The brain, which represents 2% of body mass but consumes 20% of body energy at rest, has a limited capacity to store energy and is therefore highly dependent on oxygen and glucose supply from the blood stream. Normal functioning of neural circuits thus relies on adequate matching between metabolic needs and blood supply. Moreover, not only does the brain need to be densely vascularized, it also requires a tightly controlled environment free of toxins and pathogens to provide the proper chemical composition for synaptic transmission and neuronal function. In this review, we focus on three major factors that ensure optimal brain perfusion and function: the patterning of vascular networks to efficiently deliver blood and nutrients, the function of the blood–brain barrier to maintain brain homeostasis, and the regulation of cerebral blood flow to adequately couple energy supply to neural function.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adams RH, Eichmann A. 2010. Axon guidance molecules in vascular patterning. Cold Spring Harb. Perspect. Biol. 2:a001875 [Google Scholar]
  2. Aird WC. 2007. Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ. Res. 100:158–73 [Google Scholar]
  3. Alvarez JI, Dodelet-Devillers A, Kebir H, Ifergan I, Fabre PJ. et al. 2011. The Hedgehog pathway promotes blood-brain barrier integrity and CNS immune quiescence. Science 334:1727–31 [Google Scholar]
  4. Anderson AW, Marois R, Colson ER, Peterson BS, Duncan CC. et al. 2001. Neonatal auditory activation detected by functional magnetic resonance imaging. Magn. Reson. Imaging 19:1–5 [Google Scholar]
  5. Argandona EG, Lafuente JV. 1996. Effects of dark-rearing on the vascularization of the developmental rat visual cortex. Brain Res. 732:43–51 [Google Scholar]
  6. Argandona EG, Lafuente JV. 2000. Influence of visual experience deprivation on the postnatal development of the microvascular bed in layer IV of the rat visual cortex. Brain Res. 855:137–42 [Google Scholar]
  7. Armulik A, Abramsson A, Betsholtz C. 2005. Endothelial/pericyte interactions. Circ. Res. 97:512–23 [Google Scholar]
  8. Armulik A, Genové G, Mäe M, Nisancioglu MH, Wallgard E. et al. 2010. Pericytes regulate the blood–brain barrier. Nature 468:557–61 [Google Scholar]
  9. Arnold T, Betsholtz C. 2013. The importance of microglia in the development of the vasculature in the central nervous system. Vasc. Cell 5:4 [Google Scholar]
  10. Artus C, Glacial F, Ganeshamoorthy K, Ziegler N, Godet M. et al. 2014. The Wnt/planar cell polarity signaling pathway contributes to the integrity of tight junctions in brain endothelial cells. J. Cereb. Blood Flow Metab. 34:433–40 [Google Scholar]
  11. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. 2010. Glial and neuronal control of brain blood flow. Nature 468:232–43 [Google Scholar]
  12. Attwell D, Laughlin SB. 2001. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21:1133–45 [Google Scholar]
  13. Bates D, Taylor GI, Minichiello J, Farlie P, Cichowitz A. et al. 2003. Neurovascular congruence results from a shared patterning mechanism that utilizes Semaphorin3A and Neuropilin-1. Dev. Biol. 255:77–98 [Google Scholar]
  14. Bauer H, Sonnleitner U, Lametschwandtner A, Steiner M, Adam H, Bauer HC. 1995. Ontogenic expression of the erythroid-type glucose transporter (Glut 1) in the telencephalon of the mouse: correlation to the tightening of the blood-brain barrier. Brain Res. Dev. Brain Res. 86:317–25 [Google Scholar]
  15. Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B. et al. 2010. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68:409–27 [Google Scholar]
  16. Ben-Zvi A, Lacoste B, Kur E, Andreone BJ, Mayshar Y. et al. 2014. Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature 509:507–11 [Google Scholar]
  17. Betsholtz C. 2014. Physiology: double function at the blood–brain barrier. Nature 509:432–33 [Google Scholar]
  18. Bien-Ly N, Yu YJ, Bumbaca D, Elstrott J, Boswell CA. et al. 2014. Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants. J. Exp. Med. 211:233–44 [Google Scholar]
  19. Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT. 1990. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. PNAS 87:5568–72 [Google Scholar]
  20. Black JE, Sirevaag AM, Greenough WT. 1987. Complex experience promotes capillary formation in young rat visual cortex. Neurosci. Lett. 83:351–55 [Google Scholar]
  21. Black JE, Zelazny AM, Greenough WT. 1991. Capillary and mitochondrial support of neural plasticity in adult rat visual cortex. Exp. Neurol. 111:204–9 [Google Scholar]
  22. Blinder P, Tsai PS, Kaufhold JP, Knutsen PM, Suhl H, Kleinfeld D. 2013. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat. Neurosci. 16:889–97 [Google Scholar]
  23. Born AP, Rostrup E, Miranda MJ, Larsson HB, Lou HC. 2002. Visual cortex reactivity in sedated children examined with perfusion MRI (FAIR). Magn. Reson. Imaging 20:199–205 [Google Scholar]
  24. Brightman MW, Reese TS. 1969. Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell Biol. 40:648–77 [Google Scholar]
  25. Carmeliet P, Tessier-Lavigne M. 2005. Common mechanisms of nerve and blood vessel wiring. Nature 436:193–200 [Google Scholar]
  26. Cauli B, Hamel E. 2010. Revisiting the role of neurons in neurovascular coupling. Front. Neuroenergetics 2:9 [Google Scholar]
  27. Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B. et al. 2004. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci. 24:8940–49 [Google Scholar]
  28. Cipolla MJ. 2009. Anatomy and ultrastructure. The Cerebral Circulation3–10 San Rafael, CA: Morgan Claypool Life Sci. [Google Scholar]
  29. Couch JA, Yu YJ, Zhang Y, Tarrant JM, Fuji RN. et al. 2013. Addressing safety liabilities of TfR bispecific antibodies that cross the blood-brain barrier. Sci. Transl. Med. 5:183ra57 [Google Scholar]
  30. Cox SB, Woolsey TA, Rovainen CM. 1993. Localized dynamic changes in cortical blood flow with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J. Cereb. Blood Flow Metab. 13:899–913 [Google Scholar]
  31. Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, Barres BA. 2009. Wnt/β-catenin signaling is required for CNS, but not non-CNS, angiogenesis. PNAS 106:641–46 [Google Scholar]
  32. Daneman R, Zhou L, Agalliu D, Cahoy JD, Kaushal A, Barres BA. 2010a. The mouse blood-brain barrier transcriptome: a new resource for understanding the development and function of brain endothelial cells. PLOS ONE 5:e13741 [Google Scholar]
  33. Daneman R, Zhou L, Kebede AA, Barres BA. 2010b. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 468:562–66 [Google Scholar]
  34. Drake CT, Iadecola C. 2007. The role of neuronal signaling in controlling cerebral blood flow. Brain Lang. 102:141–52 [Google Scholar]
  35. Ehrlich P. 1885. Das Sauerstoff-Bedürfniss des Organismus: eine farbenanalytische Studie Berlin: Hirschwald [Google Scholar]
  36. Elhusseiny A, Hamel E. 2000. Muscarinic—but not nicotinic—acetylcholine receptors mediate a nitric oxide-dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype. J. Cereb. Blood Flow Metab. 20:298–305 [Google Scholar]
  37. Evans V, Hatzopoulos A, Aird WC, Rayburn HB, Rosenberg RD, Kuivenhoven JA. 2000. Targeting the Hprt locus in mice reveals differential regulation of Tie2 gene expression in the endothelium. Physiol. Genomics 2:67–75 [Google Scholar]
  38. Fergus A, Lee KS. 1997. Regulation of cerebral microvessels by glutamatergic mechanisms. Brain Res. 754:35–45 [Google Scholar]
  39. Fernandez-Klett F, Offenhauser N, Dirnagl U, Priller J, Lindauer U. 2010. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. PNAS 107:22290–95 [Google Scholar]
  40. Friedland RP, Iadecola C. 1991. Roy and Sherrington (1890): a centennial reexamination of “On the regulation of the blood-supply of the brain.”. Neurology 41:10–14 [Google Scholar]
  41. Gelfand MV, Hong S, Gu C. 2009. Guidance from above: common cues direct distinct signaling outcomes in vascular and neural patterning. Trends Cell Biol. 19:99–110 [Google Scholar]
  42. Gitler AD, Lu MM, Epstein JA. 2004. PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development. Dev. Cell 7:107–16 [Google Scholar]
  43. Grant GA, Abbott NJ, Janigro D. 1998. Understanding the physiology of the blood-brain barrier: in vitro models. News Physiol. Sci. 13:287–93 [Google Scholar]
  44. Gu C, Yoshida Y, Livet J, Reimert DV, Mann F. et al. 2005. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science 307:265–68 [Google Scholar]
  45. Gumbleton M, Audus KL. 2001. Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier. J. Pharm. Sci. 90:1681–98 [Google Scholar]
  46. Haigh JJ, Morelli PI, Gerhardt H, Haigh K, Tsien J. et al. 2003. Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. Dev. Biol. 262:225–41 [Google Scholar]
  47. Halilagic A, Ribes V, Ghyselinck NB, Zile MH, Dolle P, Studer M. 2007. Retinoids control anterior and dorsal properties in the developing forebrain. Dev. Biol. 303:362–75 [Google Scholar]
  48. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A. et al. 2014. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55–60 [Google Scholar]
  49. Hamel E. 2006. Perivascular nerves and the regulation of cerebrovascular tone. J. Appl. Physiol. 100:1059–64 [Google Scholar]
  50. Hamilton NB, Attwell D, Hall CN. 2010. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front. Neuroenergetics 2:5 [Google Scholar]
  51. Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ. 2011. Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. J. Neurosci. Methods 199:223–29 [Google Scholar]
  52. Hawkins BT, Davis TP. 2005. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev. 57:173–85 [Google Scholar]
  53. Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C. 1999. Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126:3047–55 [Google Scholar]
  54. Hillman EM. 2014. Coupling mechanism and significance of the BOLD signal: a status report. Annu. Rev. Neurosci. 37:161–81 [Google Scholar]
  55. Hillman EM, Devor A, Bouchard MB, Dunn AK, Krauss GW. et al. 2007. Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation. Neuroimage 35:89–104 [Google Scholar]
  56. Honma Y, Araki T, Gianino S, Bruce A, Heuckeroth R. et al. 2002. Artemin is a vascular-derived neurotropic factor for developing sympathetic neurons. Neuron 35:267–82 [Google Scholar]
  57. Howarth C. 2014. The contribution of astrocytes to the regulation of cerebral blood flow. Front. Neurosci. 8:103 [Google Scholar]
  58. Huber AB, Kolodkin AL, Ginty DD, Cloutier JF. 2003. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu. Rev. Neurosci. 26:509–63 [Google Scholar]
  59. Iadecola C. 2004. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5:347–60 [Google Scholar]
  60. Iadecola C, Nedergaard M. 2007. Glial regulation of the cerebral microvasculature. Nat. Neurosci. 10:1369–76 [Google Scholar]
  61. Isaacs KR, Anderson BJ, Alcantara AA, Black JE, Greenough WT. 1992. Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J. Cereb. Blood Flow Metab. 12:110–19 [Google Scholar]
  62. Itoh Y, Suzuki N. 2012. Control of brain capillary blood flow. J. Cereb. Blood Flow Metab. 32:1167–76 [Google Scholar]
  63. James JM, Gewolb C, Bautch VL. 2009. Neurovascular development uses VEGF-A signaling to regulate blood vessel ingression into the neural tube. Development 136:833–41 [Google Scholar]
  64. Janzer RC, Raff MC. 1987. Astrocytes induce blood–brain barrier properties in endothelial cells. Nature 325:253–57 [Google Scholar]
  65. Jiang BH, Zheng JZ, Leung SW, Roe R, Semenza GL. 1997. Transactivation and inhibitory domains of hypoxia-inducible factor 1α: modulation of transcriptional activity by oxygen tension. J. Biol. Chem. 272:19253–60 [Google Scholar]
  66. Jones AR, Shusta EV. 2007. Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm. Res. 24:1759–71 [Google Scholar]
  67. Katz LC, Shatz CJ. 1996. Synaptic activity and the construction of cortical circuits. Science 274:1133–38 [Google Scholar]
  68. Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE. et al. 2014. Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron. 82:603–17 [Google Scholar]
  69. Kozberg MG, Chen BR, DeLeo SE, Bouchard MB, Hillman EM. 2013. Resolving the transition from negative to positive blood oxygen level-dependent responses in the developing brain. PNAS 110:4380–85 [Google Scholar]
  70. Lacoste B, Comin CH, Ben-Zvi A, Kaeser PS, Xu X. et al. 2014. Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex. Neuron 83:1117–30 [Google Scholar]
  71. Lecrux C, Hamel E. 2011. The neurovascular unit in brain function and disease. Acta Physiol. 203:47–59 [Google Scholar]
  72. Lecrux C, Toussay X, Kocharyan A, Fernandes P, Neupane S. et al. 2011. Pyramidal neurons are “neurogenic hubs” in the neurovascular coupling response to whisker stimulation. J. Neurosci. 31:9836–47 [Google Scholar]
  73. Lee HS, McCarty JH. 2014. Inducible gene deletion in glial cells to study angiogenesis in the central nervous system. Methods Mol. Biol. 1135:261–74 [Google Scholar]
  74. Lee SW, Kim WJ, Choi YK, Song HS, Son MJ. et al. 2003. SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat. Med. 9:900–6 [Google Scholar]
  75. Lewis BM. 1902. The development of the arm in man. Am. J. Anat. 1:145–85 [Google Scholar]
  76. Li WL, Fraser JL, Yu SP, Zhu J, Jiang YJ, Wei L. 2011. The role of VEGF/VEGFR2 signaling in peripheral stimulation-induced cerebral neurovascular regeneration after ischemic stroke in mice. Exp. Brain Res. 214:503–13 [Google Scholar]
  77. Liebner S, Corada M, Bangsow T, Babbage J, Taddei A. et al. 2008. Wnt/β-catenin signaling controls development of the blood–brain barrier. J. Cell Biol. 183:409–17 [Google Scholar]
  78. Lind BL, Brazhe AR, Jessen SB, Tan FC, Lauritzen MJ. 2013. Rapid stimulus-evoked astrocyte Ca2+ elevations and hemodynamic responses in mouse somatosensory cortex in vivo. PNAS 110:E4678–87 [Google Scholar]
  79. Lindahl P, Johansson BR, Leveen P, Betsholtz C. 1997. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–45 [Google Scholar]
  80. Lippmann ES, Al-Ahmad A, Azarin SM, Palecek SP, Shusta EV. 2014. A retinoic acid-enhanced, multicellular human blood-brain barrier model derived from stem cell sources. Sci. Rep. 4:4160 [Google Scholar]
  81. Lippmann ES, Azarin SM, Kay JE, Nessler RA, Wilson HK. et al. 2012. Derivation of blood-brain barrier endothelial cells from human pluripotent stem cells. Nat. Biotechnol. 30:783–91 [Google Scholar]
  82. Lo EH, Rosenberg GA. 2009. The neurovascular unit in health and disease: introduction. Stroke 40:S2–3 [Google Scholar]
  83. Lu X, Le Noble F, Yuan L, Jiang Q, De Lafarge B. et al. 2004. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432:179–86 [Google Scholar]
  84. Ma S, Kwon HJ, Huang Z. 2012. A functional requirement for astroglia in promoting blood vessel development in the early postnatal brain. PLOS ONE 7:e48001 [Google Scholar]
  85. Ma S, Kwon HJ, Johng H, Zang K, Huang Z. 2013. Radial glial neural progenitors regulate nascent brain vascular network stabilization via inhibition of Wnt signaling. PLOS Biol. 11:e1001469 [Google Scholar]
  86. Mäe M, Armulik A, Betsholtz C. 2011. Getting to know the cast - cellular interactions and signaling at the neurovascular unit. Curr. Pharm. Des. 17:2750–54 [Google Scholar]
  87. Makita T, Sucov HM, Gariepy CE, Yanagisawa M, Ginty DD. 2008. Endothelins are vascular-derived axonal guidance cues for developing sympathetic neurons. Nature 452:759–63 [Google Scholar]
  88. Manich G, Cabezón I, del Valle J, Duran-Vilaregut J, Camins A. et al. 2013. Study of the transcytosis of an anti-transferrin receptor antibody with a Fab′ cargo across the blood–brain barrier in mice. Eur. J. Pharm. Sci. 49:556–64 [Google Scholar]
  89. Martin P, Lewis J. 1989. Origins of the neurovascular bundle: interactions between developing nerves and blood vessels in embryonic chick skin. Int. J. Dev. Biol. 33:379–87 [Google Scholar]
  90. Melani M, Weinstein BM. 2010. Common factors regulating patterning of the nervous and vascular systems. Annu. Rev. Cell Dev. Biol. 26:639–65 [Google Scholar]
  91. Mizee MR, Wooldrik D, Lakeman KAM, van het Hof B, Drexhage JAR. et al. 2013. Retinoic acid induces blood–brain barrier development. J. Neurosci. 33:1660–71 [Google Scholar]
  92. Mukouyama YS, Gerber HP, Ferrara N, Gu C, Anderson DJ. 2005. Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development 132:941–52 [Google Scholar]
  93. Mukouyama YS, Shin D, Britsch S, Taniguchi M, Anderson DJ. 2002. Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109:693–705 [Google Scholar]
  94. Munzenmaier DH, Harder DR. 2000. Cerebral microvascular endothelial cell tube formation: role of astrocytic epoxyeicosatrienoic acid release. Am. J. Physiol. Heart Circ. Physiol. 278:H1163–67 [Google Scholar]
  95. Muramoto S, Yamada H, Sadato N, Kimura H, Konishi Y. et al. 2002. Age-dependent change in metabolic response to photic stimulation of the primary visual cortex in infants: functional magnetic resonance imaging study. J. Comput. Assist. Tomogr. 26:894–901 [Google Scholar]
  96. Nehls V, Drenckhahn D. 1991. Heterogeneity of microvascular pericytes for smooth muscle type alpha–actin. J. Cell Biol. 113:147–54 [Google Scholar]
  97. Newton SS, Girgenti MJ, Collier EF, Duman RS. 2006. Electroconvulsive seizure increases adult hippocampal angiogenesis in rats. Eur. J. Neurosci. 24:819–28 [Google Scholar]
  98. Nguyen LN, Ma D, Shui G, Wong P, Cazenave-Gassiot A. et al. 2014. Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid. Nature 509:503–6 [Google Scholar]
  99. Niewoehner J, Bohrmann B, Collin L, Urich E, Sade H. et al. 2014. Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle. Neuron 81:49–60 [Google Scholar]
  100. Obermeier B, Daneman R, Ransohoff RM. 2013. Development, maintenance and disruption of the blood-brain barrier. Nat. Med. 19:1584–96 [Google Scholar]
  101. O'Donnell M, Chance RK, Bashaw GJ. 2009. Axon growth and guidance: receptor regulation and signal transduction. Annu. Rev. Neurosci. 32:383–412 [Google Scholar]
  102. Oh WJ, Gu C. 2013. Establishment of neurovascular congruency in the mouse whisker system by an independent patterning mechanism. Neuron 80:458–69 [Google Scholar]
  103. Paolinelli R, Corada M, Ferrarini L, Devraj K, Artus C. et al. 2013. Wnt activation of immortalized brain endothelial cells as a tool for generating a standardized model of the blood brain barrier in vitro. PLOS ONE 8:e70233 [Google Scholar]
  104. Pardridge WM. 2007. Blood–brain barrier delivery. Drug Discov. Today 12:54–61 [Google Scholar]
  105. Pardridge WM. 2012. Drug transport across the blood–brain barrier. J. Cereb. Blood Flow Metab. 32:1959–72 [Google Scholar]
  106. Patel U. 1983. Non-random distribution of blood vessels in the posterior region of the rat somatosensory cortex. Brain Res. 289:65–70 [Google Scholar]
  107. Peppiatt CM, Howarth C, Mobbs P, Attwell D. 2006. Bidirectional control of CNS capillary diameter by pericytes. Nature 443:700–4 [Google Scholar]
  108. Peters A, Schweiger U, Pellerin L, Hubold C, Oltmanns KM. et al. 2004. The selfish brain: competition for energy resources. Neurosci. Biobehav. Rev. 28:143–80 [Google Scholar]
  109. Potente M, Fisslthaler B, Busse R, Fleming I. 2003. 11,12-Epoxyeicosatrienoic acid-induced inhibition of FOXO factors promotes endothelial proliferation by down-regulating p27Kip1. J. Biol. Chem. 278:29619–25 [Google Scholar]
  110. Pozzi A, Macias-Perez I, Abair T, Wei S, Su Y. et al. 2005. Characterization of 5,6- and 8,9-epoxyeicosatrienoic acids (5,6- and 8,9-EET) as potent in vivo angiogenic lipids. J. Biol. Chem. 280:27138–46 [Google Scholar]
  111. Provis JM, Leech J, Diaz CM, Penfold PL, Stone J, Keshet E. 1997. Development of the human retinal vasculature: cellular relations and VEGF expression. Exp. Eye Res. 65:555–68 [Google Scholar]
  112. Raab S, Beck H, Gaumann A, Yuce A, Gerber HP. et al. 2004. Impaired brain angiogenesis and neuronal apoptosis induced by conditional homozygous inactivation of vascular endothelial growth factor. Thromb. Haemost. 91:595–605 [Google Scholar]
  113. Reese TS, Karnovsky MJ. 1967. Fine structural localization of a blood-brain barrier to exogenous peroxidase. J. Cell Biol. 34:207–17 [Google Scholar]
  114. Rey S, Semenza GL. 2010. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc. Res. 86:236–42 [Google Scholar]
  115. Riddle DR, Gutierrez G, Zheng D, White LE, Richards A, Purves D. 1993. Differential metabolic and electrical activity in the somatic sensory cortex of juvenile and adult rats. J. Neurosci. 13:4193–213 [Google Scholar]
  116. Rössler K, Neuchrist C, Kitz K, Scheiner O, Kraft D, Lassmann H. 1992. Expression of leucocyte adhesion molecules at the human blood-brain barrier (BBB). J. Neurosci. Res. 31:365–74 [Google Scholar]
  117. Roy CS, Sherrington CS. 1890. On the regulation of the blood-supply of the brain. J. Physiol. 11:85–108, 158-7–158-17 [Google Scholar]
  118. Ruhrberg C, Bautch VL. 2013. Neurovascular development and links to disease. Cell. Mol. Life Sci. 70:1675–84 [Google Scholar]
  119. Saunders NR, Daneman R, Dziegielewska KM, Liddelow SA. 2013. Transporters of the blood–brain and blood–CSF interfaces in development and in the adult. Mol. Asp. Med. 34:742–52 [Google Scholar]
  120. Saunders NR, Liddelow SA, Dziegielewska KM. 2012. Barrier mechanisms in the developing brain. Front. Pharmacol. 3:46 [Google Scholar]
  121. Semenza GL, Agani F, Booth G, Forsythe J, Iyer N. et al. 1997. Structural and functional analysis of hypoxia-inducible factor 1. Kidney Int. 51:553–55 [Google Scholar]
  122. Siegenthaler JA, Sohet F, Daneman R. 2013. ‘Sealing off the CNS’: cellular and molecular regulation of blood–brain barriergenesis. Curr. Opin. Neurobiol. 23:1057–64 [Google Scholar]
  123. Silpanisong J, Pearce WJ. 2013. Vasotrophic regulation of age-dependent hypoxic cerebrovascular remodeling. Curr. Vasc. Pharmacol. 11:544–63 [Google Scholar]
  124. Sirevaag AM, Black JE, Shafron D, Greenough WT. 1988. Direct evidence that complex experience increases capillary branching and surface area in visual cortex of young rats. Brain Res. 471:299–304 [Google Scholar]
  125. Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP. 2008. Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322:1247–50 [Google Scholar]
  126. Stewart PA, Wiley MJ. 1981. Developing nervous tissue induces formation of blood-brain barrier characteristics in invading endothelial cells: a study using quail–chick transplantation chimeras. Dev. Biol. 84:183–92 [Google Scholar]
  127. Stone J, Itin A, Alon T, Pe'er J, Gnessin H. et al. 1995. Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J. Neurosci. 15:4738–47 [Google Scholar]
  128. Talbott JH, Wolff HG, Cobb S. 1929. The cerebral circulation: VII. Changes in cerebral capillary bed following cervical sympathectomy. Arch. Neur. Psych. 21:1102–6 [Google Scholar]
  129. Tam SJ, Richmond DL, Kaminker JS, Modrusan Z, Martin-McNulty B. et al. 2012. Death receptors DR6 and TROY regulate brain vascular development. Dev. Cell 22:403–17 [Google Scholar]
  130. Tessier-Lavigne M, Goodman CS. 1996. The molecular biology of axon guidance. Science 274:1123–33 [Google Scholar]
  131. Tsai PS, Kaufhold JP, Blinder P, Friedman B, Drew PJ. et al. 2009. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. J. Neurosci. 29:14553–70 [Google Scholar]
  132. Tuma P, Hubbard AL. 2003. Transcytosis: crossing cellular barriers. Physiol. Rev. 83:871–932 [Google Scholar]
  133. Wang Y, Rattner A, Zhou Y, Williams J, Smallwood PM, Nathans J. 2012. Norrin/Frizzled4 signaling in retinal vascular development and blood brain barrier plasticity. Cell 151:1332–44 [Google Scholar]
  134. Whitaker VR, Cui L, Miller S, Yu SP, Wei L. 2007. Whisker stimulation enhances angiogenesis in the barrel cortex following focal ischemia in mice. J. Cereb. Blood Flow Metab. 27:57–68 [Google Scholar]
  135. Whiteus C, Freitas C, Grutzendler J. 2014. Perturbed neural activity disrupts cerebral angiogenesis during a postnatal critical period. Nature 505:407–11 [Google Scholar]
  136. Wilhelm I, Fazakas C, Krizbai IA. 2011. In vitro models of the blood-brain barrier. Acta Neurobiol. Exp. 71:113–28 [Google Scholar]
  137. Wittko-Schneider IM, Schneider FT, Plate KH. 2014. Cerebral angiogenesis during development: Who is conducting the orchestra?. Methods Mol. Biol. 1135:3–20 [Google Scholar]
  138. Woolsey TA, Rovainen CM, Cox SB, Henegar MH, Liang GE. et al. 1996. Neuronal units linked to microvascular modules in cerebral cortex: response elements for imaging the brain. Cereb. Cortex 6:647–60 [Google Scholar]
  139. Wosik K, Cayrol R, Dodelet-Devillers A, Berthelet F, Bernard M. et al. 2007. Angiotensin II controls occludin function and is required for blood–brain barrier maintenance: relevance to multiple sclerosis. J. Neurosci. 27:9032–42 [Google Scholar]
  140. Xia CF, Boado RJ, Pardridge WM. 2009. Antibody-mediated targeting of siRNA via the human insulin receptor using avidin–biotin technology. Mol. Pharm. 6:747–51 [Google Scholar]
  141. Yamada H, Sadato N, Konishi Y, Muramoto S, Kimura K. et al. 2000. A milestone for normal development of the infantile brain detected by functional MRI. Neurology 55:218–23 [Google Scholar]
  142. Yu YJ, Watts RJ. 2013. Developing therapeutic antibodies for neurodegenerative disease. Neurotherapeutics 10:459–72 [Google Scholar]
  143. Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W. et al. 2011. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci. Transl. Med. 3:84ra44 [Google Scholar]
  144. Yuen TJ, Silbereis JC, Griveau A, Chang SM, Daneman R. et al. 2014. Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell 158:383–96 [Google Scholar]
  145. Zhang C, Harder DR. 2002. Cerebral capillary endothelial cell mitogenesis and morphogenesis induced by astrocytic epoxyeicosatrienoic acid. Stroke 33:2957–64 [Google Scholar]
  146. Zhang F, Xu S, Iadecola C. 1995. Role of nitric oxide and acetylcholine in neocortical hyperemia elicited by basal forebrain stimulation: evidence for an involvement of endothelial nitric oxide. Neuroscience 69:1195–204 [Google Scholar]
  147. Zhang LI, Poo MM. 2001. Electrical activity and development of neural circuits. Nat. Neurosci. 4:Suppl.1207–14 [Google Scholar]
  148. Zhang Y, Huang S, Wang B, Sun B, Li W. et al. 2012. Atorvastatin and whisker stimulation synergistically enhance angiogenesis in the barrel cortex of rats following focal ischemia. Neurosci. Lett. 525:135–39 [Google Scholar]
  149. Zhao Z, Zlokovic BV. 2014. Blood-brain barrier: a dual life of MFSD2A?. Neuron 82:728–30 [Google Scholar]
  150. Zlokovic BV. 2008. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57:178–201 [Google Scholar]
  151. Zlokovic BV. 2010. Neurodegeneration and the neurovascular unit. Nat. Med. 16:1370–71 [Google Scholar]
  152. Zonta M, Angulo MC, Gobbo S, Rosengarten B, Hossmann KA. et al. 2003. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat. Neurosci. 6:43–50 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error