The neocortex is found only in mammals, and the fossil record is silent on how this soft tissue evolved. Understanding neocortex evolution thus devolves to a search for candidate homologous neocortex traits in the extant nonmammalian amniotes. The difficulty is that homology is based on similarity, and the six-layered neocortex structure could hardly be more dissimilar in appearance from the nuclear organization that is so conspicuous in the dorsal telencephalon of birds and other reptiles. Recent molecular data have, however, provided new support for one prominent hypothesis, based on neuronal circuits, that proposes the principal neocortical input and output cell types are a conserved feature of amniote dorsal telencephalon. Many puzzles remain, the greatest being understanding the selective pressures and molecular mechanisms that underlie such tremendous morphological variation in telencephalon structure.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Amaral DG, Price JL, Pitkanen A, Carmichael ST. 1992. Anatomical organization of the primate amygdaloid complex. The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction JP Anggleton 1–66 New York: Wiley-Liss [Google Scholar]
  2. Ariens-Kappers CU, Huber GC, Crosby EC. 1960. The Comparative Anatomy of the Nervous System of Vertebrates, Including Man New York: Hafner [Google Scholar]
  3. Atoji Y, Saito S, Wild JM. 2006. Fiber connections of the compact division of the posterior pallial amygdala and lateral part of the bed nucleus of the stria terminalis in the pigeon (Columba livia). J. Comp. Neurol. 499:161–82 [Google Scholar]
  4. Balaban CD, Ulinski PS. 1981a. Organization of thalamic afferents to anterior dorsal ventricular ridge in turtles. I. Projections of thalamic nuclei. J. Comp. Neurol. 200:95–129 [Google Scholar]
  5. Balaban CD, Ulinski PS. 1981b. Organization of thalamic afferents to anterior dorsal ventricular ridge in turtles. II. Properties of the rotundo-dorsal map. J. Comp. Neurol. 200:131–50 [Google Scholar]
  6. Beckstead RM, Morse JR, Norgren R. 1980. The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J. Comp. Neurol. 190:259–82 [Google Scholar]
  7. Belgard TG, Marques AC, Oliver PL, Abaan HO, Sirey TM. et al. 2011. A transcriptomic atlas of mouse neocortical layers. Neuron 71:605–16 [Google Scholar]
  8. Belgard TG, Montiel JF, Wang WZ, García-Moreno F, Margulies EH. et al. 2013. Adult pallium transcriptomes surprise in not reflecting predicted homologies across diverse chicken and mouse pallial sectors. PNAS 110:13150–55 [Google Scholar]
  9. Benowitz LI, Karten HJ. 1976. Organization of the tectofugal visual pathway in the pigeon: a retrograde transport study. J. Comp. Neurol. 167:503–20 [Google Scholar]
  10. Bernard A, Lubbers LS, Tanis KQ, Luo R, Podtelezhnikov AA. et al. 2012. Transcriptional architecture of the primate neocortex. Neuron 73:1083–99 [Google Scholar]
  11. Brauth SE, Reiner A. 1991. Calcitonin-gene related peptide is an evolutionarily conserved marker within the amniote thalamo-telencephalic auditory pathway. J. Comp. Neurol. 313:227–39 [Google Scholar]
  12. Brodmann K, Garey LJ. 2006. Localisation in the Cerebral Cortex London: World Sci. [Google Scholar]
  13. Bruce LL, Butler AB. 1984a. Telencephalic connections in lizards. I. Projections to cortex. J. Comp. Neurol. 229:585–601 [Google Scholar]
  14. Bruce LL, Butler AB. 1984b. Telencephalic connections in lizards. II. Projections to anterior dorsal ventricular ridge. J. Comp. Neurol. 229:602–15 [Google Scholar]
  15. Bruce LL, Kornblum HI, Seroogy KB. 2002. Comparison of thalamic populations in mammals and birds: expression of ErbB4 mRNA. Brain Res. Bull. 57:455–61 [Google Scholar]
  16. Bruce LL, Neary TJ. 1995. The limbic system of tetrapods: a comparative analysis of cortical and amygdalar populations. Brain Behav. Evol. 46:224–34 [Google Scholar]
  17. Butler AB. 1994. The evolution of the dorsal pallium in the telencephalon of amniotes: cladistic analysis and a new hypothesis. Brain Res. Rev. 19:66–101 [Google Scholar]
  18. Butler AB, Hodos W. 2005. Comparative Vertebrate Neuroanatomy: Evolution and Adaptation Hoboken, NJ: John Wiley & Sons [Google Scholar]
  19. Butler AB, Reiner A, Karten HJ. 2011. Evolution of the amniote pallium and the origins of mammalian neocortex. Ann. N.Y. Acad. Sci. 1225:14–27 [Google Scholar]
  20. Clack JA. 1997. The evolution of tetrapod ears and the fossil record. Brain Behav. Evol. 50:198–212 [Google Scholar]
  21. Desan PH. 1988. The organization of the cerebral cortex of the pond turtle Pseudemys scripta elegans. PhD Thesis, Harvard Univ., Cambridge, MA [Google Scholar]
  22. Dubbeldam JL, Den Boer-Visser AM, Bout RG. 1997. Organization and efferent connections of the arch-istriatum of the mallard, Anas platyrhynchos L.: an anterograde and retrograde tracing study. J. Comp. Neurol. 388:632–57 [Google Scholar]
  23. Dugas-Ford J. 2009. A comparative molecular study of the amniote dorsal telencephalon PhD Thesis, Univ. Chicago [Google Scholar]
  24. Dugas-Ford J, Rowell JJ, Ragsdale CW. 2012. Cell-type homologies and the origins of the neocortex. PNAS 109:16974–79 [Google Scholar]
  25. Elprana D, Wouterlood FG, Alones VE. 1980. A corticotectal projection in the lizard Agama agama. Neurosci. Lett. 18:251–56 [Google Scholar]
  26. Fernandez AS, Pieau C, Repérant J, Boncinelli E, Wassef M. 1998. Expression of the Emx-1 and Dlx-1 homeobox genes define three molecularly distinct domains in the telencephalon of mouse, chick, turtle and frog embryos: implications for the evolution of telencephalic subdivisions in amniotes. Development 125:2099–111 [Google Scholar]
  27. Foster RE, Hall WC. 1975. The connections and laminar organization of the optic tectum in a reptile (Iguana iguana). J. Comp. Neurol. 163:397–425 [Google Scholar]
  28. Foster RE, Hall WC. 1978. The organization of central auditory pathways in a reptile, Iguana iguana. J. Comp. Neurol. 178:783–831 [Google Scholar]
  29. Gorski JA, Talley T, Qiu M, Puelles L, Rubenstein JLR, Jones KR. 2002. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci. 22:6309–14 [Google Scholar]
  30. Graybiel AM. 1972. Some fiber pathways related to the posterior thalamic region in the cat. Brain Behav. Evol. 6:363–93 [Google Scholar]
  31. Hall JA, Foster RE, Ebner FF, Hall WC. 1977. Visual cortex in a reptile, the turtle (Pseudemys scripta and Chrysemys picta). Brain Res. 130:197–216 [Google Scholar]
  32. Hall WC, Ebner FF. 1970. Thalamotelencephalic projections in the turtle (Pseudemys scripta). J. Comp. Neurol. 140:101–22 [Google Scholar]
  33. Herrick CJ. 1915. An Introduction to Neurology Philadelphia: W.B. Saunders [Google Scholar]
  34. Holmgren N. 1925. Points of view concerning forebrain morphology in higher vertebrates. Acta Zool. 6:413–59 [Google Scholar]
  35. Hunt SP, Kunzle H. 1976. Observations on the projections and intrinsic organization of the pigeon optic tectum: an autoradiographic study based on anterograde and retrograde, axonal and dendritic flow. J. Comp. Neurol. 170:153–72 [Google Scholar]
  36. Jarvis ED, Yu J, Rivas MV, Horita H, Feenders G. et al. 2013. Global view of the functional molecular organization of the avian cerebrum: mirror images and functional columns. J. Comp. Neurol. 521:3614–65 [Google Scholar]
  37. Juorio AV, Vogt M. 1967. Monoamines and their metabolites in the avian brain. J. Physiol. 189:489–518 [Google Scholar]
  38. Kaas JH. 2011. Neocortex in early mammals and its subsequent variations. Ann. N.Y. Acad. Sci. 1225:28–36 [Google Scholar]
  39. Karten HJ. 1969. The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Ann. N.Y. Acad. Sci. 167:164–79 [Google Scholar]
  40. Karten HJ. 1991. Homology and evolutionary origins of the ‘neocortex.’. Brain Behav. Evol. 38:264–72 [Google Scholar]
  41. Karten HJ. 1997. Evolutionary developmental biology meets the brain: the origins of mammalian cortex. PNAS 94:2800–4 [Google Scholar]
  42. Karten HJ, Hodos W. 1970. Telencephalic projections of the nucleus rotundus in the pigeon (Columba livia). J. Comp. Neurol. 140:35–51 [Google Scholar]
  43. Karten HJ, Hodos W, Nauta WJ, Revzin AM. 1973. Neural connections of the “visual wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). J. Comp. Neurol. 150:253–78 [Google Scholar]
  44. Koppl C. 2009. Evolution of sound localisation in land vertebrates. Curr. Biol. 19:R635–39 [Google Scholar]
  45. Korzeniewska E, Güntürkün O. 1990. Sensory properties and afferents of the N. dorsolateralis posterior thalami of the pigeon. J. Comp. Neurol. 292:457–79 [Google Scholar]
  46. Krettek JE, Price JL. 1978. Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J. Comp. Neurol. 178:225–54 [Google Scholar]
  47. Krubitzer L. 2009. In search of a unifying theory of complex brain evolution. Ann. N.Y. Acad. Sci. 1156:44–67 [Google Scholar]
  48. Kuhlenbeck H. 1973. The Central Nervous System of Vertebrates 3 Part II: Overall Morphologic Pattern Basel, Switz: S. Karger [Google Scholar]
  49. Lanuza E, Davies DC, Landete JM, Novejarque A, Martínez-García F. 2000. Distribution of CGRP-like immunoreactivity in the chick and quail brain. J. Comp. Neurol. 421:515–32 [Google Scholar]
  50. Medina L, Legaz I, González G, De Castro F, Rubenstein JLR, Puelles L. 2004. Expression of Dbx1, Neurogenin 2, Semaphorin 5A, Cadherin 8, and Emx1 distinguish ventral and lateral pallial histogenetic divisions in the developing mouse claustroamygdaloid complex. J. Comp. Neurol. 474:504–23 [Google Scholar]
  51. Medina L, Reiner A. 2000. Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices?. Trends Neurosci. 23:1–12 [Google Scholar]
  52. Meliza CD, Margoliash D. 2012. Emergence of selectivity and tolerance in the avian auditory cortex. J. Neurosci. 32:15158–68 [Google Scholar]
  53. Nauta WJH, Feirtag M. 1986. Fundamental Neuroanatomy New York: W.H. Freeman [Google Scholar]
  54. Nauta WJH, Karten HJ. 1970. A general profile of the vertebrate brain, with sidelights on the ancestry of cerebral cortex. Neurosciences: Second Study Program FO Schmitt 7–26 New York: Rockefeller Univ. Press [Google Scholar]
  55. Northcutt RG. 1981. Evolution of the telencephalon in nonmammals. Annu. Rev. Neurosci. 4:301–50 [Google Scholar]
  56. Northcutt RG, Kaas JH. 1995. The emergence and evolution of mammalian neocortex. Trends Neurosci. 18:373–79 [Google Scholar]
  57. Patterson C. 1982. Morphological characters and homology. Problems of Phylogenetic Reconstruction KA Joysey, AE Friday 21–74 London: Academic [Google Scholar]
  58. Patterson C. 1988. Homology in classical and molecular biology. Mol. Biol. Evol. 5:603–25 [Google Scholar]
  59. Pfenning AR, Hara E, Whitney O, Rivas MV, Wang R. et al. 2014. Convergent transcriptional specializations in the brains of humans and song-learning birds. Science 346:1256846 [Google Scholar]
  60. Pritz MB. 1974. Ascending connections of a thalamic auditory area in a crocodile, Caiman crocodilus. J. Comp. Neurol. 153:199–213 [Google Scholar]
  61. Pritz MB. 1975. Anatomical identification of a telencephalic visual area in crocodiles: ascending connections of nucleus rotundus in Caiman crocodilus. J. Comp. Neurol. 164:323–38 [Google Scholar]
  62. Puelles L. 2001. Thoughts on the development, structure and evolution of the mammalian and avian telencephalic pallium. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356:1583–98 [Google Scholar]
  63. Puelles L. 2011. Pallio-pallial tangential migrations and growth signaling: new scenario for cortical evolution?. Brain Behav. Evol. 78:108–27 [Google Scholar]
  64. Puelles L, Kuwana E, Puelles E, Bulfone A, Shimamura K. et al. 2000. Pallial and subpallial derivatives in the embryonic chick and mouse telencephalon, traced by the expression of the genes Dlx-2, Emx-1, Nkx-2.1, Pax-6, and Tbr-1. J. Comp. Neurol. 424:409–38 [Google Scholar]
  65. Puelles L, Kuwana E, Puelles E, Rubenstein JLR. 1999. Comparison of the mammalian and avian telencephalon from the perspective of gene expression data. Eur. J. Morphol. 37:139–50 [Google Scholar]
  66. Puelles L, Martinez de-la-Torre M, Paxinos G, Watson C, Martinez S. 2007. The Chick Brain in Stereotaxic Coordinates New York: Academic [Google Scholar]
  67. Reiner A. 1993. Neurotransmitter organization and connections of turtle cortex: implications for the evolution of mammalian isocortex. Comp. Biochem. Physiol. 104:735–48 [Google Scholar]
  68. Reiner A. 2000. A hypothesis as to the organization of cerebral cortex in the common amniote ancestor of modern reptiles and mammals. Novartis Found. Symp. 228:83–102 [Google Scholar]
  69. Reiner A, Karten HJ. 1983. The laminar source of efferent projections from the avian Wulst. Brain Res. 275:349–54 [Google Scholar]
  70. Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A. et al. 2004. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J. Comp. Neurol. 473:377–414 [Google Scholar]
  71. Reiner A, Yamamoto K, Karten HJ. 2005. Organization and evolution of the avian forebrain. Anat. Rec. Part A 287:1080–102 [Google Scholar]
  72. Riss W, Halpern M, Scalia F. 1969. The quest for clues to forebrain evolution—the study of reptiles. Brain Behav. Evol. 22:1–50 [Google Scholar]
  73. Rowell JJ, Mallik AK, Dugas-Ford J, Ragsdale CW. 2010. Molecular analysis of neocortical layer structure in the ferret. J. Comp. Neurol. 518:3272–89 [Google Scholar]
  74. Schneider GE. 1969. Two visual systems. Science 163:895–902 [Google Scholar]
  75. Stephenson-Jones M, Ericsson J, Robertson B, Grillner S. 2012. Evolution of the basal ganglia: dual-output pathways conserved throughout vertebrate phylogeny. J. Comp. Neurol. 520:2957–73 [Google Scholar]
  76. Striedter GF. 1997. The telencephalon of tetrapods in evolution. Brain Behav. Evol. 49:179–213 [Google Scholar]
  77. Striedter GF. 2005. Principles of Brain Evolution Sunderland, MA: Sinauer Assoc. [Google Scholar]
  78. Striedter GF, Belgard TG, Chen CC, Davis FP, Finlay BL. et al. 2014. NSF workshop report: discovering general principles of nervous system organization by comparing brain maps across species. J. Comp. Neurol. 522:1445–53 [Google Scholar]
  79. Striedter GF, Marchant TA, Beydler S. 1998. The “neostriatum” develops as part of the lateral pallium in birds. J. Neurosci. 18:5839–49 [Google Scholar]
  80. Sturdy CB, Wild JM, Mooney R. 2003. Respiratory and telencephalic modulation of vocal motor neurons in the zebra finch. J. Neurosci. 23:1072–86 [Google Scholar]
  81. Swanson LW, Petrovich GD. 1998. What is the amygdala?. Trends Neurosci. 21:323–31 [Google Scholar]
  82. Taylor JS, Raes J. 2004. Duplication and divergence: the evolution of new genes and old ideas. Annu. Rev. Genet. 38:615–43 [Google Scholar]
  83. Teissier A, Griveau A, Vigier L, Piolot T, Borello U, Pierani A. 2010. A novel transient glutamatergic population migrating from the pallial-subpallial boundary contributes to neocortical development. J. Neurosci. 30:10563–74 [Google Scholar]
  84. Turner BH, Herkenham M. 1991. Thalamoamygdaloid projections in the rat: a test of the amygdala's role in sensory processing. J. Comp. Neurol. 313:295–325 [Google Scholar]
  85. Ulinski PS. 1983. Dorsal Ventricular Ridge: A Treatise on Forebrain Organization in Reptiles and Birds New York: John Wiley & Sons [Google Scholar]
  86. Ulinski PS. 1986. Organization of corticogeniculate projections in the turtle, Pseudemys scripta. J. Comp. Neurol. 254:529–42 [Google Scholar]
  87. Ulinski PS. 1990. The cerebral cortex of reptiles. Cerebral Cortex EG Jones, A Peters 139–216 New York: Plenum [Google Scholar]
  88. Veenman CL, Wild JM, Reiner A. 1995. Organization of the avian “corticostriatal” projection system: a retrograde and anterograde pathway tracing study in pigeons. J. Comp. Neurol. 354:87–126 [Google Scholar]
  89. Wang Y, Brzozowska-Prechtl A, Karten HJ. 2010. Laminar and columnar auditory cortex in avian brain. PNAS 107:12676–81 [Google Scholar]
  90. Wild JM. 1989. Avian somatosensory system: II. Ascending projections of the dorsal column and external cuneate nuclei in the pigeon. J. Comp. Neurol. 287:1–18 [Google Scholar]
  91. Wild JM. 1992. Direct and indirect “cortico”-rubral and rubro-cerebellar cortical projections in the pigeon. J. Comp. Neurol. 326:623–36 [Google Scholar]
  92. Wild JM. 1997. The avian somatosensory system: the pathway from wing to Wulst in a passerine (Chloris chloris). Brain Res. 759:122–34 [Google Scholar]
  93. Wild JM, Karten HJ, Frost BJ. 1993. Connections of the auditory forebrain in the pigeon (Columba livia). J. Comp. Neurol. 337:32–62 [Google Scholar]
  94. Wild JM, Williams MN. 2000. Rostral Wulst in passerine birds. I. Origin, course, and terminations of an avian pyramidal tract. J. Comp. Neurol. 416:429–50 [Google Scholar]
  95. Winer JA, Morest DK. 1983. The medial division of the medial geniculate body of the cat: implications for thalamic organization. J. Neurosci. 3:2629–51 [Google Scholar]
  96. Yip ZC, Miller-Sims VC, Bottjer SW. 2012. Morphology of axonal projections from the high vocal center to vocal motor cortex in songbirds. J. Comp. Neurol. 520:2742–56 [Google Scholar]
  97. Zeier H, Karten HJ. 1971. The archistriatum of the pigeon: organization of afferent and efferent connections. Brain Res. 31:313–26 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error