1932

Abstract

Parkinson's disease (PD) is a common neurodegenerative disease, yet the underlying causative molecular mechanisms are ill defined. Numerous observations based on drug studies and mutations in genes that cause PD point to a complex set of rather subtle mitochondrial defects that may be causative. Indeed, intensive investigation of these genes in model organisms has revealed roles in the electron transport chain, mitochondrial protein homeostasis, mitophagy, and the fusion and fission of mitochondria. Here, we attempt to synthesize results from experimental studies in diverse systems to define the precise function of these PD genes, as well as their interplay with other genes that affect mitochondrial function. We propose that subtle mitochondrial defects in combination with other insults trigger the onset and progression of disease, in both familial and idiopathic PD.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-071013-014317
2014-07-08
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/neuro/37/1/annurev-neuro-071013-014317.html?itemId=/content/journals/10.1146/annurev-neuro-071013-014317&mimeType=html&fmt=ahah

Literature Cited

  1. Agostino A, Invernizzi F, Tiveron C, Fagiolari G, Prelle A. et al. 2003. Constitutive knockout of Surf1 is associated with high embryonic lethality, mitochondrial disease and cytochrome c oxidase deficiency in mice. Hum. Mol. Genet. 12:399–413 [Google Scholar]
  2. Amo T, Sato S, Saiki S, Wolf AM, Toyomizu M. et al. 2011. Mitochondrial membrane potential decrease caused by loss of PINK1 is not due to proton leak, but to respiratory chain defects. Neurobiol. Dis. 41:111–18 [Google Scholar]
  3. Bindoff LA, Birch-Machin MA, Cartlidge NE, Parker WD Jr, Turnbull DM. 1991. Respiratory chain abnormalities in skeletal muscle from patients with Parkinson's disease. J. Neurol. Sci. 104:203–8 [Google Scholar]
  4. Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ. et al. 2003. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–59 [Google Scholar]
  5. Bonifati V, Rohé CF, Breedveld GJ, Fabrizio E, De Mari M. et al. 2005. Early-onset parkinsonism associated with PINK1 mutations: frequency, genotypes, and phenotypes. Neurology 65:87–95 [Google Scholar]
  6. Braschi E, Goyon V, Zunino R, Mohanty A, Xu L, McBride HM. 2010. Vps35 mediates vesicle transport between the mitochondria and peroxisomes. Curr. Biol. 20:1310–15 [Google Scholar]
  7. Burbulla L, Schelling C, Kato H, Rapaport D, Woitalla D. et al. 2010. Dissecting the role of the mitochondrial chaperone mortalin in Parkinson's disease: functional impact of disease-related variants on mitochondrial homeostasis. Hum. Mol. Genet. 19:4437–52 [Google Scholar]
  8. Burchell VS, Nelson DE, Sanchez-Martinez A, Delgado-Camprubi M, Ivatt RM. et al. 2013. The Parkinson's disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat. Neurosci. 16:1257–65 [Google Scholar]
  9. Butler EK, Voigt A, Lutz AK, Toegel JP, Gerhardt E. et al. 2012. The mitochondrial chaperone protein TRAP1 mitigates α-synuclein toxicity. PLoS Genet. 8:e1002488 [Google Scholar]
  10. Chan DC. 2012. Fusion and fission: interlinked processes critical for mitochondrial health. Annu. Rev. Genet. 46:265–87 [Google Scholar]
  11. Chaudhuri KR, Schapira AH. 2009. Non-motor symptoms of Parkinson's disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 8:464–74 [Google Scholar]
  12. Chen Y, Dorn GW 2nd. 2013. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340:471–75 [Google Scholar]
  13. Cherra SJ III, Steer E, Gusdon AM, Kiselyov K, Chu CT. 2013. Mutant LRRK2 elicits calcium imbalance and depletion of dendritic mitochondria in neurons. Am. J. Pathol. 182:474–84 [Google Scholar]
  14. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR. et al. 2006. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–66 [Google Scholar]
  15. Cole NB, Dieuliis D, Leo P, Mitchell DC, Nussbaum RL. 2008. Mitochondrial translocation of α-synuclein is promoted by intracellular acidification. Exp. Cell Res. 314:2076–89 [Google Scholar]
  16. Costa AC, Loh SH, Martins LM. 2013. Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson's disease. Cell Death Dis. 4:e467 [Google Scholar]
  17. Cui M, Tang X, Christian WV, Yoon Y, Tieu K. 2010. Perturbations in mitochondrial dynamics induced by human mutant PINK1 can be rescued by the mitochondrial division inhibitor mdivi-1. J. Biol. Chem. 285:11740–52 [Google Scholar]
  18. D'Silva P, Liu Q, Walter W, Craig E. 2004. Regulated interactions of mtHsp70 with Tim44 at the translocon in the mitochondrial inner membrane. Nat. Struct. Mol. Biol. 11:1084–91 [Google Scholar]
  19. Dagda RK, Cherra SJ 3rd, Kulich SM, Tandon A, Park D, Chu CT. 2009. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J. Biol. Chem. 284:13843–55 [Google Scholar]
  20. Davison E, Pennington K, Hung C-C, Peng J, Rafiq R. et al. 2009. Proteomic analysis of increased Parkin expression and its interactants provides evidence for a role in modulation of mitochondrial function. Proteomics 9:4284–97 [Google Scholar]
  21. Mena L, Coto E, Sánchez-Ferrero E, Ribacoba R, Guisasola LM. De et al. 2009. Mutational screening of the mortalin gene (HSPA9) in Parkinson's disease. J. Neural Transm. 116:1289–93 [Google Scholar]
  22. Deng H, Dodson MW, Huang H, Guo M. 2008. The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc. Natl. Acad. Sci. USA 105:14503–8 [Google Scholar]
  23. Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK. 2008. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J. Biol. Chem. 283:9089–100 [Google Scholar]
  24. Doherty KM, Silveira-Moriyama L, Parkkinen L, Healy DG, Farrell M. et al. 2013. Parkin disease: a clinicopathologic entity?. JAMA Neurol. 70:571–79 [Google Scholar]
  25. Edgar AJ, Polak JM. 2000. Human homologues of yeast vacuolar protein sorting 29 and 35. Biochem. Biophys. Res. Commun. 277:622–30 [Google Scholar]
  26. Eiberg H, Kjer B, Kjer P, Rosenberg T. 1994. Dominant optic atrophy (OPA1) mapped to chromosome 3q region. I. Linkage analysis. Hum. Mol. Genet. 3:977–80 [Google Scholar]
  27. Exner N, Treske B, Paquet D, Holmström K, Schiesling C. et al. 2007. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J. Neurosci. 27:12413–18 [Google Scholar]
  28. Fahn S. 2003. Description of Parkinson's disease as a clinical syndrome. Ann. N. Y. Acad. Sci. 991:1–14 [Google Scholar]
  29. Fahn S, Oakes D, Shoulson I, Kieburtz K, Rudolph A. et al. 2004. Levodopa and the progression of Parkinson's disease. N. Engl. J. Med. 351:2498–508 [Google Scholar]
  30. Fariello RG. 1988. Experimental support for the implication of oxidative stress in the genesis of parkinsonian syndromes. Funct. Neurol. 3:407–12 [Google Scholar]
  31. Felts SJ, Owen BA, Nguyen P, Trepel J, Donner DB, Toft DO. 2000. The hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 275:3305–12 [Google Scholar]
  32. Gautier CA, Kitada T, Shen J. 2008. Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc. Natl. Acad. Sci. USA 105:11364–69 [Google Scholar]
  33. Gegg ME, Cooper JM, Schapira AH, Taanman JW. 2009. Silencing of PINK1 expression affects mitochondrial DNA and oxidative phosphorylation in dopaminergic cells. PLoS ONE 4:e4756 [Google Scholar]
  34. Ghosh JC, Siegelin MD, Dohi T, Altieri DC. 2010. Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Res. 70:8988–93 [Google Scholar]
  35. Gispert S, Ricciardi F, Kurz A, Azizov M, Hoepken HH. et al. 2009. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS ONE 4:e5777 [Google Scholar]
  36. Glater EE, Megeath LJ, Stowers RS, Schwarz TL. 2006. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J. Cell Biol. 173:545–57 [Google Scholar]
  37. Glauser L, Sonnay S, Stafa K, Moore DJ. 2011. Parkin promotes the ubiquitination and degradation of the mitochondrial fusion factor mitofusin 1. J. Neurochem. 118:636–45 [Google Scholar]
  38. Goedert M, Spillantini MG, Del Tredici K, Braak H. 2013. 100 years of Lewy pathology. Nat. Rev. Neurol. 9:13–24 [Google Scholar]
  39. Gomes LC, Di Benedetto G, Scorrano L. 2011. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13:589–98 [Google Scholar]
  40. Górska-Andrzejak J, Stowers RS, Borycz J, Kostyleva R, Schwarz TL, Meinertzhagen IA. 2003. Mitochondria are redistributed in Drosophila photoreceptors lacking milton, a kinesin-associated protein. J. Comp. Neurol. 463:372–88 [Google Scholar]
  41. Greene AW, Grenier K, Aguileta MA, Muise S, Farazifard R. et al. 2012. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep. 13:378–85 [Google Scholar]
  42. Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ. 2003. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc. Natl. Acad. Sci. USA 100:4078–83 [Google Scholar]
  43. Grünewald A, Arns B, Seibler P, Rakovic A, Münchau A. et al. 2012. ATP13A2 mutations impair mitochondrial function in fibroblasts from patients with Kufor-Rakeb syndrome. Neurobiol. Aging 33:1843e1–7 [Google Scholar]
  44. Guzman JN, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E. et al. 2010. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468:696–700 [Google Scholar]
  45. Haddad DM, Vilain S, Vos M, Esposito G, Matta S. et al. 2013. Mutations in the intellectual disability gene Ube2a cause neuronal dysfunction and impair Parkin-dependent mitophagy. Mol. Cell 50:831–43 [Google Scholar]
  46. Hao L-Y, Giasson BI, Bonini NM. 2010. DJ-1 is critical for mitochondrial function and rescues PINK1 loss of function. Proc. Natl. Acad. Sci. USA 107:9747–52 [Google Scholar]
  47. Haynes C, Ron D. 2010. The mitochondrial UPR – protecting organelle protein homeostasis. J. Cell Sci. 123:3849–55 [Google Scholar]
  48. Healy DG, Falchi M, O'Sullivan SS, Bonifati V, Durr A. et al. 2008. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson's disease: a case-control study. Lancet Neurol. 7:583–90 [Google Scholar]
  49. Heeman B, Van den Haute C, Aelvoet SA, Valsecchi F, Rodenburg RJ. et al. 2011. Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. J. Cell Sci. 124:1115–25 [Google Scholar]
  50. Heo JY, Park JH, Kim SJ, Seo KS, Han JS. et al. 2012. DJ-1 null dopaminergic neuronal cells exhibit defects in mitochondrial function and structure: involvement of mitochondrial complex I assembly. PLoS ONE 7:e32629 [Google Scholar]
  51. Hoepken HH, Gispert S, Morales B, Wingerter O, Del Turco D. et al. 2007. Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6. Neurobiol. Dis. 25:401–11 [Google Scholar]
  52. Iguchi M, Kujuro Y, Okatsu K, Koyano F, Kosako H. et al. 2013. Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J. Biol. Chem. 288:22019–32 [Google Scholar]
  53. Ilyin GP, Rialland M, Pigeon C, Guguen-Guillouzo C. 2000. cDNA cloning and expression analysis of new members of the mammalian F-box protein family. Genomics 67:40–47 [Google Scholar]
  54. Int. Parkinson's Dis. Genomics Consort. (IPDGC), Wellcome Trust Case Control Consort. 2 (WTCCC2) 2011. A two-stage meta-analysis identifies several new loci for Parkinson's disease. PLoS Genet. 7:e1002142 [Google Scholar]
  55. Irrcher I, Aleyasin H, Seifert EL, Hewitt SJ, Chhabra S. et al. 2010. Loss of the Parkinson's disease-linked gene DJ-1 perturbs mitochondrial dynamics. Hum. Mol. Genet. 19:3734–46 [Google Scholar]
  56. Itoh K, Nakamura K, Iijima M, Sesaki H. 2012. Mitochondrial dynamics in neurodegeneration. Trends Cell Biol. 23:64–71 [Google Scholar]
  57. Jaiswal M, Sandoval H, Zhang K, Bayat V, Bellen HJ. 2012. Probing mechanisms that underlie human neurodegenerative diseases in Drosophila. Annu. Rev. Genet. 46:371–96 [Google Scholar]
  58. Jellinger KA. 2009. A critical evaluation of current staging of α-synuclein pathology in Lewy body disorders. Biochim. Biophys. Acta 1792:730–40 [Google Scholar]
  59. Jin J, Hulette C, Wang Y, Zhang T, Pan C. et al. 2006. Proteomic identification of a stress protein, mortalin/mthsp70/GRP75: relevance to Parkinson disease. Mol. Cell. Proteomics 5:1193–204 [Google Scholar]
  60. Jin J, Li G, Davis J, Zhu D, Wang Y. et al. 2007. Identification of novel proteins associated with both α-synuclein and DJ-1. Mol. Cell. Proteomics 6:845–59 [Google Scholar]
  61. Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. 2010. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191:933–42 [Google Scholar]
  62. Jin SM, Youle RJ. 2012. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 125:795–99 [Google Scholar]
  63. Junn E, Mouradian MM. 2002. Human α-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine. Neurosci. Lett. 320:146–50 [Google Scholar]
  64. Kamp F, Exner N, Lutz AK, Wender N, Hegermann J. et al. 2010. Inhibition of mitochondrial fusion by α-synuclein is rescued by PINK1, Parkin and DJ-1. EMBO J. 29:3571–89 [Google Scholar]
  65. Kang P, Ostermann J, Shilling J, Neupert W, Craig E, Pfanner N. 1990. Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature 348:137–43 [Google Scholar]
  66. Keeney PM, Xie J, Capaldi RA, Bennett JP Jr. 2006. Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J. Neurosci. 26:5256–64 [Google Scholar]
  67. Kett LR, Dauer WT. 2012. Leucine-rich repeat kinase 2 for beginners: six key questions. Cold Spring Harb. Perspect. Med. 2:a009407 [Google Scholar]
  68. Kim K-H, Song K, Yoon S-H, Shehzad O, Kim Y-S, Son J. 2012. Rescue of PINK1 protein null-specific mitochondrial complex IV deficits by ginsenoside Re activation of nitric oxide signaling. J. Biol. Chem. 287:44109–20 [Google Scholar]
  69. Kim Y, Park J, Kim S, Song S, Kwon SK. et al. 2008. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem. Biophys. Res. Commun. 377:975–80 [Google Scholar]
  70. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y. et al. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–8 [Google Scholar]
  71. Klein C, Lohmann-Hedrich K. 2007. Impact of recent genetic findings in Parkinson's disease. Curr. Opin. Neurol. 20:453–64 [Google Scholar]
  72. Krebiehl G, Ruckerbauer S, Burbulla LF, Kieper N, Maurer B. et al. 2010. Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1. PLoS ONE 5:e9367 [Google Scholar]
  73. Kwon HJ, Heo JY, Shim JH, Park JH, Seo KS. et al. 2011. DJ-1 mediates paraquat-induced dopaminergic neuronal cell death. Toxicol. Lett. 202:85–92 [Google Scholar]
  74. Langston JW, Ballard P, Tetrud JW, Irwin I. 1983. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–80 [Google Scholar]
  75. Lees AJ, Hardy J, Revesz T. 2009. Parkinson's disease. Lancet 373:2055–66 [Google Scholar]
  76. Liu S, Sawada T, Lee S, Yu W, Silverio G. et al. 2012. Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLoS Genet. 8:e1002537 [Google Scholar]
  77. Liu W, Acin-Peréz R, Geghman KD, Manfredi G, Lu B, Li C. 2011. Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission. Proc. Natl. Acad. Sci. USA 108:12920–24 [Google Scholar]
  78. Lowe J, Blanchard A, Morrell K, Lennox G, Reynolds L. et al. 1988. Ubiquitin is a common factor in intermediate filament inclusion bodies of diverse type in man, including those of Parkinson's disease, Pick's disease, and Alzheimer's disease, as well as Rosenthal fibres in cerebellar astrocytomas, cytoplasmic bodies in muscle, and Mallory bodies in alcoholic liver disease. J. Pathol. 155:9–15 [Google Scholar]
  79. Lücking CB, Dürr A, Bonifati V, Vaughan J, De Michele G. et al. 2000. Association between early-onset Parkinson's disease and mutations in the parkin gene. N. Engl. J. Med. 342:1560–67 [Google Scholar]
  80. Lutz AK, Exner N, Fett ME, Schlehe JS, Kloos K. et al. 2009. Loss of parkin or PINK1 function increases Drp1-dependent mitochondrial fragmentation. J. Biol. Chem. 284:22938–51 [Google Scholar]
  81. Maraganore DM, de Andrade M, Elbaz A, Farrer MJ, Ioannidis JP. et al. 2006. Collaborative analysis of α-synuclein gene promoter variability and Parkinson disease. JAMA 296:661–70 [Google Scholar]
  82. Martin LJ, Pan Y, Price AC, Sterling W, Copeland NG. et al. 2006. Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J. Neurosci. 26:41–50 [Google Scholar]
  83. Martinez TN, Greenamyre JT. 2012. Toxin models of mitochondrial dysfunction in Parkinson's disease. Antioxid. Redox Signal. 16:920–34 [Google Scholar]
  84. Matsuda S, Kitagishi Y, Kobayashi M. 2013. Function and characteristics of PINK1 in mitochondria. Oxid. Med. Cell. Longev. 2013:601587 [Google Scholar]
  85. Mizuno Y, Ohta S, Tanaka M, Takamiya S, Suzuki K. et al. 1989. Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem. Biophys. Res. Commun. 163:1450–55 [Google Scholar]
  86. Moore DJ, Dawson VL, Dawson TM. 2006. Lessons from Drosophila models of DJ-1 deficiency. Sci. Aging Knowl. Environ. 2006:pe2 [Google Scholar]
  87. Morais VA, Verstreken P, Roethig A, Smet J, Snellinx A. et al. 2009. Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol. Med. 1:99–111 [Google Scholar]
  88. Mortiboys H, Johansen KK, Aasly JO, Bandmann O. 2010. Mitochondrial impairment in patients with Parkinson disease with the G2019S mutation in LRRK2. Neurology 75:2017–20 [Google Scholar]
  89. Müftüoglu M, Elibol B, Dalmizrak O, Ercan A, Kulaksiz G. et al. 2004. Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutations. Mov. Disord. 19:544–48 [Google Scholar]
  90. Nagakubo D, Taira T, Kitaura H, Ikeda M, Tamai K. et al. 1997. DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem. Biophys. Res. Commun. 231:509–13 [Google Scholar]
  91. Nakamura K. 2013. α-Synuclein and mitochondria: partners in crime?. Neurotherapeutics 10:391–99 [Google Scholar]
  92. Nakamura K, Nemani VM, Azarbal F, Skibinski G, Levy JM. et al. 2011. Direct membrane association drives mitochondrial fission by the Parkinson disease-associated protein α-synuclein. J. Biol. Chem. 286:20710–26 [Google Scholar]
  93. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA. et al. 2010. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8:e1000298 [Google Scholar]
  94. Ng CH, Guan MS, Koh C, Ouyang X, Yu F. et al. 2012. AMP kinase activation mitigates dopaminergic dysfunction and mitochondrial abnormalities in Drosophila models of Parkinson's disease. J. Neurosci. 32:14311–17 [Google Scholar]
  95. Ng CH, Mok SZS, Koh C, Ouyang X, Fivaz ML. et al. 2009. Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J. Neurosci. 29:11257–62 [Google Scholar]
  96. Nicklas WJ, Vyas I, Heikkila RE. 1985. Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sci. 36:2503–8 [Google Scholar]
  97. Niu J, Yu M, Wang C, Xu Z. 2012. Leucine-rich repeat kinase 2 disturbs mitochondrial dynamics via Dynamin-like protein. J. Neurochem. 122:650–58 [Google Scholar]
  98. Olney JW, Zorumski CF, Stewart GR, Price MT, Wang GJ, Labruyere J. 1990. Excitotoxicity of L-dopa and 6-OH-dopa: implications for Parkinson's and Huntington's diseases. Exp. Neurol. 108:269–72 [Google Scholar]
  99. Paisán-Ruíz C, Jain S, Evans EW, Gilks WP, Simón J. et al. 2004. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44:595–600 [Google Scholar]
  100. Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C. et al. 2004. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J. Biol. Chem. 279:18614–22 [Google Scholar]
  101. Papkovskaia TD, Chau KY, Inesta-Vaquera F, Papkovsky DB, Healy DG. et al. 2012. G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization. Hum. Mol. Genet. 21:4201–13 [Google Scholar]
  102. Parihar MS, Parihar A, Fujita M, Hashimoto M, Ghafourifar P. 2009. Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells. Int. J. Biochem. Cell Biol. 41:2015–24 [Google Scholar]
  103. Park J, Lee SB, Lee S, Kim Y, Song S. et al. 2006. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441:1157–61 [Google Scholar]
  104. Parker WD Jr, Boyson SJ, Parks JK. 1989. Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann. Neurol. 26:719–23 [Google Scholar]
  105. Parker WD Jr, Parks JK, Swerdlow RH. 2008. Complex I deficiency in Parkinson's disease frontal cortex. Brain Res. 1189:215–18 [Google Scholar]
  106. Periquet M, Latouche M, Lohmann E, Rawal N, De Michele G. et al. 2003. Parkin mutations are frequent in patients with isolated early-onset parkinsonism. Brain 126:1271–78 [Google Scholar]
  107. Pesah Y, Pham T, Burgess H, Middlebrooks B, Verstreken P. et al. 2004. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. Development 131:2183–94 [Google Scholar]
  108. Piccoli C, Sardanelli A, Scrima R, Ripoli M, Quarato G. et al. 2008. Mitochondrial respiratory dysfunction in familiar parkinsonism associated with PINK1 mutation. Neurochem. Res. 33:2565–74 [Google Scholar]
  109. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A. et al. 1997. Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276:2045–47 [Google Scholar]
  110. Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ. 2008. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc. Natl. Acad. Sci. USA 105:1638–43 [Google Scholar]
  111. Porcelli D, Oliva M, Duchi S, Latorre D, Cavaliere V. et al. 2010. Genetic, functional and evolutionary characterization of scox, the Drosophila melanogaster ortholog of the human SCO1 gene. Mitochondrion 10:433–48 [Google Scholar]
  112. Poulopoulos M, Levy OA, Alcalay RN. 2012. The neuropathology of genetic Parkinson's disease. Mov. Disord. 27:831–42 [Google Scholar]
  113. Pridgeon JW, Olzmann JA, Chin L-S, Li L. 2007. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 5:e172 [Google Scholar]
  114. Priyadarshi A, Khuder SA, Schaub EA, Shrivastava S. 2000. A meta-analysis of Parkinson's disease and exposure to pesticides. Neurotoxicology 21:435–40 [Google Scholar]
  115. Qu M, Zhou Z, Chen C, Li M, Pei L. et al. 2012. Inhibition of mitochondrial permeability transition pore opening is involved in the protective effects of mortalin overexpression against beta-amyloid-induced apoptosis in SH-SY5Y cells. Neurosci. Res. 72:94–102 [Google Scholar]
  116. Rakovic A, Grünewald A, Voges L, Hofmann S, Orolicki S. et al. 2011. PINK1-interacting proteins: proteomic analysis of overexpressed PINK1. Park. Dis. 2011:153979 [Google Scholar]
  117. Ramirez A, Heimbach A, Gründemann J, Stiller B, Hampshire D. et al. 2006. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38:1184–91 [Google Scholar]
  118. Ramonet D, Podhajska A, Stafa K, Sonnay S, Trancikova A. et al. 2012. PARK9-associated ATP13A2 localizes to intracellular acidic vesicles and regulates cation homeostasis and neuronal integrity. Hum. Mol. Genet. 21:1725–43 [Google Scholar]
  119. Rogaeva E, Johnson J, Lang AE, Gulick C, Gwinn-Hardy K. et al. 2004. Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease. Arch. Neurol. 61:1898–904 [Google Scholar]
  120. Ruzzenente B, Metodiev MD, Wredenberg A, Bratic A, Park CB. et al. 2012. LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs. EMBO J. 31:443–56 [Google Scholar]
  121. Saha S, Guillily MD, Ferree A, Lanceta J, Chan D. et al. 2009. LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J. Neurosci. 29:9210–18 [Google Scholar]
  122. Sampaio-Marques B, Felgueiras C, Silva A, Rodrigues M, Tenreiro S. et al. 2012. SNCA (α-synuclein)-induced toxicity in yeast cells is dependent on sirtuin 2 (Sir2)-mediated mitophagy. Autophagy 8:1494–509 [Google Scholar]
  123. Sarraf SA, Raman M, Guarani-Pereira V, Sowa ME, Huttlin EL. et al. 2013. Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496:372–76 [Google Scholar]
  124. Saxton WM, Hollenbeck PJ. 2012. The axonal transport of mitochondria. J. Cell Sci. 125:2095–104 [Google Scholar]
  125. Schapira AHV. 2012. Mitochondrial diseases. Lancet 379:1825–34 [Google Scholar]
  126. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD. 1989. Mitochondrial complex I deficiency in Parkinson's disease. Lancet 1:1269 [Google Scholar]
  127. Schon EA, Przedborski S. 2011. Mitochondria: the next (neurode)generation. Neuron 70:1033–53 [Google Scholar]
  128. Schultheis PJ, Hagen TT, O'Toole KK, Tachibana A, Burke CR. et al. 2004. Characterization of the P5 subfamily of P-type transport ATPases in mice. Biochem. Biophys. Res. Commun. 323:731–38 [Google Scholar]
  129. Seibler P, Graziotto J, Jeong H, Simunovic F, Klein C, Krainc D. 2011. Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J. Neurosci. 31:5970–76 [Google Scholar]
  130. Sheng Z-H, Cai Q. 2012. Mitochondrial transport in neurons: impact on synaptic homeostasis and neurodegeneration. Nat. Rev. Neurosci. 13:77–93 [Google Scholar]
  131. Shin JH, Ko HS, Kang H, Lee Y, Lee YI. et al. 2011. PARIS (ZNF746) repression of PGC-1α contributes to neurodegeneration in Parkinson's disease. Cell 144:689–702 [Google Scholar]
  132. Shojaee S, Sina F, Banihosseini SS, Kazemi MH, Kalhor R. et al. 2008. Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am. J. Hum. Genet. 82:1375–84 [Google Scholar]
  133. Shulman JM, De Jager PL, Feany MB. 2011. Parkinson's disease: genetics and pathogenesis. Annu. Rev. Pathol. Mech. Dis. 6:193–222 [Google Scholar]
  134. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S. et al. 2003. α-Synuclein locus triplication causes Parkinson's disease. Science 302:841 [Google Scholar]
  135. Takemoto K, Miyata S, Takamura H, Katayama T, Tohyama M. 2011. Mitochondrial TRAP1 regulates the unfolded protein response in the endoplasmic reticulum. Neurochem. Int. 58:880–87 [Google Scholar]
  136. Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM. et al. 2011. Rotenone, paraquat, and Parkinson's disease. Environ. Health Perspect. 119:866–72 [Google Scholar]
  137. Thomas KJ, McCoy MK, Blackinton J, Beilina A, van der Brug M. et al. 2011. DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Hum. Mol. Genet. 20:40–50 [Google Scholar]
  138. Trinh J, Farrer M. 2013. Advances in the genetics of Parkinson disease. Nat. Rev. Neurol. 9:445–54 [Google Scholar]
  139. Uéda K, Fukushima H, Masliah E, Xia Y, Iwai A. et al. 1993. Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proc. Natl. Acad. Sci. USA 90:11282–86 [Google Scholar]
  140. Unoki M, Nakamura Y. 2001. Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene 20:4457–65 [Google Scholar]
  141. Vafai SB, Mootha VK. 2012. Mitochondrial disorders as windows into an ancient organelle. Nature 491:374–83 [Google Scholar]
  142. Valente EM, Salvi S, Ialongo T, Marongiu R, Elia AE. et al. 2004. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann. Neurol. 56:336–41 [Google Scholar]
  143. Laar V, Mishizen A, Cascio M, Hastings TG. Van 2009. Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. Neurobiol. Dis. 34:487–500 [Google Scholar]
  144. Vilain S, Esposito G, Haddad D, Schaap O, Dobreva MP. et al. 2012. The yeast complex I equivalent NADH dehydrogenase rescues pink1 mutants. PLoS Genet. 8:e1002456 [Google Scholar]
  145. Vilariño-Güell C, Wider C, Ross OA, Dachsel JC, Kachergus JM. et al. 2011. VPS35 mutations in Parkinson disease. Am. J. Hum. Genet. 89:162–67 [Google Scholar]
  146. Vincow ES, Merrihew G, Thomas RE, Shulman NJ, Beyer RP. et al. 2013. The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc. Natl. Acad. Sci. USA 110:6400–5 [Google Scholar]
  147. Vos M, Esposito G, Edirisinghe JN, Vilain S, Haddad DM. et al. 2012. Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science 336:1306–10 [Google Scholar]
  148. Wadhwa R, Takano S, Kaur K, Aida S, Yaguchi T. et al. 2005. Identification and characterization of molecular interactions between mortalin/mtHsp70 and HSP60. Biochem. J. 391:185–90 [Google Scholar]
  149. Wang X, Petrie TG, Liu Y, Liu J, Fujioka H, Zhu X. 2012a. Parkinson's disease-associated DJ-1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction. J. Neurochem. 121:830–39 [Google Scholar]
  150. Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL. et al. 2011. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:893–906 [Google Scholar]
  151. Wang X, Yan MH, Fujioka H, Liu J, Wilson-Delfosse A. et al. 2012b. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum. Mol. Genet. 21:1931–44 [Google Scholar]
  152. Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV. 2007. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356:1736–41 [Google Scholar]
  153. Weihofen A, Thomas KJ, Ostaszewski BL, Cookson MR, Selkoe DJ. 2009. Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry 48:2045–52 [Google Scholar]
  154. West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW. et al. 2005. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl. Acad. Sci. USA 102:16842–47 [Google Scholar]
  155. Wu Z, Sawada T, Shiba K, Liu S, Kanao T. et al. 2013. Tricornered/NDR kinase signaling mediates PINK1-directed mitochondrial quality control and tissue maintenance. Genes Dev. 27:157–62 [Google Scholar]
  156. Xie W, Chung KK. 2012. Alpha-synuclein impairs normal dynamics of mitochondria in cell and animal models of Parkinson's disease. J. Neurochem. 122:404–14 [Google Scholar]
  157. Xun Z, Sowell RA, Kaufman TC, Clemmer DE. 2007. Lifetime proteomic profiling of an A30P alpha-synuclein Drosophila model of Parkinson's disease. J. Proteome Res. 6:3729–38 [Google Scholar]
  158. Yang H, Brosel S, Acin-Perez R, Slavkovich V, Nishino I. et al. 2010. Analysis of mouse models of cytochrome c oxidase deficiency owing to mutations in Sco2. Hum. Mol. Genet. 19:170–80 [Google Scholar]
  159. Yang H, Zhou X, Liu X, Yang L, Chen Q. et al. 2011. Mitochondrial dysfunction induced by knockdown of mortalin is rescued by Parkin. Biochem. Biophys. Res. Commun. 410:114–20 [Google Scholar]
  160. Youle RJ, Narendra DP. 2011. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12:9–14 [Google Scholar]
  161. Youle RJ, van der Bliek AM. 2012. Mitochondrial fission, fusion, and stress. Science 337:1062–65 [Google Scholar]
  162. Yuan XL, Guo JF, Shi ZH, Xiao ZQ, Yan XX. et al. 2010. R492X mutation in PTEN-induced putative kinase 1 induced cellular mitochondrial dysfunction and oxidative stress. Brain Res. 1351:229–37 [Google Scholar]
  163. Zhang K, Li Z, Jaiswal M, Bayat V, Xiong B. et al. 2013a. The C8ORF38 homologue Sicily is a cytosolic chaperone for a mitochondrial complex I subunit. J. Cell Biol. 200:807–20 [Google Scholar]
  164. Zhang L, Karsten P, Hamm S, Pogson JH, Müller-Rischart AK. et al. 2013b. TRAP1 rescues PINK1 loss-of-function phenotypes. Hum. Mol. Genet. 22:2829–41 [Google Scholar]
  165. Zhang L, Shimoji M, Thomas B, Moore DJ, Yu SW. et al. 2005. Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. Hum. Mol. Genet. 14:2063–73 [Google Scholar]
  166. Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS. et al. 2010. PGC-1α, a potential therapeutic target for early intervention in Parkinson's disease. Sci. Transl. Med. 2:52ra73 [Google Scholar]
  167. Zhou Y, Shie FS, Piccardo P, Montine TJ, Zhang J. 2004. Proteasomal inhibition induced by manganese ethylene-bis-dithiocarbamate: relevance to Parkinson's disease. Neuroscience 128:281–91 [Google Scholar]
  168. Zimprich A, Benet-Pagès A, Struhal W, Graf E, Eck SH. et al. 2011. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am. J. Hum. Genet. 89:168–75 [Google Scholar]
  169. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M. et al. 2004. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44:601–7 [Google Scholar]
  170. Ziviani E, Tao RN, Whitworth AJ. 2010. Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. USA 107:5018–23 [Google Scholar]
  171. Zordan MA, Cisotto P, Benna C, Agostino A, Rizzo G. et al. 2006. Post-transcriptional silencing and functional characterization of the Drosophila melanogaster homolog of human Surf1. Genetics 172:229–41 [Google Scholar]
  172. Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J. et al. 2004. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36:449–51 [Google Scholar]
/content/journals/10.1146/annurev-neuro-071013-014317
Loading
/content/journals/10.1146/annurev-neuro-071013-014317
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error