1932

Abstract

Brains systems undergo unique and specific dynamic changes at the cellular, circuit, and systems level that underlie the transition to adult-level cognitive control. We integrate literature from these different levels of analyses to propose a novel model of the brain basis of the development of cognitive control. The ability to consistently exert cognitive control improves into adulthood as the flexible integration of component processes, including inhibitory control, performance monitoring, and working memory, increases. Unique maturational changes in brain structure, supported by interactions between dopaminergic and GABAergic systems, contribute to enhanced network synchronization and an improved signal-to-noise ratio. In turn, these factors facilitate the specialization and strengthening of connectivity in networks supporting the transition to adult levels of cognitive control. This model provides a novel understanding of the adolescent period as an adaptive period of heightened experience-seeking necessary for the specialization of brain systems supporting cognitive control.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-071714-034054
2015-07-08
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/neuro/38/1/annurev-neuro-071714-034054.html?itemId=/content/journals/10.1146/annurev-neuro-071714-034054&mimeType=html&fmt=ahah

Literature Cited

  1. Adachi Y, Osada T, Sporns O, Watanabe T, Matsui T. et al. 2012. Functional connectivity between anatomically unconnected areas is shaped by collective network-level effects in the macaque cortex. Cereb. Cortex 22:71586–92 [Google Scholar]
  2. Adleman NE, Menon V, Blasey CM, White CD, Warsofsky IS. et al. 2002. A developmental fMRI study of the Stroop color-word task. Neuroimage 16:161–75 [Google Scholar]
  3. Alahyane N, Brien DC, Coe BC, Stroman PW, Munoz DP. 2014. Developmental improvements in voluntary control of behavior: effect of preparation in the fronto-parietal network?. Neuroimage 98:103–17 [Google Scholar]
  4. Alexander WH, Brown JW. 2010. Computational models of performance monitoring and cognitive control. Top. Cogn. Sci. 2:4658–77 [Google Scholar]
  5. Andersen SL. 2002. Changes in the second messenger cyclic AMP during development may underlie motoric symptoms in attention deficit/hyperactivity disorder (ADHD). Behav. Brain Res. 130:1–2197–201 [Google Scholar]
  6. Andersen SL, Dumont NL, Teicher MH. 1997. Developmental differences in dopamine synthesis inhibition by (±)-7-OH-DPAT. Naunyn-Schmiedeberg's Arch. Pharmacol. 356:2173–81 [Google Scholar]
  7. Andersen SL, Thompson AT, Rutstein M, Hostetter JC, Teicher MH. 2000. Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats. Synapse 37:2167–69 [Google Scholar]
  8. Asato MR, Terwilliger R, Woo J, Luna B. 2010. White matter development in adolescents: a DTI study. Cereb. Cortex 20:92122–31 [Google Scholar]
  9. Baddeley A. 1986. Working Memory New York: Oxford Univ. Press [Google Scholar]
  10. Badre D. 2011. Defining an ontology of cognitive control requires attention to component interactions. Top. Cogn. Sci. 3:2217–21 [Google Scholar]
  11. Baik J-H. 2013. Dopamine signaling in reward-related behaviors. Front. Neural Circuits 7:152 [Google Scholar]
  12. Ball G, Aljabar P, Zebari S, Tusor N, Arichi T. et al. 2014. Rich-club organization of the newborn human brain. PNAS 111:207456–61 [Google Scholar]
  13. Bari A, Robbins TW. 2013. Inhibition and impulsivity: behavioral and neural basis of response control. Prog. Neurobiol. 108:44–79 [Google Scholar]
  14. Bartos M, Vida I, Jonas P. 2007. Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat. Rev. Neurosci. 8:145–56 [Google Scholar]
  15. Başar E, Başar-Eroglu C, Karakaş S, Schürmann M. 2001. Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int. J. Psychophysiol. 39:2–3241–48 [Google Scholar]
  16. Bassett DS, Bullmore E. 2006. Small-world brain networks. Neuroscientist 12:6512–23 [Google Scholar]
  17. Batalle D, Eixarch E, Figueras F, Muñoz-Moreno E, Bargallo N. et al. 2012. Altered small-world topology of structural brain networks in infants with intrauterine growth restriction and its association with later neurodevelopmental outcome. Neuroimage 60:21352–66 [Google Scholar]
  18. Berger B, Verney C, Febvret A, Vigny A, Helle KB. 1985. Postnatal ontogenesis of the dopaminergic innervation in the rat anterior cingulate cortex (area 24). Immunocytochemical and catecholamine fluorescence histochemical analysis. Brain Res. 353:131–47 [Google Scholar]
  19. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. 1995. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34:537–41 [Google Scholar]
  20. Björklund A, Dunnett SB. 2007. Dopamine neuron systems in the brain: an update. Trends Neurosci. 30:5194–202 [Google Scholar]
  21. Bjorklund DF, Harnishfeger KK. 1995. The evolution of inhibition mechanisms and their role in human cognition and behavior. Interference and Inhibition in Cognition FN Dempster, CJ Brainerd 141–73 San Diego, CA: Academic [Google Scholar]
  22. Blakemore SJ. 2008. The social brain in adolescence. Nat. Rev. Neurosci. 9:4267–77 [Google Scholar]
  23. Blakemore SJ, Burnett S, Dahl RE. 2010. The role of puberty in the developing adolescent brain. Hum. Brain Mapp. 31:6926–33 [Google Scholar]
  24. Blond O, Crépel F, Otani S. 2002. Long-term potentiation in rat prefrontal slices facilitated by phased application of dopamine. Eur. J. Pharmacol. 438:1–2115–16 [Google Scholar]
  25. Bourjaily MA, Miller P. 2011. Synaptic plasticity and connectivity requirements to produce stimulus-pair specific responses in recurrent networks of spiking neurons. PLOS Comput. Biol. 7:2e1001091 [Google Scholar]
  26. Braver TS, Barch DM, Gray JR, Molfese DL, Snyder A. 2001. Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb. Cortex 11:825–36 [Google Scholar]
  27. Bressler SL, Menon V. 2010. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci. 14:6277–90 [Google Scholar]
  28. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H. et al. 2009. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. J. Neurosci. 29:61860–73 [Google Scholar]
  29. Bullmore E, Sporns O. 2009. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10:3186–98 [Google Scholar]
  30. Buschman TJ, Miller EK. 2014. Goal-direction and top-down control. Philos. Trans. R. Soc. B Biol. Sci. 369:165520130471 [Google Scholar]
  31. Byrge L, Sporns O, Smith LB. 2014. Developmental process emerges from extended brain-body-behavior networks. Trends Cogn. Sci. 18:8395–403 [Google Scholar]
  32. Cao M, Wang JH, Dai ZJ, Cao XY, Jiang LL. et al. 2014. Topological organization of the human brain functional connectome across the lifespan. Dev. Cogn. Neurosci. 7:76–93 [Google Scholar]
  33. Carpenter PA, Just MA, Keller TA, Eddy W, Thulborn K. 1999. Graded functional activation in the visuospatial system with the amount of task demand. J. Cogn. Neurosci. 11:19–24 [Google Scholar]
  34. Chambers RA, Taylor JR, Potenza MN. 2003. Developmental neurocircuitry of motivation in adolescence: a critical period of addiction vulnerability. Am. J. Psychiatry 160:61041–52 [Google Scholar]
  35. Cocchi L, Zalesky A, Fornito A, Mattingley JB. 2013. Dynamic cooperation and competition between brain systems during cognitive control. Trends Cogn. Sci. 17:10493–501 [Google Scholar]
  36. Cohen JR, Gallen CL, Jacobs EG, Lee TG, D'Esposito M. 2014. Quantifying the reconfiguration of intrinsic networks during working memory. PLOS ONE 9:9e106636 [Google Scholar]
  37. Cole DM, Oei NYL, Soeter RP, Both S, van Gerven JMA. et al. 2013. Dopamine-dependent architecture of cortico-subcortical network connectivity. Cereb. Cortex 23:71509–16 [Google Scholar]
  38. Conklin HM, Luciana M, Hooper CJ, Yarger RS. 2007. Working memory performance in typically developing children and adolescents: behavioral evidence of protracted frontal lobe development. Dev. Neuropsychol. 31:1103–28 [Google Scholar]
  39. Cools R. 2008. Role of dopamine in the motivational and cognitive control of behavior. Neuroscientist 14:4381–95 [Google Scholar]
  40. Crone EA, Wendelken C, Donohue S, van Leijenhorst L, Bunge SA. 2006. Neurocognitive development of the ability to manipulate information in working memory. PNAS 103:249315–20 [Google Scholar]
  41. Dempster FN. 1992. The rise and fall of the inhibitory mechanism: toward a unified theory of cognitive development and aging. Dev. Rev. 12:45–75 [Google Scholar]
  42. Dennis EL, Jahanshad N, McMahon KL, de Zubicaray GI, Martin NG. et al. 2013a. Development of brain structural connectivity between ages 12 and 30: a 4-Tesla diffusion imaging study in 439 adolescents and adults. Neuroimage 64:671–84 [Google Scholar]
  43. Dennis EL, Jahanshad N, Toga AW, McMahon KL, de Zubicaray GI. et al. 2013b. Development of the “rich club” in brain connectivity networks from 438 adolescents & adults aged 12 to 30. Proc. IEEE 10th Int. Symp. Biomed. Imaging: From Nano to Macro, San Francisco, CA, Apr. 7–11624–27 [Google Scholar]
  44. Diamond A. 2013. Executive functions. Annu. Rev. Psychol. 64:135–68 [Google Scholar]
  45. Doria V, Beckmann CF, Arichi T, Merchant N, Groppo M. et al. 2010. Emergence of resting state networks in the preterm human brain. PNAS 107:4620015–20 [Google Scholar]
  46. Dwyer DB, Harrison BJ, Yücel M, Whittle S, Zalesky A. et al. 2014. Large-scale brain network dynamics supporting adolescent cognitive control. J. Neurosci. 34:4214096–107 [Google Scholar]
  47. Ernst M, Nelson EE, Jazbec S, McClure EB, Monk CS. et al. 2005. Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents. Neuroimage 25:41279–91 [Google Scholar]
  48. Erus G, Battapady H, Satterthwaite TD, Hakonarson H, Gur RE. et al. 2014. Imaging patterns of brain development and their relationship to cognition. Cereb. Cortex. In press. doi: 10.1093/cercor/bht425 [Google Scholar]
  49. Fair DA, Cohen AL, Power JD, Dosenbach NU, Church JA. et al. 2009. Functional brain networks develop from a “local to distributed” organization. PLOS Comput. Biol. 5:5e1000381 [Google Scholar]
  50. Fair DA, Dosenbach NU, Church JA, Cohen AL, Brahmbhatt S. et al. 2007. Development of distinct control networks through segregation and integration. PNAS 104:3313507–12 [Google Scholar]
  51. Farrant M, Kaila K. 2007. The cellular, molecular and ionic basis of GABAA receptor signalling. Prog. Brain Res. 160:59–87 [Google Scholar]
  52. Ferdinand NK, Kray J. 2014. Developmental changes in performance monitoring: how electrophysiological data can enhance our understanding of error and feedback processing in childhood and adolescence. Behav. Brain Res. 263:122–32 [Google Scholar]
  53. Fransson P, Aden U, Blennow M, Lagercrantz H. 2011. The functional architecture of the infant brain as revealed by resting-state fMRI. Cereb. Cortex 21:1145–54 [Google Scholar]
  54. Fransson P, Skiöld B, Horsch S, Nordell A, Blennow M. et al. 2007. Resting-state networks in the infant brain. PNAS 104:3915531–36 [Google Scholar]
  55. Galvan A, Hare TA, Parra CE, Penn J, Voss H. et al. 2006. Earlier development of the accumbens relative to orbitofrontal cortex might underlie risk-taking behavior in adolescents. J. Neurosci. 26:256885–92 [Google Scholar]
  56. Gao W, Elton A, Zhu H, Alcauter S, Smith JK. et al. 2014. Intersubject variability of and genetic effects on the brain's functional connectivity during infancy. J. Neurosci. 34:3411288–96 [Google Scholar]
  57. Geier CF, Garver K, Terwilliger R, Luna B. 2009. Development of working memory maintenance. J. Neurophysiol. 101:184–99 [Google Scholar]
  58. Geier CF, Luna B. 2012. Developmental effects of incentives on response inhibition. Child Dev. 83:41262–74 [Google Scholar]
  59. Geier CF, Terwilliger R, Teslovich T, Velanova K, Luna B. 2010. Immaturities in reward processing and its influence on inhibitory control in adolescence. Cereb. Cortex 20:71613–29 [Google Scholar]
  60. Gelbard HA, Teicher MH, Faedda G, Baldessarini RJ. 1989. Postnatal development of dopamine D1 and D2 receptor sites in rat striatum. Dev. Brain Res. 49:1123–30 [Google Scholar]
  61. Ghuman AS, Bar M, Dobbins IG, Schnyer DM. 2008. The effects of priming on frontal-temporal communication. PNAS 105:248405–9 [Google Scholar]
  62. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D. et al. 2004. Dynamic mapping of human cortical development during childhood through early adulthood. PNAS 101:218174–79 [Google Scholar]
  63. Gonzalez-Burgos G, Lewis DA. 2008. GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr. Bull. 34:5944–61 [Google Scholar]
  64. Gonzalez-Burgos G, Miyamae T, Pafundo DE, Yoshino H, Rotaru DC. et al. 2014. Functional maturation of GABA synapses during postnatal development of the monkey dorsolateral prefrontal cortex. Cereb. Cortex. In press. doi: 10.1093/cercor/bhu122 [Google Scholar]
  65. Grayson DS, Ray S, Carpenter S, Iyer S, Dias TG. et al. 2014. Structural and functional rich club organization of the brain in children and adults. PLOS ONE 9:2e88297 [Google Scholar]
  66. Guimerà R, Amaral LAN. 2005. Cartography of complex networks: modules and universal roles. J. Stat. Mech. 2005:P02001P02001–1P02001-13 [Google Scholar]
  67. Haber SN, Knutson B. 2010. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35:14–26 [Google Scholar]
  68. Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E. 1995. The orbital and medial prefrontal circuit through the primate basal ganglia. J. Neurosci. 15:74851–67 [Google Scholar]
  69. Hagmann P, Sporns O, Madan N, Cammoun L, Pienaar R. et al. 2010. White matter maturation reshapes structural connectivity in the late developing human brain. PNAS 107:4419067–72 [Google Scholar]
  70. Hallquist MN, Hwang K, Luna B. 2013. The nuisance of nuisance regression: Spectral misspecification in a common approach to resting-state fMRI preprocessing reintroduces noise and obscures functional connectivity. Neuroimage 82:208–25 [Google Scholar]
  71. Henze DA, González-Burgos GR, Urban NN, Lewis DA, Barrionuevo G. 2000. Dopamine increases excitability of pyramidal neurons in primate prefrontal cortex. J. Neurophysiol. 84:62799–807 [Google Scholar]
  72. Heron M. 2012. Deaths: leading causes for 2008. Natl. Vital Stat. Rep. 60:61–90 [Google Scholar]
  73. Honey CJ, Kötter R, Breakspear M, Sporns O. 2007. Network structure of cerebral cortex shapes functional connectivity on multiple time scales. PNAS 104:2410240–45 [Google Scholar]
  74. Huttenlocher PR, Dabholkar AS. 1997. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387:2167–78 [Google Scholar]
  75. Hwang K, Hallquist MN, Luna B. 2012. The development of hub architecture in the human functional brain network. Cereb. Cortex 23:102380–93 [Google Scholar]
  76. Hwang K, Velanova K, Luna B. 2010. Strengthening of top-down frontal cognitive control networks underlying the development of inhibitory control: a functional magnetic resonance imaging effective connectivity study. J. Neurosci. 30:4615535–45 [Google Scholar]
  77. Johnson MH. 1995. The inhibition of automatic saccades in early infancy. Dev. Psychobiol. 28:5281–91 [Google Scholar]
  78. Kail R. 1991. Processing time declines exponentially during childhood and adolescence. Dev. Psychol. 27:2259–66 [Google Scholar]
  79. Kalsbeek A, Voorn P, Buijs RM, Pool CW, Uylings HB. 1988. Development of the dopaminergic innervation in the prefrontal cortex of the rat. J. Comp. Neurol. 269:158–72 [Google Scholar]
  80. Katz LC, Shatz CJ. 1996. Synaptic activity and the construction of cortical circuits. Science 274:52901133–38 [Google Scholar]
  81. Klingberg T, Forssberg H, Westerberg H. 2002. Increased brain activity in frontal and parietal cortex underlies the development of visuospatial working memory capacity during childhood. J. Cogn. Neurosci. 14:11–10 [Google Scholar]
  82. Larsen B, Luna B. 2015. In vivo evidence of neurophysiological maturation of the human adolescent striatum. Dev. Cogn. Neurosci. 12:74–85 [Google Scholar]
  83. Lebel C, Walker L, Leemans A, Phillips L, Beaulieu C. 2008. Microstructural maturation of the human brain from childhood to adulthood. Neuroimage 140:31044–55 [Google Scholar]
  84. Lenartowicz A, Kalar DJ, Congdon E, Poldrack RA. 2010. Towards an ontology of cognitive control. Top. Cogn. Sci. 2:4678–92 [Google Scholar]
  85. Leslie CA, Robertson MW, Cutler AJ, Bennett JP Jr. 1991. Postnatal development of D1 dopamine receptors in the medial prefrontal cortex, striatum and nucleus accumbens of normal and neonatal 6-hydroxydopamine treated rats: a quantitative autoradiographic analysis. Dev. Brain Res. 62:1109–14 [Google Scholar]
  86. Lewis DA. 1997. Development of the prefrontal cortex during adolescence: insights into vulnerable neural circuits in schizophrenia. Neuropsychopharmacology 16:6385–98 [Google Scholar]
  87. Lewis DA, Cruz D, Eggan S, Erickson S. 2004. Postnatal development of prefrontal inhibitory circuits and the pathophysiology of cognitive dysfunction in schizophrenia. Ann. N.Y. Acad. Sci. 1021:64–76 [Google Scholar]
  88. Liston C, Watts R, Tottenham N, Davidson MC, Niogi S. et al. 2006. Frontostriatal microstructure modulates efficient recruitment of cognitive control. Cereb. Cortex 16:4553–60 [Google Scholar]
  89. Luna B. 2009. Developmental changes in cognitive control through adolescence. Adv. Child Dev. Behav. 37:233–78 [Google Scholar]
  90. Luna B. 2012. The relevance of immaturities in the juvenile brain to culpability and rehabilitation. Hastings Law Rev. 63:1469–86 [Google Scholar]
  91. Luna B, Garver KE, Urban TA, Lazar NA, Sweeney JA. 2004. Maturation of cognitive processes from late childhood to adulthood. Child Dev. 75:1357–72 [Google Scholar]
  92. Luna B, Sweeney JA. 2004. The emergence of collaborative brain function: fMRI studies of the development of response inhibition. Ann. N.Y. Acad. Sci. 1021:296–309 [Google Scholar]
  93. Luna B, Thulborn KR, Munoz DP, Merriam EP, Garver KE. et al. 2001. Maturation of widely distributed brain function subserves cognitive development. Neuroimage 13:786–93 [Google Scholar]
  94. Marsh R, Zhu H, Schultz RT, Quackenbush G, Royal J. et al. 2006. A developmental fMRI study of self-regulatory control. Hum. Brain Mapp. 27:11848–63 [Google Scholar]
  95. Mastwal S, Ye Y, Ren M, Jimenez DV, Martinowich K. et al. 2014. Phasic dopamine neuron activity elicits unique mesofrontal plasticity in adolescence. J. Neurosci. 34:299484–96 [Google Scholar]
  96. Menon V. 2013. Developmental pathways to functional brain networks: emerging principles. Trends Cogn. Sci. 17:12627–40 [Google Scholar]
  97. Mesulam MM. 1990. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann. Neurol. 28:597–613 [Google Scholar]
  98. Mirenowicz J, Schultz W. 1996. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379:6564449–51 [Google Scholar]
  99. Nagy Z, Westerberg H, Klingberg T. 2004. Maturation of white matter is associated with the development of cognitive functions during childhood. J. Cogn. Neurosci. 16:71227–33 [Google Scholar]
  100. Nigg JT. 2000. On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. Psychol. Bull. 126:2220–46 [Google Scholar]
  101. O'Hare ED, Lu LH, Houston SM, Bookheimer SY, Sowell ER. 2008. Neurodevelopmental changes in verbal working memory load-dependency: an fMRI investigation. Neuroimage 42:41678–85 [Google Scholar]
  102. Ojemann GA, Ramsey NF, Ojemann J. 2013. Relation between functional magnetic resonance imaging (fMRI) and single neuron, local field potential (LFP) and electrocorticography (ECoG) activity in human cortex. Front. Hum. Neurosci. 7:34 [Google Scholar]
  103. Olesen PJ, Macoveanu J, Tegnér J, Klingberg T. 2007. Brain activity related to working memory and distraction in children and adults. Cereb. Cortex 17:51047–54 [Google Scholar]
  104. Ordaz SJ, Foran W, Velanova K, Luna B. 2013. Longitudinal growth curves of brain function underlying inhibitory control through adolescence. J. Neurosci. 33:4618109–24 [Google Scholar]
  105. Padmanabhan A, Geier CF, Ordaz SJ, Teslovich T, Luna B. 2011. Developmental changes in brain function underlying the influence of reward processing on inhibitory control. Dev. Cogn. Neurosci. 1:4517–29 [Google Scholar]
  106. Padmanabhan A, Luna B. 2013. Developmental imaging genetics: linking dopamine function to adolescent behavior. Brain Cogn. 89:27–38 [Google Scholar]
  107. Paus T, Keshavan M, Giedd JN. 2008. Why do many psychiatric disorders emerge during adolescence?. Nat. Rev. Neurosci. 9:12947–57 [Google Scholar]
  108. Petanjek Z, Judaš M, Šimic G, Rasin MR, Uylings HB. et al. 2011. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. PNAS 108:3213281–86 [Google Scholar]
  109. Polli FE, Barton JJ, Cain MS, Thakkar KN, Rauch SL, Manoach DS. 2005. Rostral and dorsal anterior cingulate cortex make dissociable contributions during antisaccade error commission. PNAS 102:4315700–5 [Google Scholar]
  110. Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. 2012. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59:32142–54 [Google Scholar]
  111. Power JD, Schlaggar BL, Lessov-Schlaggar CN, Petersen SE. 2013. Evidence for hubs in human functional brain networks. Neuron 79:4798–813 [Google Scholar]
  112. Raznahan A, Shaw PW, Lerch JP, Clasen LS, Greenstein D. et al. 2014. Longitudinal four-dimensional mapping of subcortical anatomy in human development. PNAS 111:41592–97 [Google Scholar]
  113. Reynolds JNJ, Wickens JR. 2002. Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw. 15:4–6507–21 [Google Scholar]
  114. Riggall AC, Postle BR. 2012. The relationship between working memory storage and elevated activity as measured with functional magnetic resonance imaging. J. Neurosci. 32:3812990–98 [Google Scholar]
  115. Rosenberg DR, Lewis DA. 1994. Changes in the dopaminergic innervation of monkey prefrontal cortex during late postnatal development: a tyrosine hydroxylase immunohistochemical study. Biol. Psychiatry 36:272–77 [Google Scholar]
  116. Roux F, Wibral M, Mohr HM, Singer W, Uhlhaas PJ. 2012. Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. J. Neurosci. 32:3612411–20 [Google Scholar]
  117. Rubia K, Smith AB, Taylor E, Brammer M. 2007. Linear age-correlated functional development of right inferior fronto-striato-cerebellar networks during response inhibition and anterior cingulate during error-related processes. Hum. Brain Mapp. 28:1163–77 [Google Scholar]
  118. Rubia K, Smith AB, Woolley J, Nosarti C, Heyman I. et al. 2006. Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Hum. Brain Mapp. 27:12973–93 [Google Scholar]
  119. Sabb FW, Bearden CE, Glahn DC, Parker DS, Freimer N, Bilder RM. 2008. A collaborative knowledge base for cognitive phenomics. Mol. Psychiatry 13:4350–60 [Google Scholar]
  120. Santesso DL, Segalowitz SJ. 2008. Developmental differences in error-related ERPs in middle- to late-adolescent males. Dev. Psychol. 44:1205–17 [Google Scholar]
  121. Satterthwaite TD, Wolf DH, Erus G, Ruparel K, Elliott MA. et al. 2013. Functional maturation of the executive system during adolescence. J. Neurosci. 33:4116249–61 [Google Scholar]
  122. Scherf KS, Sweeney JA, Luna B. 2006. Brain basis of developmental change in visuospatial working memory. J. Cogn. Neurosci. 18:1045–58 [Google Scholar]
  123. Schultz W. 2002. Getting formal with dopamine and reward. Neuron 36:2241–63 [Google Scholar]
  124. Segalowitz SJ, Santesso DL, Jetha MK. 2010. Electrophysiological changes during adolescence: a review. Brain Cogn. 72:186–100 [Google Scholar]
  125. Shackman AJ, Salomons TV, Slagter HA, Fox AS, Winter JJ, Davidson RJ. 2011. The integration of negative affect, pain and cognitive control in the cingulate cortex. Nat. Rev. Neurosci. 12:3154–67 [Google Scholar]
  126. Shenhav A, Botvinick MM, Cohen JD. 2013. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79:2217–40 [Google Scholar]
  127. Simmonds D, Hallquist MN, Asato M, Luna B. 2013. Developmental stages and sex differences of white matter and behavioral development through adolescence: a longitudinal diffusion tensor imaging (DTI) study. Neuroimage 92:356–68 [Google Scholar]
  128. Sohal VS, Zhang F, Yizhar O, Deisseroth K. 2009. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702 [Google Scholar]
  129. Soltani A, Wang X-J. 2006. A biophysically based neural model of matching law behavior: melioration by stochastic synapses. J. Neurosci. 26:143731–44 [Google Scholar]
  130. Spear LP. 2000. Neurobehavioral changes in adolescence. Curr. Dir. Psychol. Sci. 9:111–14 [Google Scholar]
  131. Sporns O, Honey CJ, Kötter R. 2007. Identification and classification of hubs in brain networks. PLOS ONE 2:10e1049 [Google Scholar]
  132. Sporns O, Zwi JD. 2004. The small world of the cerebral cortex. Neuroinformatics 2:2145–62 [Google Scholar]
  133. Steinberg L. 2004. Risk taking in adolescence: what changes, and why?. Ann. N.Y. Acad. Sci. 1021:51–58 [Google Scholar]
  134. Supekar K, Musen M, Menon V. 2009. Development of large-scale functional brain networks in children. PLOS Biol. 7:7e1000157 [Google Scholar]
  135. Tamm L, Menon V, Reiss AL. 2002. Maturation of brain function associated with response inhibition. J. Am. Acad. Child Adolesc. Psychiatry 41:101231–38 [Google Scholar]
  136. Tarazi FI, Baldessarini RJ. 2000. Comparative postnatal development of dopamine D1, D2 and D4 receptors in rat forebrain. Int. J. Dev. Neurosci. 18:129–37 [Google Scholar]
  137. Thomason ME, Dassanayake MT, Shen S, Katkuri Y, Alexis M. et al. 2013. Cross-hemispheric functional connectivity in the human fetal brain. Sci. Transl. Med. 5:173173ra24 [Google Scholar]
  138. Thomason ME, Race E, Burrows B, Whitfield-Gabrieli S, Glover GH, Gabrieli JD. 2009. Development of spatial and verbal working memory capacity in the human brain. J. Cogn. Neurosci. 21:2316–32 [Google Scholar]
  139. Toyoizumi T, Miyamoto H, Yazaki-Sugiyama Y, Atapour N, Hensch TK, Miller KD. 2013. A theory of the transition to critical period plasticity: inhibition selectively suppresses spontaneous activity. Neuron 80:151–63 [Google Scholar]
  140. Uhlhaas PJ, Roux F, Singer W, Haenschel C, Sireteanu R, Rodriguez E. 2009. The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. PNAS 106:9866–71 [Google Scholar]
  141. van den Heuvel MP, Sporns O. 2011. Rich-club organization of the human connectome. J. Neurosci. 31:4415775–86 [Google Scholar]
  142. van den Heuvel MP, Sporns O. 2013. An anatomical substrate for integration among functional networks in human cortex. J. Neurosci. 33:3614489–500 [Google Scholar]
  143. Van Leijenhorst L, Moor BG, Op de Macks ZA, Rombouts SARB, Westenberg PM, Crone EA. 2010. Adolescent risky decision-making: neurocognitive development of reward and control regions. Neuroimage 51:1345–55 [Google Scholar]
  144. Velanova K, Wheeler ME, Luna B. 2008. Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control. Cereb. Cortex 18:112505–22 [Google Scholar]
  145. Wahlstrom D, Collins P, White T, Luciana M. 2010. Developmental changes in dopamine neurotransmission in adolescence: behavioral implications and issues in assessment. Brain Cogn. 72:1146–59 [Google Scholar]
  146. Whittington MA, Traub RD, Jefferys JG. 1995. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature 373:6515612–15 [Google Scholar]
  147. Wiersema JR, van der Meere JJ, Roeyers H. 2007. Developmental changes in error monitoring: an event-related potential study. Neuropsychologia 45:81649–57 [Google Scholar]
  148. Winterer G, Weinberger DR. 2004. Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci. 27:11683–90 [Google Scholar]
  149. Yakovlev PI, Lecours AR, Minkowski A. 1967. The myelogenetic cycles of regional maturation of the brain. Regional Development of the Brain in Early Life A. Minkowski 3–70 Oxford, UK: Blackwell Sci. [Google Scholar]
/content/journals/10.1146/annurev-neuro-071714-034054
Loading
/content/journals/10.1146/annurev-neuro-071714-034054
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error