1932

Abstract

Vision is the sense humans rely on most to navigate the world, make decisions, and perform complex tasks. Understanding how humans see thus represents one of the most fundamental and important goals of neuroscience. The use of the mouse as a model for parsing how vision works at a fundamental level started approximately a decade ago, ushered in by the mouse's convenient size, relatively low cost, and, above all, amenability to genetic perturbations. In the course of that effort, a large cadre of new and powerful tools for in vivo labeling, monitoring, and manipulation of neurons were applied to this species. As a consequence, a significant body of work now exists on the architecture, function, and development of mouse central visual pathways. Excitingly, much of that work includes causal testing of the role of specific cell types and circuits in visual perception and behavior—something rare to find in studies of the visual system of other species. Indeed, one could argue that more information is now available about the mouse visual system than any other sensory system, in any species, including humans. As such, the mouse visual system has become a platform for multilevel analysis of the mammalian central nervous system generally. Here we review the mouse visual system structure, function, and development literature and comment on the similarities and differences between the visual system of this and other model species. We also make it a point to highlight the aspects of mouse visual circuitry that remain opaque and that are in need of additional experimentation to enrich our understanding of how vision works on a broad scale.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-071714-033842
2017-07-25
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/neuro/40/1/annurev-neuro-071714-033842.html?itemId=/content/journals/10.1146/annurev-neuro-071714-033842&mimeType=html&fmt=ahah

Literature Cited

  1. Ackman JB, Burbridge TJ, Crair MC. 2012. Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490:219–25 [Google Scholar]
  2. Ahmadlou M, Heimel JA. 2015. Preference for concentric orientations in the mouse superior colliculus. Nat. Commun. 6:6773 [Google Scholar]
  3. Allen AE, Procyk CA, Howarth M, Walmsley L, Brown TM. 2016. Visual input to the mouse lateral posterior and posterior thalamic nuclei: photoreceptive origins and retinotopic order. J. Physiol. 594:1911–29 [Google Scholar]
  4. Alonso J-M, Usrey WM, Reid RC. 2001. Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. J. Neurosci. 21:4002–15 [Google Scholar]
  5. Applebury M, Antoch M, Baxter L, Chun L, Falk J. et al. 2000. The murine cone photoreceptor: a single cone type expresses both S and M opsins with retinal spatial patterning. Neuron 27:513–23 [Google Scholar]
  6. Baden T, Berens P, Bethge M, Euler T. 2013. Spikes in mammalian bipolar cells support temporal layering of the inner retina. Curr. Biol. 23:48–52 [Google Scholar]
  7. Baden T, Berens P, Franke K, Rosón MR, Bethge M, Euler T. 2016. The functional diversity of retinal ganglion cells in the mouse. Nature 529:345–50 [Google Scholar]
  8. Baker M. 2013. Through the eyes of a mouse. Nature 502:156–58 [Google Scholar]
  9. Baldwin MK, Wong P, Reed JL, Kaas JH. 2011. Superior colliculus connections with visual thalamus in gray squirrels (Sciurus carolinensis): evidence for four subdivisions within the pulvinar complex. J. Comp. Neurol. 519:1071–94 [Google Scholar]
  10. Bender D. 1981. Retinotopic organization of macaque pulvinar. J. Neurophysiol. 46:672–93 [Google Scholar]
  11. Berson DM. 2003. Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci 26:314–20 [Google Scholar]
  12. Berson DM. 2008. Retinal ganglion cell types and their central projections. Senses: Compr. Ref. 1:491–520 [Google Scholar]
  13. Bhansali P, Rayport I, Rebsam A, Mason C. 2014. Delayed neurogenesis leads to altered specification of ventrotemporal retinal ganglion cells in albino mice. Neural Dev 9:11 [Google Scholar]
  14. Bi G, Poo M. 2001. Synaptic modification by correlated activity: Hebb's postulate revisited. Annu. Rev. Neurosci. 24:139–66 [Google Scholar]
  15. Bianco IH, Kampff AR, Engert F. 2011. Prey capture behavior evoked by simple visual stimuli in larval zebrafish. Front. Syst. Neurosci. 5:101 [Google Scholar]
  16. Bickford ME, Zhou N, Krahe TE, Govindaiah G, Guido W. 2015. Retinal and tectal “driver-like” inputs converge in the shell of the mouse dorsal lateral geniculate nucleus. J. Neurosci. 35:10523–34 [Google Scholar]
  17. Bleckert A, Schwartz GW, Turner MH, Rieke F, Wong RO. 2014. Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types. Curr. Biol. 24:310–15 [Google Scholar]
  18. Briggman KL, Helmstaedter M, Denk W. 2011. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–88 [Google Scholar]
  19. Brooks JM, Su J, Levy C, Wang JS, Seabrook TA. et al. 2013. A molecular mechanism regulating the timing of corticogeniculate innervation. Cell Rep 5:573–81 [Google Scholar]
  20. Buhusi M, Demyanenko GP, Jannie KM, Dalal J, Darnell EP. et al. 2009. ALCAM regulates mediolateral retinotopic mapping in the superior colliculus. J. Neurosci. 29:15630–41 [Google Scholar]
  21. Burbridge TJ, Xu H-P, Ackman JB, Ge X, Zhang Y. et al. 2014. Visual circuit development requires patterned activity mediated by retinal acetylcholine receptors. Neuron 84:1049–64 [Google Scholar]
  22. Busse L, Ayaz A, Dhruv NT, Katzner S, Saleem AB. et al. 2011. The detection of visual contrast in the behaving mouse. J. Neurosci. 31:11351–61 [Google Scholar]
  23. Butts DA, Kanold PO, Shatz CJ. 2007. A burst-based “Hebbian” learning rule at retinogeniculate synapses links retinal waves to activity-dependent refinement. PLOS Biol 5:e61 [Google Scholar]
  24. Callaway EM, Luo L. 2015. Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. J. Neurosci. 35:8979–85 [Google Scholar]
  25. Cang J, Feldheim DA. 2013. Developmental mechanisms of topographic map formation and alignment. Annu. Rev. Neurosci. 36:51–77 [Google Scholar]
  26. Cang J, Niell CM, Liu X, Pfeiffenberger C, Feldheim DA, Stryker MP. 2008. Selective disruption of one Cartesian axis of cortical maps and receptive fields by deficiency in ephrin-As and structured activity. Neuron 57:511–23 [Google Scholar]
  27. Cang J, Rentería RC, Kaneko M, Liu X, Copenhagen DR, Stryker MP. 2005. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48:797–809 [Google Scholar]
  28. Chan S, Guillery R. 1994. Changes in fiber order in the optic nerve and tract of rat embryos. J. Comp. Neurol. 344:20–32 [Google Scholar]
  29. Chandrasekaran AR, Shah RD, Crair MC. 2007. Developmental homeostasis of mouse retinocollicular synapses. J. Neurosci. 27:1746–55 [Google Scholar]
  30. Chen C, Regehr WG. 2000. Developmental remodeling of the retinogeniculate synapse. Neuron 28:955–66 [Google Scholar]
  31. Cheng TW, Liu XB, Faulkner RL, Stephan AH, Barres BA. et al. 2010. Emergence of lamina-specific retinal ganglion cell connectivity by axon arbor retraction and synapse elimination. J. Neurosci. 30:16376–82 [Google Scholar]
  32. Cheong SK, Tailby C, Solomon SG, Martin PR. 2013. Cortical-like receptive fields in the lateral geniculate nucleus of marmoset monkeys. J. Neurosci. 33:6864–76 [Google Scholar]
  33. Chung W-S, Clarke LE, Wang GX, Stafford BK, Sher A. et al. 2013. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504:394–400 [Google Scholar]
  34. Cline HT, Constantine-Paton M. 1989. NMDA receptor antagonists disrupt the retinotectal topographic map. Neuron 3:413–26 [Google Scholar]
  35. Crair MC, Gillespie DC, Stryker MP. 1998. The role of visual experience in the development of columns in cat visual cortex. Science 279:566–70 [Google Scholar]
  36. Crair MC, Horton JC, Antonini A, Stryker MP. 2001. Emergence of ocular dominance columns in cat visual cortex by 2 weeks of age. J. Comp. Neurol. 430:235–49 [Google Scholar]
  37. Cruz-Martín A, El-Danaf RN, Osakada F, Sriram B, Dhande OS. et al. 2014. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 507:358–61 [Google Scholar]
  38. Dai J, Buhusi M, Demyanenko GP, Brennaman LH, Hruska M. et al. 2013. Neuron glia-related cell adhesion molecule (NrCAM) promotes topographic retinocollicular mapping. PLOS ONE 8:e73000 [Google Scholar]
  39. Dai J, Dalal JS, Thakar S, Henkemeyer M, Lemmon VP. et al. 2012. EphB regulates L1 phosphorylation during retinocollicular mapping. Mol. Cell. Neurosci. 50:201–10 [Google Scholar]
  40. De Franceschi G, Vivattanasarn T, Saleem AB, Solomon SG. 2016. Vision guides selection of freeze or flight defense strategies in mice. Curr. Biol. 26:2150–54 [Google Scholar]
  41. de Lima S, Koriyama Y, Kurimoto T, Oliveira JT, Yin Y. et al. 2012. Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. PNAS 109:9149–54 [Google Scholar]
  42. Deiner MS, Kennedy TE, Fazeli A, Serafini T, Tessier-Lavigne M, Sretavan DW. 1997. Netrin-1 and DCC mediate axon guidance locally at the optic disc: Loss of function leads to optic nerve hypoplasia. Neuron 19:575–89 [Google Scholar]
  43. Demb JB, Singer JH. 2015. Functional circuitry of the retina. Annu. Rev. Vis. Sci. 1:263–89 [Google Scholar]
  44. Denman DJ, Siegle JH, Koch C, Reid RC, Blanche TJ. 2017. Spatial organization of chromatic pathways in the mouse dorsal lateral geniculate nucleus. J. Neurosci. 37:1102–16 [Google Scholar]
  45. Dhande OS, Estevez ME, Quattrochi LE, El-Danaf RN, Nguyen PL. et al. 2013. Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization. J. Neurosci. 33:17797–813 [Google Scholar]
  46. Dhande OS, Hua EW, Guh E, Yeh J, Bhatt S. et al. 2011. Development of single retinofugal axon arbors in normal and β2 knock-out mice. J. Neurosci. 31:3384–99 [Google Scholar]
  47. Dhande OS, Huberman AD. 2014a. Retinal ganglion cell maps in the brain: implications for visual processing. Curr. Opin. Neurobiol. 24:133–42 [Google Scholar]
  48. Dhande OS, Huberman AD. 2014b. Visual circuits: mouse retina no longer a level playing field. Curr. Biol. 24:R155–56 [Google Scholar]
  49. Dhande OS, Stafford BK, El-Danaf RN, Nguyen PL, Percival KA. et al. 2015a. Molecular dissection of parallel visual pathways in primate and mouse. 2015 Neurosci. Meet. Plan. Program No 14817 Chicago: Soc. Neurosci. [Google Scholar]
  50. Dhande OS, Stafford BK, Lim J-HA, Huberman AD. 2015b. Contributions of retinal ganglion cells to subcortical visual processing and behaviors. Annu. Rev. Vis. Sci. 1:291–328 [Google Scholar]
  51. Dharmaratne N, Glendining KA, Young TR, Tran H, Sawatari A, Leamey CA. 2012. Ten-m3 is required for the development of topography in the ipsilateral retinocollicular pathway. PLOS ONE 7:e43083 [Google Scholar]
  52. Dräger UC. 1975. Receptive fields of single cells and topography in mouse visual cortex. J. Comp. Neurol. 160:269–89 [Google Scholar]
  53. Dräger UC, Hubel DH. 1975. Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J. Neurophysiol. 38:690–713 [Google Scholar]
  54. Dräger UC, Hubel DH. 1976. Topography of visual and somatosensory projections to mouse superior colliculus. J. Neurophysiol. 39:91–101 [Google Scholar]
  55. Dräger UC, Olsen JF. 1980. Origins of crossed and uncrossed retinal projections in pigmented and albino mice. J. Comp. Neurol. 191:383–412 [Google Scholar]
  56. Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen S-K. et al. 2010. Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67:49–60 [Google Scholar]
  57. Ellis EM, Gauvain G, Sivyer B, Murphy GJ. 2016. Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. J. Neurophysiol. 116:602–10 [Google Scholar]
  58. Erisir A, Dreusicke M. 2005. Quantitative morphology and postsynaptic targets of thalamocortical axons in critical period and adult ferret visual cortex. J. Comp. Neurol. 485:11–31 [Google Scholar]
  59. Feinberg EH, Meister M. 2015. Orientation columns in the mouse superior colliculus. Nature 519:229–32 [Google Scholar]
  60. Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ. 1996. Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272:1182–87 [Google Scholar]
  61. Flusberg BA, Nimmerjahn A, Cocker ED, Mukamel EA, Barretto RP. et al. 2008. High-speed, miniaturized fluorescence microscopy in freely moving mice. Nat. Methods 5:935 [Google Scholar]
  62. Fox M. 1965. The visual cliff test for the study of visual depth perception in the mouse. Anim. Behav. 13:232–33 [Google Scholar]
  63. Frank R, Kenton J. 1966. Visual cliff behavior of mice as a function of genetic differences in eye characteristics. Psychon. Sci. 4:35–36 [Google Scholar]
  64. Furman M, Crair MC. 2012. Synapse maturation is enhanced in the binocular region of the retinocollicular map prior to eye opening. J. Neurophysiol. 107:3200–16 [Google Scholar]
  65. Furman M, Xu H-P, Crair MC. 2013. Competition driven by retinal waves promotes morphological and functional synaptic development of neurons in the superior colliculus. J. Neurophysiol. 110:1441–54 [Google Scholar]
  66. Gale SD, Murphy GJ. 2014. Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus. J. Neurosci. 34:13458–71 [Google Scholar]
  67. Galli L, Maffei L. 1988. Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science 242:90–91 [Google Scholar]
  68. Garrett ME, Nauhaus I, Marshel JH, Callaway EM. 2014. Topography and areal organization of mouse visual cortex. J. Neurosci. 34:12587–600 [Google Scholar]
  69. Glickfeld LL, Andermann ML, Bonin V, Reid RC. 2013a. Cortico-cortical projections in mouse visual cortex are functionally target specific. Nat. Neurosci. 16:219–26 [Google Scholar]
  70. Glickfeld LL, Histed MH, Maunsell JH. 2013b. Mouse primary visual cortex is used to detect both orientation and contrast changes. J. Neurosci. 33:19416–22 [Google Scholar]
  71. Glickfeld LL, Reid RC, Andermann ML. 2014. A mouse model of higher visual cortical function. Curr. Opin. Neurobiol. 24:28–33 [Google Scholar]
  72. Godement P, Salaün J, Imbert M. 1984. Prenatal and postnatal development of retinogeniculate and retinocollicular projections in the mouse. J. Comp. Neurol. 230:552–75 [Google Scholar]
  73. Grubb MS, Rossi FM, Changeux J-P, Thompson ID. 2003. Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the β2 subunit of the nicotinic acetylcholine receptor. Neuron 40:1161–72 [Google Scholar]
  74. Grubb MS, Thompson ID. 2003. Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus. J. Neurophysiol. 90:3594–607 [Google Scholar]
  75. Grubb MS, Thompson ID. 2004. Biochemical and anatomical subdivision of the dorsal lateral geniculate nucleus in normal mice and in mice lacking the β2 subunit of the nicotinic acetylcholine receptor. Vis. Res. 44:3365–76 [Google Scholar]
  76. Guenthner CJ, Miyamichi K, Yang HH, Heller HC, Luo L. 2013. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron 78:773–84 [Google Scholar]
  77. Hammer S, Monavarfeshani A, Lemon T, Su J, Fox MA. 2015. Multiple retinal axons converge onto relay cells in the adult mouse thalamus. Cell Rep 12:1575–83 [Google Scholar]
  78. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas R. et al. 2003. Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:75–81 [Google Scholar]
  79. Haustead DJ, Lukehurst SS, Clutton GT, Bartlett CA, Dunlop SA. et al. 2008. Functional topography and integration of the contralateral and ipsilateral retinocollicular projections of ephrin-A−/− mice. J. Neurosci. 28:7376–86 [Google Scholar]
  80. Haverkamp S, Wässle H, Duebel J, Kuner T, Augustine GJ. et al. 2005. The primordial, blue-cone color system of the mouse retina. J. Neurosci. 25:5438–45 [Google Scholar]
  81. Hebb DO. 1949. The Organization of Behavior: A Neuropsychological Theory New York: Wiley [Google Scholar]
  82. Herrera ES, Brown L, Aruga J, Rachel RA, Dolen G. et al. 2003. Zic2 patterns binocular vision by specifying the uncrossed retinal projection. Cell 114:545–57 [Google Scholar]
  83. Hillier D, Fiscella M, Drinnenberg A, Rompani S, Raics Z. et al. 2014. A causal link between cortical and retinal computation of motion direction. 2014 Neurosci. Meet. Plan. Program No. 389.02 Washington, DC: Soc. Neurosci. [Google Scholar]
  84. Hong YK, Chen C. 2011. Wiring and rewiring of the retinogeniculate synapse. Curr. Opin. Neurobiol. 21:228–37 [Google Scholar]
  85. Hong YK, Kim IJ, Sanes JR. 2011. Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus. J. Comp. Neurol. 519:1691–711 [Google Scholar]
  86. Horton JC, Hocking DR. 1996. An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. J. Neurosci. 16:1791–807 [Google Scholar]
  87. Howarth M, Walmsley L, Brown TM. 2014. Binocular integration in the mouse lateral geniculate nuclei. Curr. Biol. 24:1241–47 [Google Scholar]
  88. Hoy JL, Yavorska I, Wehr M, Niell CM. 2016. Vision drives accurate approach behavior during prey capture in laboratory mice. Curr. Biol. 26:3046–52 [Google Scholar]
  89. Hubel DH, Wiesel TN. 1961. Integrative action in the cat's lateral geniculate body. J. Physiol. 155:385–98 [Google Scholar]
  90. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54 [Google Scholar]
  91. Hubel DH, Wiesel TN. 1969. Anatomical demonstration of columns in the monkey striate cortex. Nature 221:747–50 [Google Scholar]
  92. Hubel DH, Wiesel TN. 1972. Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey. J. Comp. Neurol. 146:421–50 [Google Scholar]
  93. Huberman AD, Feller MB, Chapman B. 2008a. Mechanisms underlying development of visual maps and receptive fields. Annu. Rev. Neurosci. 31:479 [Google Scholar]
  94. Huberman AD, Manu M, Koch SM, Susman MW, Lutz AB. et al. 2008b. Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 59:425–38 [Google Scholar]
  95. Huberman AD, Niell CM. 2011. What can mice tell us about how vision works. ? Trends Neurosci 34:464–73 [Google Scholar]
  96. Huberman AD, Wang GY, Liets LC, Collins OA, Chapman B, Chalupa LM. 2003. Eye-specific retinogeniculate segregation independent of normal neuronal activity. Science 300:994–98 [Google Scholar]
  97. Huberman AD, Wei W, Elstrott J, Stafford BK, Feller MB, Barres BA. 2009. Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62:327–34 [Google Scholar]
  98. Hughes S, Watson TS, Foster RG, Peirson SN, Hankins MW. 2013. Nonuniform distribution and spectral tuning of photosensitive retinal ganglion cells of the mouse retina. Curr. Biol. 23:1696–701 [Google Scholar]
  99. Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ. 2000. Functional requirement for class I MHC in CNS development and plasticity. Science 290:2155–59 [Google Scholar]
  100. Hutchins B, Updyke B. 1989. Retinotopic organization within the lateral posterior complex of the cat. J. Comp. Neurol. 285:350–98 [Google Scholar]
  101. Ibrahim LA, Mesik L, Ji X-Y, Fang Q, Li H-F. et al. 2016. Cross-modality sharpening of visual cortical processing through layer-1-mediated inhibition and disinhibition. Neuron 89:1031–45 [Google Scholar]
  102. Inayat S, Barchini J, Chen H, Feng L, Liu X, Cang J. 2015. Neurons in the most superficial lamina of the mouse superior colliculus are highly selective for stimulus direction. J. Neurosci. 35:7992–8003 [Google Scholar]
  103. Ingle D. 1973. Evolutionary perspectives on the function of the optic tectum (part 1 of 2). Brain Behav. Evol. 8:211–23 [Google Scholar]
  104. Iurilli G, Ghezzi D, Olcese U, Lassi G, Nazzaro C. et al. 2012. Sound-driven synaptic inhibition in primary visual cortex. Neuron 73:814–28 [Google Scholar]
  105. Jaubert-Miazza L, Green E, Lo F-S, Bui K, Mills J, Guido W. 2005. Structural and functional composition of the developing retinogeniculate pathway in the mouse. Vis. Neurosci. 22:661–76 [Google Scholar]
  106. Jeon C-J, Strettoi E, Masland RH. 1998. The major cell populations of the mouse retina. J. Neurosci. 18:8936–46 [Google Scholar]
  107. Joesch M, Meister M. 2016. A neuronal circuit for colour vision based on rod-cone opponency. Nature 532:236–39 [Google Scholar]
  108. Jones EG. 2001. The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601 [Google Scholar]
  109. Josten NJ, Huberman AD. 2010. Milestones and mechanisms for generating specific synaptic connections between the eyes and the brain. Curr. Top. Dev. Biol. 93:229–59 [Google Scholar]
  110. Karten HJ, Shimizu T. 1989. The origins of neocortex: connections and lamination as distinct events in evolution. J. Cogn. Neurosci. 1:291–301 [Google Scholar]
  111. Kay JN, De la Huerta I, Kim I-J, Zhang Y, Yamagata M. et al. 2011. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. J. Neurosci. 31:7753–62 [Google Scholar]
  112. Kim I-J, Zhang Y, Meister M, Sanes JR. 2010. Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers. J. Neurosci. 30:1452–62 [Google Scholar]
  113. Kim I-J, Zhang Y, Yamagata M, Meister M, Sanes JR. 2008. Molecular identification of a retinal cell type that responds to upward motion. Nature 452:478–82 [Google Scholar]
  114. Ko H, Cossell L, Baragli C, Antolik J, Clopath C. et al. 2013. The emergence of functional microcircuits in visual cortex. Nature 496:96–100 [Google Scholar]
  115. Ko H, Mrsic-Flogel TD, Hofer SB. 2014. Emergence of feature-specific connectivity in cortical microcircuits in the absence of visual experience. J. Neurosci. 34:9812–16 [Google Scholar]
  116. Koch SM, Cruz CGD, Hnasko TS, Edwards RH, Huberman AD, Ullian EM. 2011. Pathway-specific genetic attenuation of glutamate release alters select features of competition-based visual circuit refinement. Neuron 71:235–42 [Google Scholar]
  117. Kondo S, Ohki K. 2016. Laminar differences in the orientation selectivity of geniculate afferents in mouse primary visual cortex. Nat. Neurosci. 19:316–19 [Google Scholar]
  118. Krahe TE, El-Danaf RN, Dilger EK, Henderson SC, Guido W. 2011. Morphologically distinct classes of relay cells exhibit regional preferences in the dorsal lateral geniculate nucleus of the mouse. J. Neurosci. 31:17437–48 [Google Scholar]
  119. Kuwajima T, Soares CA, Sitko AA, Lefebvre V, Mason C. 2017. SoxC transcription factors promote contralateral retinal ganglion cell differentiation and axon guidance in the mouse visual system. Neuron 93:1110–25 [Google Scholar]
  120. Kuwajima T, Yoshida Y, Takegahara N, Petros TJ, Kumanogoh A. et al. 2012. Optic chiasm presentation of Semaphorin6D in the context of Plexin-A1 and Nr-CAM promotes retinal axon midline crossing. Neuron 74:676–90 [Google Scholar]
  121. Laing R, Turecek J, Takahata T, Olavarria JF. 2015. Identification of eye-specific domains and their relation to callosal connections in primary visual cortex of Long Evans rats. Cereb. Cortex 25:3314–29 [Google Scholar]
  122. Langley WM. 1989. Grasshopper mouse's use of visual cues during a predatory attack. Behav. Process. 19:115–25 [Google Scholar]
  123. Leamey CA, Merlin S, Lattouf P, Sawatari A, Zhou X. et al. 2007. Ten_m3 regulates eye-specific patterning in the mammalian visual pathway and is required for binocular vision. PLOS Biol 5:e241 [Google Scholar]
  124. Leamey CA, Sawatari A. 2014. The teneurins: New players in the generation of visual topography. Semin. Cell Dev. Biol. 35:173–79 [Google Scholar]
  125. Li K, Patel J, Purushothaman G, Marion R, Casagrande V. 2013. Retinotopic maps in the pulvinar of bush baby (Otolemur garnettii). J. Comp. Neurol. 521:3432–50 [Google Scholar]
  126. Lien AD, Scanziani M. 2013. Tuned thalamic excitation is amplified by visual cortical circuits. Nat. Neurosci. 16:1315–23 [Google Scholar]
  127. Lim J-HA, Stafford BK, Nguyen PL, Lien BV, Wang C. et al. 2016. Neural activity promotes long-distance, target-specific regeneration of adult retinal axons. Nat. Neurosci. 19:1073–84 [Google Scholar]
  128. Ling S, Pratte MS, Tong F. 2015. Attention alters orientation processing in the human lateral geniculate nucleus. Nat. Neurosci. 18:496–98 [Google Scholar]
  129. Liu B-H, Huberman AD, Scanziani M. 2016. Cortico-fugal output from visual cortex promotes plasticity of innate motor behaviour. Nature 538:383–87 [Google Scholar]
  130. Lund JS, Lund RD, Hendrickson AE, Bunt AH, Fuchs AF. 1975. The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. J. Comp. Neurol. 164:287–303 [Google Scholar]
  131. Luo X, Salgueiro Y, Beckerman SR, Lemmon VP, Tsoulfas P, Park KK. 2013. Three-dimensional evaluation of retinal ganglion cell axon regeneration and pathfinding in whole mouse tissue after injury. Exp. Neurol. 247:653–62 [Google Scholar]
  132. Marshel JH, Garrett ME, Nauhaus I, Callaway EM. 2011. Functional specialization of seven mouse visual cortical areas. Neuron 72:1040–54 [Google Scholar]
  133. Marshel JH, Kaye AP, Nauhaus I, Callaway EM. 2012. Anterior-posterior direction opponency in the superficial mouse lateral geniculate nucleus. Neuron 76:713–20 [Google Scholar]
  134. Martin P. 1986. The projection of different retinal ganglion cell classes to the dorsal lateral geniculate nucleus in the hooded rat. Exp. Brain Res. 62:77–88 [Google Scholar]
  135. Masland RH. 2001. The fundamental plan of the retina. Nat. Neurosci. 4:877–86 [Google Scholar]
  136. Masland RH. 2012. The neuronal organization of the retina. Neuron 76:266–80 [Google Scholar]
  137. McLaughlin T, Torborg CL, Feller MB, O'Leary DDM. 2003. Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40:1147–60 [Google Scholar]
  138. Meister M, Cox D. 2013. Rats maintain a binocular field centered on the horizon. F1000Research 2:176 [Google Scholar]
  139. Meister M, Wong R, Baylor DA, Shatz CJ. 1991. Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252:939–43 [Google Scholar]
  140. Merlin S, Horng S, Marotte LR, Sur M, Sawatari A, Leamey CA. 2013. Deletion of Ten-m3 induces the formation of eye dominance domains in mouse visual cortex. Cereb. Cortex 23:763–74 [Google Scholar]
  141. Métin C, Godement P, Saillour P, Imbert M. 1983. [Physiological and anatomical study of the retinogeniculate projections in the mouse]. C. R. Seances Acad. Sci. III 296:157–62 [Google Scholar]
  142. Molnár Z, Blakemore C. 1995. How do thalamic axons find their way to the cortex. ? Trends Neurosci 18:389–97 [Google Scholar]
  143. Morgan JL, Berger DR, Wetzel AW, Lichtman JW. 2016. The fuzzy logic of network connectivity in mouse visual thalamus. Cell 165:192–206 [Google Scholar]
  144. Morin LP, Studholme KM. 2014. Retinofugal projections in the mouse. J. Comp. Neurol. 522:3733–53 [Google Scholar]
  145. Mrsic-Flogel TD, Hofer SB, Creutzfeldt C, Cloëz-Tayarani I, Changeux J-P. et al. 2005. Altered map of visual space in the superior colliculus of mice lacking early retinal waves. J. Neurosci. 25:6921–28 [Google Scholar]
  146. Muir-Robinson G, Hwang BJ, Feller MB. 2002. Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J. Neurosci. 22:5259–64 [Google Scholar]
  147. Nagy ZM, Misanin JR. 1970. Visual perception in the retinal degenerate C3H mouse. J. Comp. Physiol. Psychol. 72:306–10 [Google Scholar]
  148. Nassi JJ, Callaway EM. 2009. Parallel processing strategies of the primate visual system. Nat. Rev. Neurosci. 10:360–72 [Google Scholar]
  149. Nath A, Schwartz GW. 2016. Cardinal orientation selectivity is represented by two distinct ganglion cell types in mouse retina. J. Neurosci. 36:3208–21 [Google Scholar]
  150. Niell CM, Stryker MP. 2010. Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65:472–79 [Google Scholar]
  151. Noseda R, Burstein R. 2011. Advances in understanding the mechanisms of migraine-type photophobia. Curr. Opin. Neurol. 24:197–202 [Google Scholar]
  152. Noutel J, Hong YK, Leu B, Kang E, Chen C. 2011. Experience-dependent retinogeniculate synapse remodeling is abnormal in MeCP2-deficient mice. Neuron 70:35–42 [Google Scholar]
  153. O'Leary DDM, Fawcett JW, Cowan WM. 1986. Topographic targeting errors in the retinocollicular projection and their elimination by selective ganglion cell death. J. Neurosci. 6:3692–705 [Google Scholar]
  154. Osterhout JA, El-Danaf RN, Nguyen PL, Huberman AD. 2014. Birthdate and outgrowth timing predict cellular mechanisms of axon target matching in the developing visual pathway. Cell Rep 8:1006–17 [Google Scholar]
  155. Osterhout JA, Josten N, Yamada J, Pan F, Wu S-W. et al. 2011. Cadherin-6 mediates axon-target matching in a non-image-forming visual circuit. Neuron 71:632–39 [Google Scholar]
  156. Osterhout JA, Stafford BK, Nguyen PL, Yoshihara Y, Huberman AD. 2015. Contactin-4 mediates axon-target specificity and functional development of the accessory optic system. Neuron 86:985–99 [Google Scholar]
  157. Pak W, Hindges R, Lim Y-S, Pfaff SL, O'Leary DDM. 2004. Magnitude of binocular vision controlled by islet-2 repression of a genetic program that specifies laterality of retinal axon pathfinding. Cell 119:567–78 [Google Scholar]
  158. Perry V, Cowey A. 1984. Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience 12:1125–37 [Google Scholar]
  159. Petros TJ, Bryson JB, Mason C. 2010. Ephrin‐B2 elicits differential growth cone collapse and axon retraction in retinal ganglion cells from distinct retinal regions. Dev. Neurobiol. 70:781–94 [Google Scholar]
  160. Petros TJ, Rebsam A, Mason CA. 2008. Retinal axon growth at the optic chiasm: To cross or not to cross. Annu. Rev. Neurosci. 31:295–315 [Google Scholar]
  161. Pfeiffenberger C, Yamada J, Feldheim DA. 2006. Ephrin-As and patterned retinal activity act together in the development of topographic maps in the primary visual system. J. Neurosci. 26:12873–84 [Google Scholar]
  162. Phillips MA, Colonnese MT, Goldberg J, Lewis LD, Brown EN, Constantine-Paton M. 2011. A synaptic strategy for consolidation of convergent visuotopic maps. Neuron 71:710–24 [Google Scholar]
  163. Piscopo DM, El-Danaf RN, Huberman AD, Niell CM. 2013. Diverse visual features encoded in mouse lateral geniculate nucleus. J. Neurosci. 33:4642–56 [Google Scholar]
  164. Plas DT, Dhande OS, Lopez JE, Murali D, Thaller C. et al. 2008. Bone morphogenetic proteins, eye patterning, and retinocollicular map formation in the mouse. J. Neurosci. 28:7057–67 [Google Scholar]
  165. Plas DT, Lopez JE, Crair MC. 2005. Pretarget sorting of retinocollicular axons in the mouse. J. Comp. Neurol. 491:305–19 [Google Scholar]
  166. Rakic P. 1976. Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature 261:467–71 [Google Scholar]
  167. Rebsam A, Bhansali P, Mason CA. 2012. Eye-specific projections of retinogeniculate axons are altered in albino mice. J. Neurosci. 32:4821–26 [Google Scholar]
  168. Redies C, Puelles L. 2001. Modularity in vertebrate brain development and evolution. BioEssays 23:1100–11 [Google Scholar]
  169. Reese BE. 1988. ‘Hidden lamination’ in the dorsal lateral geniculate nucleus: the functional organization of this thalamic region in the rat. Brain Res 472:119–37 [Google Scholar]
  170. Rhim I, Coello-Reyes G, Ko HK, Nauhaus I. 2017. Maps of cone opsin input to mouse V1 and higher visual areas. J. Neurophysiol. 117:1674–82 [Google Scholar]
  171. Rivlin-Etzion M, Zhou K, Wei W, Elstrott J, Nguyen PL. et al. 2011. Transgenic mice reveal unexpected diversity of On-Off direction-selective retinal ganglion cell subtypes and brain structures involved in motion processing. J. Neurosci. 31:8760–69 [Google Scholar]
  172. Rochefort NL, Narushima M, Grienberger C, Marandi N, Hill DN, Konnerth A. 2011. Development of direction selectivity in mouse cortical neurons. Neuron 71:425–32 [Google Scholar]
  173. Rompani SB, Müllner FE, Wanner A, Zhang C, Roth CN. et al. 2017. Different modes of visual integration in the lateral geniculate nucleus revealed by single-cell-initiated transsynaptic tracing. Neuron 93:767–76.e6 [Google Scholar]
  174. Roska B, Meister M. 2014. The retina dissects the visual scene into distinct features. The New Visual Neurosciences JS Werner, LM Chalupa 163–82 Cambridge, MA: MIT Press [Google Scholar]
  175. Roth MM, Dahmen JC, Muir DR, Imhof F, Martini FJ, Hofer SB. 2016. Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex. Nat. Neurosci. 19:299–307 [Google Scholar]
  176. Saalmann YB, Pinsk MA, Wang L, Li X, Kastner S. 2012. The pulvinar regulates information transmission between cortical areas based on attention demands. Science 337:753–56 [Google Scholar]
  177. Sánchez-Arrones L, Nieto-Lopez F, Sánchez-Camacho C, Carreres MI, Herrera E. et al. 2013. Shh/Boc signaling is required for sustained generation of ipsilateral projecting ganglion cells in the mouse retina. J. Neurosci. 33:8596–607 [Google Scholar]
  178. Sarnaik R, Chen H, Liu X, Cang J. 2014. Genetic disruption of the On visual pathway affects cortical orientation selectivity and contrast sensitivity in mice. J. Neurophysiol. 111:2276–86 [Google Scholar]
  179. Schmidt TM, Chen S-K, Hattar S. 2011. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci 34:572–80 [Google Scholar]
  180. Schmitt AM, Shi J, Wolf AM, Lu C-C, King LA, Zou Y. 2006. Wnt–Ryk signalling mediates medial–lateral retinotectal topographic mapping. Nature 439:31–37 [Google Scholar]
  181. Scholl B, Tan AY, Corey J, Priebe NJ. 2013. Emergence of orientation selectivity in the mammalian visual pathway. J. Neurosci. 33:10616–24 [Google Scholar]
  182. Seabrook TA, El-Danaf RN, Krahe TE, Fox MA, Guido W. 2013a. Retinal input regulates the timing of corticogeniculate innervation. J. Neurosci. 33:10085–97 [Google Scholar]
  183. Seabrook TA, Krahe TE, Govindaiah G, Guido W. 2013b. Interneurons in the mouse visual thalamus maintain a high degree of retinal convergence throughout postnatal development. Neural Dev 8:24 [Google Scholar]
  184. Shang C, Liu Z, Chen Z, Shi Y, Wang Q. et al. 2015. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science 348:1472–77 [Google Scholar]
  185. Shanks JA, Ito S, Schaevitz L, Yamada J, Chen B. et al. 2016. Corticothalamic axons are essential for retinal ganglion cell axon targeting to the mouse dorsal lateral geniculate nucleus. J. Neurosci. 36:5252–63 [Google Scholar]
  186. Shatz CJ. 1992. The developing brain. Scientific American Sept. 1 60–67 [Google Scholar]
  187. Snow D, Watanabe M, Letourneau P, Silver J. 1991. A chondroitin sulfate proteoglycan may influence the direction of retinal ganglion cell outgrowth. Development 113:1473–85 [Google Scholar]
  188. Sohya K, Kameyama K, Yanagawa Y, Obata K, Tsumoto T. 2007. GABAergic neurons are less selective to stimulus orientation than excitatory neurons in layer II/III of visual cortex, as revealed by in vivo functional Ca2+ imaging in transgenic mice. J. Neurosci. 27:2145–49 [Google Scholar]
  189. Stellwagen D, Shatz CJ. 2002. An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33:357–67 [Google Scholar]
  190. Stephan AH, Barres BA, Stevens B. 2012. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 35:369–89 [Google Scholar]
  191. Stirman JN, Smith IT, Kudenov MW, Smith SL. 2016. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nat. Biotechnol. 34:857–62 [Google Scholar]
  192. Stone J. 2013. Parallel Processing in the Visual System: The Classification of Retinal Ganglion Cells and Its Impact on the Neurobiology of Vision New York: Springer [Google Scholar]
  193. Stuermer CA, Bastmeyer M. 2000. The retinal axon's pathfinding to the optic disk. Prog. Neurobiol. 62:197–214 [Google Scholar]
  194. Su J, Haner CV, Imbery TE, Brooks JM, Morhardt DR. et al. 2011. Reelin is required for class-specific retinogeniculate targeting. J. Neurosci. 31:575–86 [Google Scholar]
  195. Su J, Klemm MA, Josephson AM, Fox MA. 2013. Contributions of VLDLR and LRP8 in the establishment of retinogeniculate projections. Neural Dev 8:11 [Google Scholar]
  196. Suetterlin P, Drescher U. 2014. Target-independent ephrinA/EphA-mediated axon-axon repulsion as a novel element in retinocollicular mapping. Neuron 84:740–52 [Google Scholar]
  197. Sun LO, Brady CM, Cahill H, Al-Khindi T, Sakuta H. et al. 2015. Functional assembly of accessory optic system circuitry critical for compensatory eye movements. Neuron 86:971–84 [Google Scholar]
  198. Swadlow HA, Weyand TG. 1985. Receptive-field and axonal properties of neurons in the dorsal lateral geniculate nucleus of awake unparalyzed rabbits. J. Neurophysiol. 54:168–83 [Google Scholar]
  199. Szél Á, Röhlich P. 1992. Two cone types of rat retina detected by anti-visual pigment antibodies. Exp. Eye Res. 55:47–52 [Google Scholar]
  200. Takeichi M. 1990. Cadherins: a molecular family important in selective cell-cell adhesion. Annu. Rev. Biochem. 59:237–52 [Google Scholar]
  201. Tan Z, Sun W, Chen TW, Kim D, Ji N. 2015. Neuronal representation of ultraviolet visual stimuli in mouse primary visual cortex. Sci. Rep. 5:12597 [Google Scholar]
  202. Temizer I, Donovan JC, Baier H, Semmelhack JL. 2015. A visual pathway for looming-evoked escape in larval zebrafish. Curr. Biol. 25:1823–34 [Google Scholar]
  203. Tohmi M, Meguro R, Tsukano H, Hishida R, Shibuki K. 2014. The extrageniculate visual pathway generates distinct response properties in the higher visual areas of mice. Curr. Biol. 24:587–97 [Google Scholar]
  204. Tootell RB, Silverman MS, Switkes E, De Valois RL. 1982. Deoxyglucose analysis of retinotopic organization in primate striate cortex. Science 218:902–4 [Google Scholar]
  205. Triplett JW. 2014. Molecular guidance of retinotopic map development in the midbrain. Curr. Opin. Neurobiol. 24:7–12 [Google Scholar]
  206. Triplett JW, Feldheim DA. 2012. Eph and ephrin signaling in the formation of topographic maps. Semin. Cell Dev. Biol. 23:7–15 [Google Scholar]
  207. Triplett JW, Owens MT, Yamada J, Lemke G, Cang J. et al. 2009. Retinal input instructs alignment of visual topographic maps. Cell 139:175–85 [Google Scholar]
  208. Usrey WM, Alonso J-M, Reid RC. 2000. Synaptic interactions between thalamic inputs to simple cells in cat visual cortex. J. Neurosci. 20:5461–67 [Google Scholar]
  209. Usrey WM, Muly EC, Fitzpatrick D. 1992. Lateral geniculate projections to the superficial layers of visual cortex in the tree shrew. J. Comp. Neurol. 319:159–71 [Google Scholar]
  210. Walk RD, Gibson EJ. 1961. A comparative and analytical study of visual depth perception. Psychol. Monogr.: Gen. Appl. 75:1–44 [Google Scholar]
  211. Wallace DJ, Greenberg DS, Sawinski J, Rulla S, Notaro G, Kerr JN. 2013. Rats maintain an overhead binocular field at the expense of constant fusion. Nature 498:65–69 [Google Scholar]
  212. Wang B-S, Feng L, Liu M, Liu X, Cang J. 2013. Environmental enrichment rescues binocular matching of orientation preference in mice that have a precocious critical period. Neuron 80:198–209 [Google Scholar]
  213. Wang B-S, Sarnaik R, Cang J. 2010. Critical period plasticity matches binocular orientation preference in the visual cortex. Neuron 65:246–56 [Google Scholar]
  214. Wang L, Liu M, Segraves MA, Cang J. 2015. Visual experience is required for the development of eye movement maps in the mouse superior colliculus. J. Neurosci. 35:12281–86 [Google Scholar]
  215. Wang L, Sarnaik R, Rangarajan K, Liu X, Cang J. 2010. Visual receptive field properties of neurons in the superficial superior colliculus of the mouse. J. Neurosci. 30:16573–84 [Google Scholar]
  216. Wang Q, Burkhalter A. 2007. Area map of mouse visual cortex. J. Comp. Neurol. 502:339–57 [Google Scholar]
  217. Wang YV, Weick M, Demb JB. 2011. Spectral and temporal sensitivity of cone-mediated responses in mouse retinal ganglion cells. J. Neurosci. 31:7670–81 [Google Scholar]
  218. Wei P, Liu N, Zhang Z, Liu X, Tang Y. et al. 2015. Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nat. Commun. 6:6756 [Google Scholar]
  219. Wei W, Hamby AM, Zhou K, Feller MB. 2011. Development of asymmetric inhibition underlying direction selectivity in the retina. Nature 469:402–6 [Google Scholar]
  220. Wernet MF, Huberman AD, Desplan C. 2014. So many pieces, one puzzle: cell type specification and visual circuitry in flies and mice. Genes Dev 28:2565–84 [Google Scholar]
  221. Westby G, Keay K, Redgrave P, Dean P, Bannister M. 1990. Output pathways from the rat superior colliculus mediating approach and avoidance have different sensory properties. Exp. Brain Res. 81:626–38 [Google Scholar]
  222. White AJ, Solomon SG, Martin PR. 2001. Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus. J. Physiol. 533:519–35 [Google Scholar]
  223. White LE, Coppola DM, Fitzpatrick D. 2001. The contribution of sensory experience to the maturation of orientation selectivity in ferret visual cortex. Nature 411:1049–52 [Google Scholar]
  224. White LE, Fitzpatrick D. 2007. Vision and cortical map development. Neuron 56:327–38 [Google Scholar]
  225. Würbel H. 2001. Ideal homes? Housing effects on rodent brain and behaviour. Trends Neurosci 24:207–11 [Google Scholar]
  226. Xu H-P, Furman M, Mineur YS, Chen H, King SL. et al. 2011. An instructive role for patterned spontaneous retinal activity in mouse visual map development. Neuron 70:1115–27 [Google Scholar]
  227. Xu X, Ichida J, Shostak Y, Bonds AB, Casagrande VA. 2002. Are primate lateral geniculate nucleus (LGN) cells really sensitive to orientation or direction. ? Vis. Neurosci. 19:97–108 [Google Scholar]
  228. Yilmaz M, Meister M. 2013. Rapid innate defensive responses of mice to looming visual stimuli. Curr. Biol. 23:2011–15 [Google Scholar]
  229. Yonehara K, Ishikane H, Sakuta H, Shintani T, Nakamura-Yonehara K. et al. 2009. Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion. PLOS ONE 4:e4320 [Google Scholar]
  230. Young TR, Bourke M, Zhou X, Oohashi T, Sawatari A. et al. 2013. Ten-m2 is required for the generation of binocular visual circuits. J. Neurosci. 33:12490–509 [Google Scholar]
  231. Zeater N, Cheong SK, Solomon SG, Dreher B, Martin PR. 2015. Binocular visual responses in the primate lateral geniculate nucleus. Curr. Biol. 25:3190–95 [Google Scholar]
  232. Zeki SM. 1978. Functional specialisation in the visual cortex of the rhesus monkey. Nature 274:423–28 [Google Scholar]
  233. Zeki SM. 1993. A Vision of the Brain Oxford, UK: Oxford Univ. Press [Google Scholar]
  234. Zhang J, Ackman JB, Dhande OS, Crair MC. 2011. Visualization and manipulation of neural activity in the developing vertebrate nervous system. Front. Mol. Neurosci. 4:43 [Google Scholar]
  235. Zhang J, Ackman JB, Xu H-P, Crair MC. 2012. Visual map development depends on the temporal pattern of binocular activity in mice. Nat. Neurosci. 15:298–307 [Google Scholar]
  236. Zhang Y, Kim IJ, Sanes JR, Meister M. 2012. The most numerous ganglion cell type of the mouse retina is a selective feature detector. PNAS 109:E2391–98 [Google Scholar]
  237. Zhao X, Chen H, Liu X, Cang J. 2013. Orientation-selective responses in the mouse lateral geniculate nucleus. J. Neurosci. 33:12751–63 [Google Scholar]
  238. Zhao X, Liu M, Cang J. 2014. Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice. Neuron 84:202–13 [Google Scholar]
/content/journals/10.1146/annurev-neuro-071714-033842
Loading
/content/journals/10.1146/annurev-neuro-071714-033842
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error