The capacity for self-regulation allows people to control their thoughts, behaviors, emotions, and desires. In spite of this impressive ability, failures of self-regulation are common and contribute to numerous societal problems, from obesity to drug addiction. Such failures frequently occur following exposure to highly tempting cues, during negative moods, or after self-regulatory resources have been depleted. Here we review the available neuroscientific evidence regarding self-regulation and its failures. At its core, self-regulation involves a critical balance between the strength of an impulse and an individual's ability to inhibit the desired behavior. Although neuroimaging and patient studies provide consistent evidence regarding the reward aspects of impulses and desires, the neural mechanisms that underlie the capacity for control have eluded consensus, with various executive control regions implicated in different studies. We outline the necessary properties for a self-regulation control system and suggest that the use of resting-state functional connectivity analyses may be useful for understanding how people regulate their behavior and why they sometimes fail in their attempts.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Amaral DG, Price JL. 1984. Amygdalo-cortical projections in the monkey (Macaca fascicularis). J. Comp. Neurol. 230:465–96 [Google Scholar]
  2. Aron AR, Robbins TW, Poldrack RA. 2014. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn. Sci. 18:177–85 [Google Scholar]
  3. Ballantine HT Jr, Cassidy WL, Flanagan NB, Marino R Jr. 1967. Stereotaxic anterior cingulotomy for neuropsychiatric illness and intractable pain. J. Neurosurg. 26:488–95 [Google Scholar]
  4. Barbas H. 1988. Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey. J. Comp. Neurol. 276:313–42 [Google Scholar]
  5. Bar-On R, Tranel D, Denburg NL, Bechara A. 2003. Exploring the neurological substrate of emotional and social intelligence. Brain 126:1790–800 [Google Scholar]
  6. Baumeister RF, DeWall CN, Ciarocco NJ, Twenge JM. 2005. Social exclusion impairs self-regulation. J. Pers. Soc. Psychol. 88:589–604 [Google Scholar]
  7. Baumeister RF, Heatherton T. 1996. Self-regulation failure: an overview. Psychol. Inq. 7:1–15 [Google Scholar]
  8. Baumeister RF, Leary MR. 1995. The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychol. Bull. 117:497–529 [Google Scholar]
  9. Baumeister RF, Masicampo EJ. 2010. Conscious thought is for facilitating social and cultural interactions: how mental simulations serve the animal-culture interface. Psychol. Rev. 117:945–71 [Google Scholar]
  10. Baumgartner SE, Weeda WD, Heijden LL, van der Huizinga M. 2014. The relationship between media multitasking and executive function in early adolescents. J. Early Adolesc. 34:1120–44 [Google Scholar]
  11. Berkman ET, Kahn LE, Merchant JS. 2014. Training-induced changes in inhibitory control network activity. J. Neurosci. 34:149–57 [Google Scholar]
  12. Biswal BB, Mennes M, Zuo X-N, Gohel S, Kelly C. et al. 2010. Toward discovery science of human brain function. PNAS 107:4734–39 [Google Scholar]
  13. Biswal BB, Yetkin FZ, Haughton VM, Hyde JS. 1995. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34:537–41 [Google Scholar]
  14. Boileau I, Assaad J-M, Pihl RO, Benkelfat C, Leyton M. et al. 2003. Alcohol promotes dopamine release in the human nucleus accumbens. Synapse 49:226–31 [Google Scholar]
  15. Botvinick M, Braver T. 2015. Motivation and cognitive control: from behavior to neural mechanism. Annu. Rev. Psychol. 66:83–113 [Google Scholar]
  16. Botvinick MM, Cohen JD, Carter CS. 2004. Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn. Sci. 8:539–46 [Google Scholar]
  17. Breiter HC, Gollub RL, Weisskoff RM, Kennedy DN, Makris N. et al. 1997. Acute effects of cocaine on human brain activity and emotion. Neuron 19:591–611 [Google Scholar]
  18. Brody AL, Mandelkern MA, Olmstead RE, Jou J, Tiongson E. et al. 2007. Neural substrates of resisting craving during cigarette cue exposure. Biol. Psychiatry 62:642–51 [Google Scholar]
  19. Bush G, Luu P, Posner MI. 2000. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4:215–22 [Google Scholar]
  20. Cain MS, Mitroff SR. 2011. Distractor filtering in media multitaskers. Perception 40:1183–92 [Google Scholar]
  21. Carelli RM, Ijames SG, Crumling AJ. 2000. Evidence that separate neural circuits in the nucleus accumbens encode cocaine versus “natural” (water and food) reward. J. Neurosci. 20:4255–66 [Google Scholar]
  22. Carter BL, Tiffany ST. 1999. Meta-analysis of cue-reactivity in addiction research. Addiction 94:327–40 [Google Scholar]
  23. Carter CS, Braver TS, Barch DM, Botvinick MM, Noll D, Cohen JD. 1998. Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280:747–49 [Google Scholar]
  24. Casey BJ, Somerville LH, Gotlib IH, Ayduk O, Franklin NT. et al. 2011. Behavioral and neural correlates of delay of gratification 40 years later. PNAS 108:14998–15003 [Google Scholar]
  25. Choi EY, Yeo BTT, Buckner RL. 2012. The organization of the human striatum estimated by intrinsic functional connectivity. J. Neurophysiol. 108:2242–63 [Google Scholar]
  26. Christensen L, Pettijohn L. 2001. Mood and carbohydrate cravings. Appetite 36:137–45 [Google Scholar]
  27. Cloutier J, Heatherton TF, Whalen PJ, Kelley WM. 2008. Are attractive people rewarding? Sex differences in the neural substrates of facial attractiveness. J. Cogn. Neurosci. 20:941–51 [Google Scholar]
  28. Cohen JR, Lieberman MD. 2010. The common neural basis of exerting self-control in multiple domains. Self Control in Society, Mind, and Brain: Oxford Series in Social Cognition and Social Neuroscience RR Hassin, KN Ochsner, Y Trope 141–60 New York: Oxford Univ. Press [Google Scholar]
  29. Cohen RA, Kaplan RF, Moser DJ, Jenkins MA, Wilkinson H. 1999a. Impairments of attention after cingulotomy. Neurology 53:819–24 [Google Scholar]
  30. Cohen RA, Kaplan RF, Zuffante P, Moser DJ, Jenkins MA. et al. 1999b. Alteration of intention and self-initiated action associated with bilateral anterior cingulotomy. J. Neuropsychiatry Clin. Neurosci. 11:444–53 [Google Scholar]
  31. Connolly CG, Wu J, Ho TC, Hoeft F, Wolkowitz O. et al. 2013. Resting-state functional connectivity of subgenual anterior cingulate cortex in depressed adolescents. Biol. Psychiatry 74:898–907 [Google Scholar]
  32. Corkin S. 1979. Hidden-figures-test performance: lasting effects of unilateral penetrating head injury and transient effects of bilateral cingulotomy. Neuropsychologia 17:585–605 [Google Scholar]
  33. Crossley NA, Mechelli A, Vértes PE, Winton-Brown TT, Patel AX. et al. 2013. Cognitive relevance of the community structure of the human brain functional coactivation network. PNAS 110:11583–88 [Google Scholar]
  34. Curtis CE, D'Esposito M. 2003. Persistent activity in the prefrontal cortex during working memory. Trends Cogn. Sci. 7:415–23 [Google Scholar]
  35. Damsma G, Pfaus JG, Wenkstern D, Phillips AG, Fibiger HC. 1992. Sexual behavior increases dopamine transmission in the nucleus accumbens and striatum of male rats: comparison with novelty and locomotion. Behav. Neurosci. 106:181–91 [Google Scholar]
  36. David SP, Munafò MR, Johansen-Berg H, Smith SM, Rogers RD. et al. 2005. Ventral striatum/nucleus accumbens activation to smoking-related pictorial cues in smokers and nonsmokers: a functional magnetic resonance imaging study. Biol. Psychiatry 58:488–94 [Google Scholar]
  37. DeBono A, Shmueli D, Muraven M. 2011. Rude and inappropriate: the role of self-control in following social norms. Pers. Soc. Psychol. Bull. 37:136–46 [Google Scholar]
  38. Delgado MR, Gillis MM, Phelps EA. 2008. Regulating the expectation of reward via cognitive strategies. Nat. Neurosci. 11:880–81 [Google Scholar]
  39. DelParigi A, Chen K, Salbe AD, Hill JO, Wing RR. et al. 2007. Successful dieters have increased neural activity in cortical areas involved in the control of behavior. Int. J. Obes. 31:440–48 [Google Scholar]
  40. Demos KE, Heatherton TF, Kelley WM. 2012. Individual differences in nucleus accumbens activity to food and sexual images predict weight gain and sexual behavior. J. Neurosci. 32:5549–52 [Google Scholar]
  41. Demos KE, Kelley WM, Heatherton TF. 2011. Dietary restraint violations influence reward responses in nucleus accumbens and amygdala. J. Cogn. Neurosci. 23:1952–63 [Google Scholar]
  42. Dosenbach NUF, Nardos B, Cohen AL, Fair DA, Power JD. et al. 2010. Prediction of individual brain maturity using fMRI. Science 329:1358–61 [Google Scholar]
  43. Dosenbach NUF, Visscher KM, Palmer ED, Miezin FM, Wenger KK. et al. 2006. A core system for the implementation of task sets. Neuron 50:799–812 [Google Scholar]
  44. Duckworth AL, Seligman MEP. 2005. Self-discipline outdoes IQ in predicting academic performance of adolescents. Psychol. Sci. 16:939–44 [Google Scholar]
  45. Due DL, Huettel SA, Hall WG, Rubin DC. 2002. Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: evidence from functional magnetic resonance imaging. Am. J. Psychiatry 159:954–60 [Google Scholar]
  46. Erb JL, Gwirtsman HE, Fuster JM, Richeimer SH. 1989. Bulimia associated with frontal lobe lesions. Int. J. Eat. Disord. 8:117–21 [Google Scholar]
  47. Everitt BJ. 1990. Sexual motivation: a neural and behavioural analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neurosci. Biobehav. Rev. 14:217–32 [Google Scholar]
  48. Federoff IDC, Polivy J, Herman CP. 1997. The effect of pre-exposure to food cues on the eating behavior of restrained and unrestrained eaters. Appetite 28:33–47 [Google Scholar]
  49. Fehr E, Camerer CF. 2007. Social neuroeconomics: the neural circuitry of social preferences. Trends Cogn. Sci. 11:419–27 [Google Scholar]
  50. Fischer AS, Whitfield-Gabrieli S, Roth RM, Brunette MF, Green AI. 2014. Impaired functional connectivity of brain reward circuitry in patients with schizophrenia and cannabis use disorder: effects of cannabis and THC. Schizophr. Res. 158:176–82 [Google Scholar]
  51. Fowler OS, Fowler LN. 1851. A most remarkable case. Am. Phrenol. J. 13:89 [Google Scholar]
  52. Frost RO, Goolkasian GA, Ely RJ, Blanchard FA. 1982. Depression, restraint and eating behavior. Behav. Res. Ther. 20:113–21 [Google Scholar]
  53. Garavan H, Pankiewicz J, Bloom A, Cho J-K, Sperry L. et al. 2000. Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am. J. Psychiatry 157:1789–98 [Google Scholar]
  54. Garavan H, Ross TJ, Stein EA. 1999. Right hemispheric dominance of inhibitory control: an event-related functional MRI study. PNAS 96:8301–6 [Google Scholar]
  55. Goodall J. 1986. The Chimpanzees of Gombe: Patterns of Behavior Cambridge, MA: Belknap Press Harvard Univ. Press [Google Scholar]
  56. Gottfried JA, O'Doherty J, Dolan RJ. 2003. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301:1104–7 [Google Scholar]
  57. Grafman J, Schwab K, Warden D, Pridgen A, Brown HR, Salazar AM. 1996. Frontal lobe injuries, violence, and aggression: a report of the Vietnam head injury study. Neurology 46:1231–38 [Google Scholar]
  58. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB. et al. 2007. Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol. Psychiatry 62:429–37 [Google Scholar]
  59. Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E. 1995. The orbital and medial prefrontal circuit through the primate basal ganglia. J. Neurosci. 15:4851–67 [Google Scholar]
  60. Haedt-Matt AA, Keel PK. 2011. Revisiting the affect regulation model of binge eating: a meta-analysis of studies using ecological momentary assessment. Psychol. Bull. 137:660–81 [Google Scholar]
  61. Hagger MS, Wood C, Stiff C, Chatzisarantis NLD. 2010. Ego depletion and the strength model of self-control: a meta-analysis. Psychol. Bull. 136:495–525 [Google Scholar]
  62. Hamann JM, Dayan E, Hummel FC, Cohen LG. 2014. Baseline frontostriatal-limbic connectivity predicts reward-based memory formation. Hum. Brain Mapp. 35:5921–31 [Google Scholar]
  63. Hare TA, Camerer CF, Rangel A. 2009. Self-control in decision-making involves modulation of the vmPFC valuation system. Science 324:646–48 [Google Scholar]
  64. Harlow JM. 1848. Passage of an iron rod through the head. Boston Med. Surg. J. 39:389–93 [Google Scholar]
  65. Harris JL, Bargh JA, Brownell KD. 2009. Priming effects of television food advertising on eating behavior. Health Psychol. 28:404–13 [Google Scholar]
  66. Heatherton TF. 2011. Neuroscience of self and self-regulation. Annu. Rev. Psychol. 62:363–90 [Google Scholar]
  67. Heatherton TF, Herman CP, Polivy J. 1991. Effects of physical threat and ego threat on eating behavior. J. Pers. Soc. Psychol. 60:138–43 [Google Scholar]
  68. Heatherton TF, Striepe M, Wittenberg L. 1998. Emotional distress and disinhibited eating: the role of self. Pers. Soc. Psychol. Bull. 24:301–13 [Google Scholar]
  69. Heatherton TF, Wagner DD. 2011. Cognitive neuroscience of self-regulation failure. Trends Cogn. Sci. 15:132–39 [Google Scholar]
  70. Herman CP, Mack D. 1975. Restrained and unrestrained eating. J. Pers. 43:647–60 [Google Scholar]
  71. Herman CP, Polivy J. 1983. A boundary model for the regulation of eating. Psychiatr. Ann. 13:918–27 [Google Scholar]
  72. Hofmann W, Baumeister RF, Förster G, Vohs KD. 2011. Everyday temptations: an experience sampling study of desire, conflict, and self-control. J. Pers. Soc. Psychol. 102:1318–35 [Google Scholar]
  73. Hofmann W, Friese M, Strack F. 2009. Impulse and self-control from a dual-systems perspective. Perspect. Psychol. Sci. 4:162–76 [Google Scholar]
  74. Hofmann W, van Koningsbruggen GM, Stroebe W, Ramanathan S, Aarts H. 2010. As pleasure unfolds: hedonic responses to tempting food. Psychol. Sci. 21:1863–70 [Google Scholar]
  75. Hofmann W, Vohs KD, Baumeister RF. 2012. What people desire, feel conflicted about, and try to resist in everyday life. Psychol. Sci. 23:582–88 [Google Scholar]
  76. Inzlicht M, Elkins-Brown N, Berkman ET. 2015. The neuroscience of “ego depletion” or: How the brain can help us understand why self-control seems limited. Social Neuroscience: Biological Approaches to Social Psychology E Harmon-Jones, M Inzlicht New York: Psychology. In press [Google Scholar]
  77. Inzlicht M, Schmeichel BJ, Macrae CN. 2014. Why self-control seems (but may not be) limited. Trends Cogn. Sci. 18:127–33 [Google Scholar]
  78. Janes AC, Pizzagalli DA, Richardt S, Frederick B deB, Chuzi S. et al. 2010. Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biol. Psychiatry 67:722–29 [Google Scholar]
  79. Kerns JG, Cohen JD, MacDonald AW, Cho RY, Stenger VA, Carter CS. 2004. Anterior cingulate conflict monitoring and adjustments in control. Science 303:1023–26 [Google Scholar]
  80. Killgore WDS, Yurgelun-Todd DA. 2006. Affect modulates appetite-related brain activity to images of food. Int. J. Eat. Disord. 39:357–63 [Google Scholar]
  81. Knutson B, Taylor J, Kaufman M, Peterson R, Glover G. 2005. Distributed neural representation of expected value. J. Neurosci. 25:4806–12 [Google Scholar]
  82. Kober H, Mende-Siedlecki P, Kross EF, Weber J, Mischel W. et al. 2010. Prefrontal–striatal pathway underlies cognitive regulation of craving. PNAS 107:14811–16 [Google Scholar]
  83. Kong J, Jensen K, Loiotile R, Cheetham A, Wey H-Y. et al. 2013. Functional connectivity of the frontoparietal network predicts cognitive modulation of pain. PAIN 154:459–67 [Google Scholar]
  84. Kringelbach ML. 2005. The human orbitofrontal cortex: linking reward to hedonic experience. Nat. Rev. Neurosci. 6:691–702 [Google Scholar]
  85. Kringelbach ML, O'Doherty J, Rolls ET, Andrews C. 2003. Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb. Cortex 13:1064–71 [Google Scholar]
  86. Lambert KG, Neal T, Noyes J, Parker C, Worrel P. 1991. Food-related stimuli increase desire to eat in hungry and satiated human subjects. Curr. Psychol. 10:297–303 [Google Scholar]
  87. Laplane D, Degos JD, Baulac M, Gray F. 1981. Bilateral infarction of the anterior cingulate gyri and of the fornices: report of a case. J. Neurol. Sci. 51:289–300 [Google Scholar]
  88. LaRose R, Lin C, Eastin M. 2003. Unregulated Internet usage: addiction, habit, or deficient self-regulation?. Media Psychol. 5:225–53 [Google Scholar]
  89. Lerner JS, Li Y, Weber EU. 2013. The financial costs of sadness. Psychol. Sci. 24:72–79 [Google Scholar]
  90. Lin A, Adolphs R, Rangel A. 2012. Social and monetary reward learning engage overlapping neural substrates. Soc. Cogn. Affect. Neurosci. 7:274–81 [Google Scholar]
  91. Lips MA, Wijngaarden MA, van der Grond J, van Buchem MA, de Groot GH. et al. 2014. Resting-state functional connectivity of brain regions involved in cognitive control, motivation, and reward is enhanced in obese females. Am. J. Clin. Nutr. 100:524–31 [Google Scholar]
  92. Lochbuehler K, Voogd H, Scholte RHJ, Engels RCME. 2011. Attentional bias in smokers: exposure to dynamic smoking cues in contemporary movies. J. Psychopharmacol. 25:514–19 [Google Scholar]
  93. Lopez RB, Hofmann W, Wagner DD, Kelley WM, Heatherton TF. 2014. Neural predictors of giving in to temptation in daily life. Psychol. Sci. 25:1337–44 [Google Scholar]
  94. Marlatt GA, Gordon J. 1985. Relapse Prevention: Maintenance Strategies in the Treatment of Addictive Behaviors New York: Guilford [Google Scholar]
  95. Martino AD, Scheres A, Margulies DS, Kelly AMC, Uddin LQ. et al. 2008. Functional connectivity of human striatum: a resting state fMRI study. Cereb. Cortex 18:2735–47 [Google Scholar]
  96. McClernon FJ, Kozink RV, Rose JE. 2008. Individual differences in nicotine dependence, withdrawal symptoms, and sex predict transient fMRI-BOLD responses to smoking cues. Neuropsychopharmacology 33:2148–57 [Google Scholar]
  97. McDonald AJ, Mascagni F, Guo L. 1996. Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71:55–75 [Google Scholar]
  98. McKee SA, Sinha R, Weinberger AH, Sofuoglu M, Harrison EL. et al. 2011. Stress decreases the ability to resist smoking and potentiates smoking intensity and reward. J. Psychopharmacol. 25:490–502 [Google Scholar]
  99. Metcalfe J, Mischel W. 1999. A hot/cool-system analysis of delay of gratification: dynamics of willpower. Psychol. Rev. 106:3–19 [Google Scholar]
  100. Miller EK, Cohen JD. 2001. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24:167–202 [Google Scholar]
  101. Milner B. 1963. Effects of different brain lesions on card sorting: the role of the frontal lobes. Arch. Neurol. 9:90–100 [Google Scholar]
  102. Mischel W, Ebbesen EB, Zeiss AR. 1973. Selective attention to the self: situational and dispositional determinants. J. Pers. Soc. Psychol. 27:129–42 [Google Scholar]
  103. Mischel W, Shoda Y, Rodriguez MI. 1989. Delay of gratification in children. Science 244:933–38 [Google Scholar]
  104. Muraven M, Collins RL, Nienhaus K. 2002. Self-control and alcohol restraint: an initial application of the self-control strength model. Psychol. Addict. Behav. 16:113–20 [Google Scholar]
  105. Nambu A. 2008. Seven problems on the basal ganglia. Curr. Opin. Neurobiol. 18:595–604 [Google Scholar]
  106. Oaten M, Williams KD, Jones A, Zadro L. 2008. The effects of ostracism on self-regulation in the socially anxious. J. Soc. Clin. Psychol. 27:471–504 [Google Scholar]
  107. Ochsner KN, Silvers JA, Buhle JT. 2012. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann. N.Y. Acad. Sci. 1251:E1–24 [Google Scholar]
  108. Öngür D, Price JL. 2000. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb. Cortex 10:206–19 [Google Scholar]
  109. Ophir E, Nass C, Wagner AD. 2009. Cognitive control in media multitaskers. PNAS 106:15583–87 [Google Scholar]
  110. Pandya DN, Van Hoesen GW, Mesulam MM. 1981. Efferent connections of the cingulate gyrus in the rhesus monkey. Exp. Brain Res. 42:319–30 [Google Scholar]
  111. Pariyadath V, Stein EA, Ross TJ. 2014. Machine learning classification of resting state functional connectivity predicts smoking status. Front. Hum. Neurosci. 8:425 [Google Scholar]
  112. Pea R, Nass C, Meheula L, Rance M, Kumar A. et al. 2012. Media use, face-to-face communication, media multitasking, and social well-being among 8- to 12-year-old girls. Dev. Psychol. 48:327–36 [Google Scholar]
  113. Penfield W, Evans J. 1935. The frontal lobe in man: a clinical study of maximum removals. Brain 58:115–33 [Google Scholar]
  114. Petersen SE, van Mier H, Fiez JA, Raichle ME. 1998. The effects of practice on the functional anatomy of task performance. PNAS 95:853–60 [Google Scholar]
  115. Petrides M, Milner B. 1982. Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia 20:249–62 [Google Scholar]
  116. Petrides M, Pandya DN. 1999. Dorsolateral prefrontal cortex: comparative cytoarchitectonic analysis in the human and the macaque brain and corticocortical connection patterns. Eur. J. Neurosci. 11:1011–36 [Google Scholar]
  117. Posner MI, Rothbart MK. 1998. Attention, self-regulation and consciousness. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 353:1915–27 [Google Scholar]
  118. Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA. et al. 2011. Functional network organization of the human brain. Neuron 72:665–78 [Google Scholar]
  119. Power JD, Schlaggar BL, Lessov-Schlaggar CN, Petersen SE. 2013. Evidence for hubs in human functional brain networks. Neuron 79:798–813 [Google Scholar]
  120. Quinn PD, Fromme K. 2010. Self-regulation as a protective factor against risky drinking and sexual behavior. Psychol. Addict. Behav. 24:376–85 [Google Scholar]
  121. Quirk GJ, Beer JS. 2006. Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Curr. Opin. Neurobiol. 16:723–27 [Google Scholar]
  122. Ralph BCW, Thomson DR, Cheyne JA, Smilek D. 2014. Media multitasking and failures of attention in everyday life. Psychol. Res. 78:661–69 [Google Scholar]
  123. Rangel A, Camerer C, Montague PR. 2008. A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9:545–56 [Google Scholar]
  124. Raviv M. 1993. Personality characteristics of sexual addicts and pathological gamblers. J. Gambl. Stud. 9:17–30 [Google Scholar]
  125. Rilling JK. 2006. Human and nonhuman primate brains: Are they allometrically scaled versions of the same design?. Evol. Anthropol. Issues News Rev. 15:65–77 [Google Scholar]
  126. Sakai T, Mikami A, Tomonaga M, Matsui M, Suzuki J. et al. 2011. Differential prefrontal white matter development in chimpanzees and humans. Curr. Biol. 21:1397–402 [Google Scholar]
  127. Sanbonmatsu DM, Strayer DL, Medeiros-Ward N, Watson JM. 2013. Who multi-tasks and why? Multi-tasking ability, perceived multi-tasking ability, impulsivity, and sensation seeking. PLOS ONE 8:e54402 [Google Scholar]
  128. Sayette MA, Hufford MR. 1997. Effects of smoking urge on generation of smoking-related information. J. Appl. Soc. Psychol. 27:1395–405 [Google Scholar]
  129. Sayette MA, Martin CS, Wertz JM, Shiffman S, Perrott MA. 2001. A multi-dimensional analysis of cue-elicited craving in heavy smokers and tobacco chippers. Addiction 96:1419–32 [Google Scholar]
  130. Scheinost D, Stoica T, Wasylink S, Gruner P, Saksa J. et al. 2014. Resting state functional connectivity predicts neurofeedback response. Front. Behav. Neurosci. 8:338 [Google Scholar]
  131. Schilström B, Svensson HM, Svensson TH, Nomikos GG. 1998. Nicotine and food induced dopamine release in the nucleus accumbens of the rat: putative role of α7 nicotinic receptors in the ventral tegmental area. Neuroscience 85:1005–9 [Google Scholar]
  132. Schmeichel BJ. 2007. Attention control, memory updating, and emotion regulation temporarily reduce the capacity for executive control. J. Exp. Psychol. Gen. 136:241–55 [Google Scholar]
  133. Schmeichel BJ, Harmon-Jones C, Harmon-Jones E. 2010. Exercising self-control increases approach motivation. J. Pers. Soc. Psychol. 99:162–73 [Google Scholar]
  134. Schoenemann PT, Sheehan MJ, Glotzer LD. 2005. Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat. Neurosci. 8:242–52 [Google Scholar]
  135. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD. 2009. Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52 [Google Scholar]
  136. Shallice T. 1982. Specific impairments of planning. Philos. Trans. R. Soc. Lond. B Biol. Sci. 298:199–209 [Google Scholar]
  137. Shallice T, Burgess PW. 1991. Deficits in strategy application following frontal lobe damage in man. Brain 114:727–41 [Google Scholar]
  138. Shallice T, Burgess PW. 1996. The domain of supervisory processes and temporal organization of behaviour. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 351:1405–12 [Google Scholar]
  139. Siep N, Roefs A, Roebroeck A, Havermans R, Bonte M, Jansen A. 2012. Fighting food temptations: the modulating effects of short-term cognitive reappraisal, suppression and up-regulation on mesocorticolimbic activity related to appetitive motivation. Neuroimage 60:213–20 [Google Scholar]
  140. Smith EE, Jonides J. 1999. Storage and executive processes in the frontal lobes. Science 283:1657–61 [Google Scholar]
  141. Somerville LH, Hare T, Casey BJ. 2011. Frontostriatal maturation predicts cognitive control failure to appetitive cues in adolescents. J. Cogn. Neurosci. 23:2123–34 [Google Scholar]
  142. Somerville LH, Heatherton TF, Kelley WM. 2006. Anterior cingulate cortex responds differentially to expectancy violation and social rejection. Nat. Neurosci. 9:1007–8 [Google Scholar]
  143. Stice E, Yokum S, Blum K, Bohon C. 2010. Weight gain is associated with reduced striatal response to palatable food. J. Neurosci. 30:13105–9 [Google Scholar]
  144. Stoeckel LE, Weller RE, Cook EW III, Twieg DB, Knowlton RC, Cox JE. 2008. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage 41:636–47 [Google Scholar]
  145. Tangney JP, Baumeister RF, Boone AL. 2004. High self-control predicts good adjustment, less pathology, better grades, and interpersonal success. J. Pers. 72:271–324 [Google Scholar]
  146. Thompson-Schill SL, Bedny M, Goldberg RF. 2005. The frontal lobes and the regulation of mental activity. Curr. Opin. Neurobiol. 15:219–24 [Google Scholar]
  147. Tiffany ST. 1990. A cognitive model of drug urges and drug-use behavior: role of automatic and nonautomatic processes. Psychol. Rev. 97:147–68 [Google Scholar]
  148. Tom SM, Fox CR, Trepel C, Poldrack RA. 2007. The neural basis of loss aversion in decision-making under risk. Science 315:515–18 [Google Scholar]
  149. Tranel D, Anderson SW, Benton A. 1994. Development of the concept of “executive function” and its relationship to the frontal lobes. Handb. Neuropsychol. 9:125–48 [Google Scholar]
  150. Twenge JM, Baumeister RF, Tice DM, Stucke TS. 2001. If you can't join them, beat them: effects of social exclusion on aggressive behavior. J. Pers. Soc. Psychol. 81:1058–69 [Google Scholar]
  151. Van der Laan LN, de Ridder DTD, Viergever MA, Smeets PAM. 2011. The first taste is always with the eyes: a meta-analysis on the neural correlates of processing visual food cues. Neuroimage 55:296–303 [Google Scholar]
  152. Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T. 2012. Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb. Cortex 22:2241–62 [Google Scholar]
  153. Vendrell P, Junqué C, Pujol J, Jurado MA, Molet J, Grafman J. 1995. The role of prefrontal regions in the Stroop task. Neuropsychologia 33:341–52 [Google Scholar]
  154. Venkataraman A, Whitford TJ, Westin C-F, Golland P, Kubicki M. 2012. Whole brain resting state functional connectivity abnormalities in schizophrenia. Schizophr. Res. 139:7–12 [Google Scholar]
  155. Vohs KD, Baumeister RF, Ciarocco NJ. 2005. Self-regulation and self-presentation: regulatory resource depletion impairs impression management and effortful self-presentation depletes regulatory resources. J. Pers. Soc. Psychol. 88:632–57 [Google Scholar]
  156. Vohs KD, Heatherton TF. 2000. Self-regulatory failure: a resource-depletion approach. Psychol. Sci. 11:249–54 [Google Scholar]
  157. Volkow ND, Fowler JS, Wang G-J, Telang F, Logan J. et al. 2010. Cognitive control of drug craving inhibits brain reward regions in cocaine abusers. Neuroimage 49:2536–43 [Google Scholar]
  158. Wagner DD, Altman M, Boswell RG, Kelley WM, Heatherton TF. 2013. Self-regulatory depletion enhances neural responses to rewards and impairs top-down control. Psychol. Sci. 24:2262–71 [Google Scholar]
  159. Wagner DD, Boswell RG, Kelley WM, Heatherton TF. 2012. Inducing negative affect increases the reward value of appetizing foods in dieters. J. Cogn. Neurosci. 24:1625–33 [Google Scholar]
  160. Wagner DD, Dal Cin S, Sargent JD, Kelley WM, Heatherton TF. 2011. Spontaneous action representation in smokers when watching movie characters smoke. J. Neurosci. 31:894–98 [Google Scholar]
  161. Wagner DD, Heatherton TF. 2013. Self-regulatory depletion increases emotional reactivity in the amygdala. Soc. Cogn. Affect. Neurosci. 8:410–17 [Google Scholar]
  162. Wagner DD, Heatherton TF. 2014. Self-regulation and its failure: the seven deadly threats to self-regulation. APA Handbook of Personality and Social Psychology 1 Attitudes and Social Cognition M Mikulincer, PR Shaver, E Borgida, JA Bargh 805–42 Washington, DC: Am. Psychol. Assoc. [Google Scholar]
  163. Warren DE, Power JD, Bruss J, Denburg NL, Waldron EJ. et al. 2014. Network measures predict neuropsychological outcome after brain injury. PNAS 111:14247–52 [Google Scholar]
  164. Whalen PJ, Bush G, McNally RJ, Wilhelm S, McInerney SC. et al. 1998. The emotional counting Stroop paradigm: a functional magnetic resonance imaging probe of the anterior cingulate affective division. Biol. Psychiatry 44:1219–28 [Google Scholar]
  165. Whitty CWM, Duffield JE, Tow PM, Cairns H. 1952. Anterior cingulectomy in the treatment of mental disease. Lancet 259:475–81 [Google Scholar]
  166. Willner P, Jones C. 1996. Effects of mood manipulation on subjective and behavioural measures of cigarette craving. Behav. Pharmacol. 7:355–63 [Google Scholar]
  167. Wilson DH, Chang AE. 1974. Bilateral anterior cingulectomy for the relief of intractable pain: report of 23 patients. Confin. Neurol. 36:61–68 [Google Scholar]
  168. Wilson SJ, Sayette MA, Fiez JA. 2004. Prefrontal responses to drug cues: a neurocognitive analysis. Nat. Neurosci. 7:211–14 [Google Scholar]
  169. Witkiewitz K, Villarroel NA. 2009. Dynamic association between negative affect and alcohol lapses following alcohol treatment. J. Consult. Clin. Psychol. 77:633–44 [Google Scholar]
  170. Woolley JD, Gorno-Tempini M-L, Seeley WW, Rankin K, Lee SS. et al. 2007. Binge eating is associated with right orbitofrontal-insular-striatal atrophy in frontotemporal dementia. Neurology 69:1424–33 [Google Scholar]
  171. Wrase J, Grüsser SM, Klein S, Diener C, Hermann D. et al. 2002. Development of alcohol-associated cues and cue-induced brain activation in alcoholics. Eur. Psychiatry 17:287–91 [Google Scholar]
  172. Yalachkov Y, Kaiser J, Naumer MJ. 2009. Brain regions related to tool use and action knowledge reflect nicotine dependence. J. Neurosci. 29:4922–29 [Google Scholar]
  173. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. 2011. Large-scale automated synthesis of human functional neuroimaging data. Nat. Methods 8:665–70 [Google Scholar]
  174. Zinser MC, Baker TB, Sherman JE, Cannon DS. 1992. Relation between self-reported affect and drug urges and cravings in continuing and withdrawing smokers. J. Abnorm. Psychol. 101:617–29 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error