1932

Abstract

Over the past decade, the mouse has emerged as an important model system for studying cortical function, owing to the advent of powerful tools that can record and manipulate neural activity in intact neural circuits. This advance has been particularly prominent in the visual cortex, where studies in the mouse have begun to bridge the gap between cortical structure and function, allowing investigators to determine the circuits that underlie specific visual computations. This review describes the advances in our understanding of the mouse visual cortex, including neural coding, the role of different cell types, and links between vision and behavior, and discusses how recent findings and new approaches can guide future studies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-071714-033807
2015-07-08
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/neuro/38/1/annurev-neuro-071714-033807.html?itemId=/content/journals/10.1146/annurev-neuro-071714-033807&mimeType=html&fmt=ahah

Literature Cited

  1. Adesnik H, Bruns W, Taniguchi H, Huang ZJ, Scanziani M. 2012. A neural circuit for spatial summation in visual cortex. Nature 490:226–31 [Google Scholar]
  2. Alonso JM, Usrey WM, Reid RC. 2001. Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J. Neurosci. 21:4002–15 [Google Scholar]
  3. Andermann ML, Kerlin AM, Roumis DK, Glickfeld LL, Reid RC. 2011. Functional specialization of mouse higher visual cortical areas. Neuron 72:1025–39 [Google Scholar]
  4. Atallah BV, Bruns W, Carandini M, Scanziani M. 2012. Parvalbumin-expressing interneurons linearly transform cortical responses to visual stimuli. Neuron 73:159–70 [Google Scholar]
  5. Atallah BV, Scanziani M, Carandini M. 2014. Atallah et al. reply. Nature 508E3
  6. Ayaz A, Saleem AB, Scholvinck ML, Carandini M. 2013. Locomotion controls spatial integration in mouse visual cortex. Curr. Biol. 23:890–94 [Google Scholar]
  7. Bennett C, Arroyo S, Hestrin S. 2013. Subthreshold mechanisms underlying state-dependent modulation of visual responses. Neuron 80:350–57 [Google Scholar]
  8. Bock DD, Lee WC, Kerlin AM, Andermann ML, Hood G. et al. 2011. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471:177–82 [Google Scholar]
  9. Bonin V, Histed MH, Yurgenson S, Reid RC. 2011. Local diversity and fine-scale organization of receptive fields in mouse visual cortex. J. Neurosci. 31:18506–21 [Google Scholar]
  10. Bortone DS, Olsen SR, Scanziani M. 2014. Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron 82:474–85 [Google Scholar]
  11. Briggs F. 2010. Organizing principles of cortical layer 6. Front. Neural Circuits 4:3 [Google Scholar]
  12. Britten KH, Shadlen MN, Newsome WT, Movshon JA. 1992. The analysis of visual motion: a comparison of neuronal and psychophysical performance. J. Neurosci. 12:4745–65 [Google Scholar]
  13. Busse L, Ayaz A, Dhruv NT, Katzner S, Saleem AB. et al. 2011. The detection of visual contrast in the behaving mouse. J. Neurosci. 31:11351–61 [Google Scholar]
  14. Carandini M, Demb JB, Mante V, Tolhurst DJ, Dan Y. et al. 2005. Do we know what the early visual system does?. J. Neurosci. 25:10577–97 [Google Scholar]
  15. Carandini M, Heeger DJ. 2012. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13:51–62 [Google Scholar]
  16. Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL. et al. 2013. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300 [Google Scholar]
  17. Cheong SK, Tailby C, Solomon SG, Martin PR. 2013. Cortical-like receptive fields in the lateral geniculate nucleus of marmoset monkeys. J. Neurosci. 33:6864–76 [Google Scholar]
  18. Chiappe ME, Seelig JD, Reiser MB, Jayaraman V. 2010. Walking modulates speed sensitivity in Drosophila motion vision. Curr. Biol. 20:1470–75 [Google Scholar]
  19. Cruz-Martín A, El-Danaf RN, Osakada F, Sriram B, Dhande OS. et al. 2014. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507:358–61 [Google Scholar]
  20. DeFelipe J, Jones EG. 1988. Cajal on the Cerebral Cortex: An Annotated Translation of the Complete Writings Oxford, UK: Oxford Univ. Press
  21. Douglas RJ, Martin KA. 2004. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27:419–51 [Google Scholar]
  22. Drager UC. 1975. Receptive fields of single cells and topography in mouse visual cortex. J. Comp. Neurol. 160:269–90 [Google Scholar]
  23. Ferster D, Miller KD. 2000. Neural mechanisms of orientation selectivity in the visual cortex. Annu. Rev. Neurosci. 23:441–71 [Google Scholar]
  24. Fu Y, Tucciarone JM, Espinosa JS, Sheng N, Darcy DP. et al. 2014. A cortical circuit for gain control by behavioral state. Cell 156:1139–52 [Google Scholar]
  25. Gao E, DeAngelis GC, Burkhalter A. 2010. Parallel input channels to mouse primary visual cortex. J. Neurosci. 30:5912–26 [Google Scholar]
  26. Gilbert CD. 1983. Microcircuitry of the visual cortex. Annu. Rev. Neurosci. 6:217–47 [Google Scholar]
  27. Glickfeld LL, Andermann ML, Bonin V, Reid RC. 2013a. Cortico-cortical projections in mouse visual cortex are functionally target specific. Nat. Neurosci. 16:219–26 [Google Scholar]
  28. Glickfeld LL, Histed MH, Maunsell JH. 2013b. Mouse primary visual cortex is used to detect both orientation and contrast changes. J. Neurosci. 33:19416–22 [Google Scholar]
  29. Glickfeld LL, Reid RC, Andermann ML. 2014. A mouse model of higher visual cortical function. Curr. Opin. Neurobiol. 24:28–33 [Google Scholar]
  30. Gold JI, Shadlen MN. 2000. Representation of a perceptual decision in developing oculomotor commands. Nature 404:390–94 [Google Scholar]
  31. Goodale MA, Milner AD. 1992. Separate visual pathways for perception and action. Trends Neurosci. 15:20–25 [Google Scholar]
  32. Grubb MS, Thompson ID. 2004. Biochemical and anatomical subdivision of the dorsal lateral geniculate nucleus in normal mice and in mice lacking the β2 subunit of the nicotinic acetylcholine receptor. Vision Res. 44:3365–76 [Google Scholar]
  33. Harvey CD, Coen P, Tank DW. 2012. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature 484:62–68 [Google Scholar]
  34. Heimel JA, Van Hooser SD, Nelson SB. 2005. Laminar organization of response properties in primary visual cortex of the gray squirrel (Sciurus carolinensis). J. Neurophysiol. 94:3538–54 [Google Scholar]
  35. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. 2013. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500:168–74 [Google Scholar]
  36. Hirsch JA. 2003. Synaptic physiology and receptive field structure in the early visual pathway of the cat. Cereb. Cortex 13:63–69 [Google Scholar]
  37. Histed MH, Carvalho LA, Maunsell JH. 2012. Psychophysical measurement of contrast sensitivity in the behaving mouse. J. Neurophysiol. 107:758–65 [Google Scholar]
  38. Histed MH, Maunsell JH. 2014. Cortical neural populations can guide behavior by integrating inputs linearly, independent of synchrony. PNAS 111:E178–87 [Google Scholar]
  39. Hofer SB, Ko H, Pichler B, Vogelstein J, Ros H. et al. 2011. Differential connectivity and response dynamics of excitatory and inhibitory neurons in visual cortex. Nat. Neurosci. 14:1045–52 [Google Scholar]
  40. Hubel DH, Wiesel TN. 1959. Receptive fields of single neurones in the cat's striate cortex. J. Physiol. 148:574–91 [Google Scholar]
  41. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54 [Google Scholar]
  42. Hubel DH, Wiesel TN. 1968. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. 195:1215–43 [Google Scholar]
  43. Huber D, Petreanu L, Ghitani N, Ranade S, Hromadka T. et al. 2008. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451:61–64 [Google Scholar]
  44. Huberman AD, Niell CM. 2011. What can mice tell us about how vision works?. Trends Neurosci. 34:464–73 [Google Scholar]
  45. Isaacson JS, Scanziani M. 2011. How inhibition shapes cortical activity. Neuron 72:231–43 [Google Scholar]
  46. Jazayeri M, Lindbloom-Brown Z, Horwitz GD. 2012. Saccadic eye movements evoked by optogenetic activation of primate V1. Nat. Neurosci. 15:1368–70 [Google Scholar]
  47. Jia H, Rochefort NL, Chen X, Konnerth A. 2010. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464:1307–12 [Google Scholar]
  48. Keller GB, Bonhoeffer T, Hübener M. 2012. Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. Neuron 74:809–15 [Google Scholar]
  49. Kerlin AM, Andermann ML, Berezovskii VK, Reid RC. 2010. Broadly tuned response properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron 67:858–71 [Google Scholar]
  50. Ko H, Hofer SB, Pichler B, Buchanan KA, Sjöström PJ, Mrsic-Flogel TD. 2011. Functional specificity of local synaptic connections in neocortical networks. Nature 473:87–91 [Google Scholar]
  51. Larkum M. 2013. A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex. Trends Neurosci. 36:141–51 [Google Scholar]
  52. Lee AM, Hoy JL, Bonci A, Wilbrecht L, Stryker MP, Niell CM. 2014. Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion. Neuron 83:455–66 [Google Scholar]
  53. Lee SH, Kwan AC, Zhang S, Phoumthipphavong V, Flannery JG. et al. 2012. Activation of specific interneurons improves V1 feature selectivity and visual perception. Nature 488:379–83 [Google Scholar]
  54. Lien AD, Scanziani M. 2013. Tuned thalamic excitation is amplified by visual cortical circuit. Nat. Neurosci. 16:1315–23 [Google Scholar]
  55. Liu BH, Li P, Li YT, Sun YJ, Yanagawa Y. et al. 2009. Visual receptive field structure of cortical inhibitory neurons revealed by two-photon imaging guided recording. J. Neurosci. 29:10520–32 [Google Scholar]
  56. Liu BH, Li P, Sun YJ, Li YT, Zhang LI, Tao HW. 2010. Intervening inhibition underlies simple-cell receptive field structure in visual cortex. Nat. Neurosci. 13:89–96 [Google Scholar]
  57. Liu BH, Li YT, Ma WP, Pan CJ, Zhang LI, Tao HW. 2011. Broad inhibition sharpens orientation selectivity by expanding input dynamic range in mouse simple cells. Neuron 71:542–54 [Google Scholar]
  58. Luo L, Callaway EM, Svoboda K. 2008. Genetic dissection of neural circuits. Neuron 57:634–60 [Google Scholar]
  59. Ma WP, Liu BH, Li YT, Huang ZJ, Zhang LI, Tao HW. 2010. Visual representations by cortical somatostatin inhibitory neurons—selective but with weak and delayed responses. J. Neurosci. 30:14371–79 [Google Scholar]
  60. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA. et al. 2010. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13:133–40 [Google Scholar]
  61. Maimon G, Straw AD, Dickinson MH. 2010. Active flight increases the gain of visual motion processing in Drosophila. Nat. Neurosci. 13:393–99 [Google Scholar]
  62. Mangini NJ, Pearlman AL. 1980. Laminar distribution of receptive field properties in the primary visual cortex of the mouse. J. Comp. Neurol. 193:203–22 [Google Scholar]
  63. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C. 2004. Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 5:793–807 [Google Scholar]
  64. Marshel JH, Garrett ME, Nauhaus I, Callaway EM. 2011. Functional specialization of seven mouse visual cortical areas. Neuron 72:1040–54 [Google Scholar]
  65. Marshel JH, Kaye AP, Nauhaus I, Callaway EM. 2012. Anterior-posterior direction opponency in the superficial mouse lateral geniculate nucleus. Neuron 76:713–20 [Google Scholar]
  66. Mechler F, Ringach DL. 2002. On the classification of simple and complex cells. Vision Res. 42:1017–33 [Google Scholar]
  67. Metin C, Godement P, Imbert M. 1988. The primary visual cortex in the mouse: receptive field properties and functional organization. Exp. Brain Res. 69:594–612 [Google Scholar]
  68. Morris R. 1984. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 11:47–60 [Google Scholar]
  69. Movshon JA, Thompson ID, Tolhurst DJ. 1978. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J. Physiol. 283:53–77 [Google Scholar]
  70. Nassi JJ, Callaway EM. 2009. Parallel processing strategies of the primate visual system. Nat. Rev. Neurosci. 10:360–72 [Google Scholar]
  71. Niell CM, Stryker MP. 2008. Highly selective receptive fields in mouse visual cortex. J. Neurosci. 28:7520–36 [Google Scholar]
  72. Niell CM, Stryker MP. 2010. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65:472–79 [Google Scholar]
  73. Nienborg H, Cohen MR, Cumming BG. 2012. Decision-related activity in sensory neurons: correlations among neurons and with behavior. Annu. Rev. Neurosci. 35:463–83 [Google Scholar]
  74. Nienborg H, Hasenstaub A, Nauhaus I, Taniguchi H, Huang ZJ, Callaway EM. 2013. Contrast dependence and differential contributions from somatostatin- and parvalbumin-expressing neurons to spatial integration in mouse V1. J. Neurosci. 33:11145–54 [Google Scholar]
  75. O'Connor DH, Hires SA, Guo ZV, Li N, Yu J. et al. 2013. Neural coding during active somatosensation revealed using illusory touch. Nat. Neurosci. 16:958–65 [Google Scholar]
  76. O'Connor DH, Huber D, Svoboda K. 2009. Reverse engineering the mouse brain. Nature 461:923–29 [Google Scholar]
  77. O'Keefe J, Speakman A. 1987. Single unit activity in the rat hippocampus during a spatial memory task. Exp. Brain Res. 68:1–27 [Google Scholar]
  78. Ohki K, Reid RC. 2007. Specificity and randomness in the visual cortex. Curr. Opin. Neurobiol. 17:401–7 [Google Scholar]
  79. Olsen SR, Bortone DS, Adesnik H, Scanziani M. 2012. Gain control by layer six in cortical circuits of vision. Nature 483:47–52 [Google Scholar]
  80. Oomen CA, Hvoslef-Eide M, Heath CJ, Mar AC, Horner AE. et al. 2013. The touchscreen operant platform for testing working memory and pattern separation in rats and mice. Nat. Protoc. 8:2006–21 [Google Scholar]
  81. Parker AJ, Newsome WT. 1998. Sense and the single neuron: probing the physiology of perception. Annu. Rev. Neurosci. 21:227–77 [Google Scholar]
  82. Pinto L, Goard MJ, Estandian D, Xu M, Kwan AC. et al. 2013. Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat. Neurosci. 16:1857–63 [Google Scholar]
  83. Piscopo DM, El-Danaf RN, Huberman AD, Niell CM. 2013. Diverse visual features encoded in mouse lateral geniculate nucleus. J. Neurosci. 33:4642–56 [Google Scholar]
  84. Polack PO, Friedman J, Golshani P. 2013. Cellular mechanisms of brain state-dependent gain modulation in visual cortex. Nat. Neurosci. 16:1331–39 [Google Scholar]
  85. Priebe NJ, Ferster D. 2008. Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57:482–97 [Google Scholar]
  86. Prusky GT, Douglas RM. 2004. Characterization of mouse cortical spatial vision. Vision Res. 44:3411–18 [Google Scholar]
  87. Ramón y Cajal S. 1899. Comparative Study of the Sensory Areas of the Human Cortex Cambridge, MA: Harvard Univ.
  88. Reimer J, Froudarakis E, Cadwell CR, Yatsenko D, Denfield GH, Tolias AS. 2014. Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 84:355–62 [Google Scholar]
  89. Ringach DL. 2002. Spatial structure and symmetry of simple-cell receptive fields in macaque primary visual cortex. J. Neurophysiol. 88:455–63 [Google Scholar]
  90. Runyan CA, Schummers J, Van Wart A, Kuhlman SJ, Wilson NR. et al. 2010. Response features of parvalbumin-expressing interneurons suggest precise roles for subtypes of inhibition in visual cortex. Neuron 67:847–57 [Google Scholar]
  91. Saleem AB, Ayaz A, Jeffery KJ, Harris KD, Carandini M. 2013. Integration of visual motion and locomotion in mouse visual cortex. Nat. Neurosci. 16:1864–69 [Google Scholar]
  92. Salzman CD, Britten KH, Newsome WT. 1990. Cortical microstimulation influences perceptual judgements of motion direction. Nature 346:174–77 [Google Scholar]
  93. Scholl B, Tan AY, Corey J, Priebe NJ. 2013. Emergence of orientation selectivity in the mammalian visual pathway. J. Neurosci. 33:10616–24 [Google Scholar]
  94. Skottun BC, De Valois RL, Grosof DH, Movshon JA, Albrecht DG, Bonds AB. 1991. Classifying simple and complex cells on the basis of response modulation. Vision Res. 31:1079–86 [Google Scholar]
  95. Stoerig P, Cowey A. 1997. Blindsight in man and monkey. Brain 120:Pt. 3535–59 [Google Scholar]
  96. Tan AY, Brown BD, Scholl B, Mohanty D, Priebe NJ. 2011. Orientation selectivity of synaptic input to neurons in mouse and cat primary visual cortex. J. Neurosci. 31:12339–50 [Google Scholar]
  97. Taniguchi H, He M, Wu P, Kim S, Paik R. et al. 2011. A resource of Cre driver lines for genetic targeting of GABAergic neurons in cerebral cortex. Neuron 71:995–1013 [Google Scholar]
  98. Tsumoto T, Eckart W, Creutzfeldt OD. 1979. Modification of orientation sensitivity of cat visual cortex neurons by removal of GABA-mediated inhibition. Exp. Brain Res. 34:351–63 [Google Scholar]
  99. Van den Bergh G, Zhang B, Arckens L, Chino YM. 2010. Receptive-field properties of V1 and V2 neurons in mice and macaque monkeys. J. Comp. Neurol. 518:2051–70 [Google Scholar]
  100. Van Hooser SD. 2007. Similarity and diversity in visual cortex: Is there a unifying theory of cortical computation?. Neuroscientist 13:639–56 [Google Scholar]
  101. Velez-Fort M, Rousseau CV, Niedworok CJ, Wickersham IR, Rancz EA. et al. 2014. The stimulus selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying visual processing. Neuron 83:1431–43 [Google Scholar]
  102. Vinck M, Batista-Brito R, Knoblich U, Cardin JA. 2014. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. BioRxiv http://dx.doi.org/10.1101/010751
  103. Vogels TP, Rajan K, Abbott LF. 2005. Neural network dynamics. Annu. Rev. Neurosci. 28:357–76 [Google Scholar]
  104. Wang Q, Burkhalter A. 2007. Area map of mouse visual cortex. J. Comp. Neurol. 502:339–57 [Google Scholar]
  105. Wang Q, Gao E, Burkhalter A. 2011. Gateways of ventral and dorsal streams in mouse visual cortex. J. Neurosci. 31:1905–18 [Google Scholar]
  106. Wilson NR, Runyan CA, Wang FL, Sur M. 2012. Division and subtraction by distinct cortical inhibitory networks in vivo. Nature 488:343–48 [Google Scholar]
  107. Winnubst J, Lohmann C. 2012. Synaptic clustering during development and learning: the why, when, and how. Front. Mol. Neurosci. 5:70 [Google Scholar]
  108. Yen SC, Baker J, Gray CM. 2007. Heterogeneity in the responses of adjacent neurons to natural stimuli in cat striate cortex. J. Neurophysiol. 97:1326–41 [Google Scholar]
  109. Zhao X, Chen H, Liu X, Cang J. 2013. Orientation-selective responses in the mouse lateral geniculate nucleus. J. Neurosci. 33:12751–63 [Google Scholar]
  110. Zhao X, Liu M, Cang J. 2014. Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice. Neuron 84:202–13 [Google Scholar]
  111. Zhou M, Liang F, Xiong XR, Li L, Li H. et al. 2014. Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. Nat. Neurosci. 17:841–50 [Google Scholar]
/content/journals/10.1146/annurev-neuro-071714-033807
Loading
/content/journals/10.1146/annurev-neuro-071714-033807
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error