculate nucleus of the cat. Exp. Brain Res. 69:497–508 [Google Scholar]
  156. Yeh CI, Stoelzel CR, Weng C, Alonso JM. 2009. Functional consequences of neuronal divergence within the retinogeniculate pathway. J. Neurophysiol. 101:2166–85 [Google Scholar]
  157. Ziburkus J, Lo FS, Guido W. 2003. Nature of inhibitory postsynaptic activity in developing relay cells of the lateral geniculate nucleus. J. Neurophysiol. 90:1063–70 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error