Long-range synchrony between distant brain regions accompanies multiple forms of behavior. This review compares and contrasts the methods by which long-range synchrony is evaluated in both humans and model animals. Three examples of behaviorally relevant long-range synchrony are discussed in detail: gamma-frequency synchrony during visual perception, hippocampal-prefrontal synchrony during working memory, and prefrontal-amygdala synchrony during anxiety. Implications for circuit mechanism, translation, and clinical relevance are discussed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adhikari A, Topiwala MA, Gordon JA. 2010. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65:257–69 [Google Scholar]
  2. Adhikari A, Topiwala MA, Gordon JA. 2011. Single units in the medial prefrontal cortex with anxiety-related firing patterns are preferentially influenced by ventral hippocampal activity. Neuron 71:898–910 [Google Scholar]
  3. Aggleton JP, Hunt PR, Rawlins JN. 1986. The effects of hippocampal lesions upon spatial and non-spatial tests of working memory. Behav. Brain Res. 19:133–46 [Google Scholar]
  4. Argyelan M, Ikuta T, DeRosse P, Braga RJ, Burdick KE. et al. 2014. Resting-state fMRI connectivity impairment in schizophrenia and bipolar disorder. Schizophr. Bull. 40:100–10 [Google Scholar]
  5. Axmacher N, Schmitz DP, Wagner T, Elger CE, Fell J. 2008. Interactions between medial temporal lobe, prefrontal cortex, and inferior temporal regions during visual working memory: a combined intracranial EEG and functional magnetic resonance imaging study. J. Neurosci. 28:7304–12 [Google Scholar]
  6. Bähner F, Plichta MM, Demanuele C, Schweiger J, Gerchen MF. et al. 2015. Hippocampal–dorsolateral prefrontal coupling as a species-conserved cognitive mechanism: a human translational imaging study. Neuropsychopharmacology. In press. doi: 10.1038/npp.2015.13 [Google Scholar]
  7. Bandettini PA. 2009. What's new in neuroimaging methods?. Ann. N.Y. Acad. Sci. 1156:260–93 [Google Scholar]
  8. Bannerman DM, Grubb M, Deacon RM, Yee BK, Feldon J, Rawlins JN. 2003. Ventral hippocampal lesions affect anxiety but not spatial learning. Behav. Brain Res. 139:197–213 [Google Scholar]
  9. Bassett DS, Nelson BG, Mueller BA, Camchong J, Lim KO. 2012. Altered resting state complexity in schizophrenia. NeuroImage 59:2196–207 [Google Scholar]
  10. Baur V, Hanggi J, Langer N, Jancke L. 2013. Resting-state functional and structural connectivity within an insula-amygdala route specifically index state and trait anxiety. Biol. Psychiatry 73:85–92 [Google Scholar]
  11. Belforte JE, Zsiros V, Sklar ER, Jiang Z, Yu G. et al. 2010. Postnatal ablation of NMDA receptors in corticolimbic interneurons leads to schizophrenia-related phenotypes. Nat. Neurosci. 13:76–83 [Google Scholar]
  12. Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y. et al. 2010. Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron 66:921–36 [Google Scholar]
  13. Betti V, Della Penna S, de Pasquale F, Mantini D, Marzetti L. et al. 2013. Natural scenes viewing alters the dynamics of functional connectivity in the human brain. Neuron 79:782–97 [Google Scholar]
  14. Bonnefond M, Jensen O. 2012. Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Curr. Biol. 22:1969–74 [Google Scholar]
  15. Bosman CA, Schoffelen JM, Brunet N, Oostenveld R, Bastos AM. et al. 2012. Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron 75:875–88 [Google Scholar]
  16. Brown EN, Kass RE, Mitra PP. 2004. Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci. 7:456–61 [Google Scholar]
  17. Burton BG, Hok V, Save E, Poucet B. 2009. Lesion of the ventral and intermediate hippocampus abolishes anticipatory activity in the medial prefrontal cortex of the rat. Behav. Brain Res. 199:222–34 [Google Scholar]
  18. Canetta SE, Brown AS. 2012. Prenatal infection, maternal immune activation, and risk for schizophrenia. Transl. Neurosci. 3:320–27 [Google Scholar]
  19. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F. et al. 2009. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663–67 [Google Scholar]
  20. Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T. et al. 2009. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature 462:353–57 [Google Scholar]
  21. Cosmelli D, David O, Lachaux JP, Martinerie J, Garnero L. et al. 2004. Waves of consciousness: ongoing cortical patterns during binocular rivalry. NeuroImage 23:128–40 [Google Scholar]
  22. Deacon RM, Bannerman DM, Rawlins JN. 2002. Anxiolytic effects of cytotoxic hippocampal lesions in rats. Behav. Neurosci. 116:494–97 [Google Scholar]
  23. Dickerson DD, Wolff AR, Bilkey DK. 2010. Abnormal long-range neural synchrony in a maternal immune activation animal model of schizophrenia. J. Neurosci. 30:12424–31 [Google Scholar]
  24. Doesburg SM, Kitajo K, Ward LM. 2005. Increased gamma-band synchrony precedes switching of conscious perceptual objects in binocular rivalry. NeuroReport 16:1139–42 [Google Scholar]
  25. Dong Y, Mihalas S, Qiu F, von der Heydt R, Niebur E. 2008. Synchrony and the binding problem in macaque visual cortex. J. Vis. 8:30 [Google Scholar]
  26. Engel AK, Konig P, Kreiter AK, Singer W. 1991a. Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 252:1177–79 [Google Scholar]
  27. Engel AK, Kreiter AK, Konig P, Singer W. 1991b. Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. PNAS 88:6048–52 [Google Scholar]
  28. Etkin A, Prater KE, Hoeft F, Menon V, Schatzberg AF. 2010. Failure of anterior cingulate activation and connectivity with the amygdala during implicit regulation of emotional processing in generalized anxiety disorder. Am. J. Psychiatry 167:545–54 [Google Scholar]
  29. Fell J, Ludowig E, Rosburg T, Axmacher N, Elger CE. 2008. Phase-locking within human mediotemporal lobe predicts memory formation. NeuroImage 43:410–19 [Google Scholar]
  30. File SE, Gonzalez LE. 1996. Anxiolytic effects in the plus-maze of 5-HT1A-receptor ligands in dorsal raphé and ventral hippocampus. Pharmacol. Biochem. Behav. 54:123–28 [Google Scholar]
  31. Finn AS, Sheridan MA, Kam CL, Hinshaw S, D'Esposito M. 2010. Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain. J. Neurosci. 30:11062–67 [Google Scholar]
  32. Floresco SB, Seamans JK, Phillips AG. 1997. Selective roles for hippocampal, prefrontal cortical, and ventral striatal circuits in radial-arm maze tasks with or without a delay. J. Neurosci. 17:1880–90 [Google Scholar]
  33. Ford JM, Mathalon DH, Whitfield S, Faustman WO, Roth WT. 2002. Reduced communication between frontal and temporal lobes during talking in schizophrenia. Biol. Psychiatry 51:485–92 [Google Scholar]
  34. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. 2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. PNAS 102:9673–78 [Google Scholar]
  35. Fries P. 2005. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9:474–80 [Google Scholar]
  36. Fries P, Reynolds JH, Rorie AE, Desimone R. 2001. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–63 [Google Scholar]
  37. Fries P, Roelfsema PR, Engel AK, Konig P, Singer W. 1997. Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. PNAS 94:12699–704 [Google Scholar]
  38. Goense JB, Logothetis NK. 2008. Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr. Biol. 18:631–40 [Google Scholar]
  39. Gonzalez LE, Rujano M, Tucci S, Paredes D, Silva E. et al. 2000. Medial prefrontal transection enhances social interaction. I: Behavioral studies. Brain Res. 887:7–15 [Google Scholar]
  40. Gordon JA. 2011. Oscillations and hippocampal-prefrontal synchrony. Curr. Opin. Neurobiol. 21:486–91 [Google Scholar]
  41. Gray CM, Konig P, Engel AK, Singer W. 1989. Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–37 [Google Scholar]
  42. Grossberg S. 1976. Adaptive pattern classification and universal recoding: II. Feedback, expectation, olfaction, illusions. Biol. Cybern. 23:187–202 [Google Scholar]
  43. Guitart-Masip M, Barnes GR, Horner A, Bauer M, Dolan RJ, Duzel E. 2013. Synchronization of medial temporal lobe and prefrontal rhythms in human decision making. J. Neurosci. 33:442–51 [Google Scholar]
  44. Haarmann HJ, Cameron KA. 2005. Active maintenance of sentence meaning in working memory: evidence from EEG coherences. Int. J. Psychophysiol. 57:115–28 [Google Scholar]
  45. Haegens S, Osipova D, Oostenveld R, Jensen O. 2010. Somatosensory working memory performance in humans depends on both engagement and disengagement of regions in a distributed network. Hum. Brain Mapp. 31:26–35 [Google Scholar]
  46. He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME. 2008. Electrophysiological correlates of the brain's intrinsic large-scale functional architecture. PNAS 105:16039–44 [Google Scholar]
  47. Hermans EJ, van Marle HJ, Ossewaarde L, Henckens MJ, Qin S. et al. 2011. Stress-related noradrenergic activity prompts large-scale neural network reconfiguration. Science 334:1151–53 [Google Scholar]
  48. Hyman JM, Zilli EA, Paley AM, Hasselmo ME. 2005. Medial prefrontal cortex cells show dynamic modulation with the hippocampal theta rhythm dependent on behavior. Hippocampus 15:739–49 [Google Scholar]
  49. Hyman JM, Zilli EA, Paley AM, Hasselmo ME. 2010. Working memory performance correlates with prefrontal-hippocampal theta interactions but not with prefrontal neuron firing rates. Front. Integr. Neurosci. 4:2 [Google Scholar]
  50. Ioannides AA. 2007. Dynamic functional connectivity. Curr. Opin. Neurobiol. 17:161–70 [Google Scholar]
  51. Izaki Y, Maruki K, Hori K, Nomura M. 2001. Effects of rat medial prefrontal cortex temporal inactivation on a delayed alternation task. Neurosci. Lett. 315:129–32 [Google Scholar]
  52. Jensen O, Gelfand J, Kounios J, Lisman JE. 2002. Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb. Cortex 12:877–82 [Google Scholar]
  53. Jensen O, Tesche CD. 2002. Frontal theta activity in humans increases with memory load in a working memory task. Eur. J. Neurosci. 15:1395–99 [Google Scholar]
  54. Jones MW, Wilson MA. 2005a. Phase precession of medial prefrontal cortical activity relative to the hippocampal theta rhythm. Hippocampus 15:867–73 [Google Scholar]
  55. Jones MW, Wilson MA. 2005b. Theta rhythms coordinate hippocampal–prefrontal interactions in a spatial memory task. PLOS Biol. 3e402 [Google Scholar]
  56. Jung MW, Qin Y, McNaughton BL, Barnes CA. 1998. Firing characteristics of deep layer neurons in prefrontal cortex in rats performing spatial working memory tasks. Cereb. Cortex 8:437–50 [Google Scholar]
  57. Kaiser J, Ripper B, Birbaumer N, Lutzenberger W. 2003. Dynamics of gamma-band activity in human magnetoencephalogram during auditory pattern working memory. NeuroImage 20:816–27 [Google Scholar]
  58. Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R. et al. 1995. Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. PNAS 92:7612–16 [Google Scholar]
  59. Keil A, Muller MM, Gruber T, Wienbruch C, Stolarova M, Elbert T. 2001. Effects of emotional arousal in the cerebral hemispheres: a study of oscillatory brain activity and event-related potentials. Clin. Neurophysiol. 112:2057–68 [Google Scholar]
  60. Keil A, Muller MM, Ray WJ, Gruber T, Elbert T. 1999. Human gamma band activity and perception of a gestalt. J. Neurosci. 19:7152–61 [Google Scholar]
  61. Keil A, Stolarova M, Moratti S, Ray WJ. 2007. Adaptation in human visual cortex as a mechanism for rapid discrimination of aversive stimuli. NeuroImage 36:472–79 [Google Scholar]
  62. Kim MJ, Gee DG, Loucks RA, Davis FC, Whalen PJ. 2011. Anxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cereb. Cortex 21:1667–73 [Google Scholar]
  63. Kim SY, Adhikari A, Lee SY, Marshel JH, Kim CK. et al. 2013. Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496:219–23 [Google Scholar]
  64. Kjelstrup KG, Tuvnes FA, Steffenach HA, Murison R, Moser EI, Moser MB. 2002. Reduced fear expression after lesions of the ventral hippocampus. PNAS 99:10825–30 [Google Scholar]
  65. Klavir O, Genud-Gabai R, Paz R. 2013. Functional connectivity between amygdala and cingulate cortex for adaptive aversive learning. Neuron 80:1290–300 [Google Scholar]
  66. Korotkova T, Fuchs EC, Ponomarenko A, von Engelhardt J, Monyer H. 2010. NMDA receptor ablation on parvalbumin-positive interneurons impairs hippocampal synchrony, spatial representations, and working memory. Neuron 68:557–69 [Google Scholar]
  67. Kreiter AK, Singer W. 1996. Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey. J. Neurosci. 16:2381–96 [Google Scholar]
  68. Krieger S, Lis S, Janik H, Cetin T, Gallhofer B, Meyer-Lindenberg A. 2005. Executive function and cognitive subprocesses in first-episode, drug-naive schizophrenia: an analysis of N-back performance. Am. J. Psychiatry 162:1206–8 [Google Scholar]
  69. Lacroix L, Spinelli S, Heidbreder CA, Feldon J. 2000. Differential role of the medial and lateral prefrontal cortices in fear and anxiety. Behav. Neurosci. 114:1119–30 [Google Scholar]
  70. Lajiness-O'Neill RR, Beaulieu I, Titus JB, Asamoah A, Bigler ED. et al. 2005. Memory and learning in children with 22q11.2 deletion syndrome: evidence for ventral and dorsal stream disruption?. Child Neuropsychol. 11:55–71 [Google Scholar]
  71. Lamme VA, Spekreijse H. 1998. Neuronal synchrony does not represent texture segregation. Nature 396:362–66 [Google Scholar]
  72. Lasztóczi B, Klausberger T. 2014. Layer-specific GABAergic control of distinct gamma oscillations in the CA1 hippocampus. Neuron 81:1126–39 [Google Scholar]
  73. Lawrie SM, Buechel C, Whalley HC, Frith CD, Friston KJ, Johnstone EC. 2002. Reduced frontotemporal functional connectivity in schizophrenia associated with auditory hallucinations. Biol. Psychiatry 51:1008–11 [Google Scholar]
  74. Lee I, Kesner RP. 2003. Time-dependent relationship between the dorsal hippocampus and the prefrontal cortex in spatial memory. J. Neurosci. 23:1517–23 [Google Scholar]
  75. Lesting J, Daldrup T, Narayanan V, Himpe C, Seidenbecher T, Pape HC. 2013. Directional theta coherence in prefrontal cortical to amygdalo-hippocampal pathways signals fear extinction. PLOS ONE 8:e77707 [Google Scholar]
  76. Lewandowski KE, Shashi V, Berry PM, Kwapil TR. 2007. Schizophrenic-like neurocognitive deficits in children and adolescents with 22q11 deletion syndrome. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 144:27–36 [Google Scholar]
  77. Likhtik E, Stujenske JM, Topiwala MA, Harris AZ, Gordon JA. 2014. Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nat. Neurosci. 17:106–13 [Google Scholar]
  78. Lisman JE, Jensen O. 2013. The theta-gamma neural code. Neuron 77:1002–16 [Google Scholar]
  79. Livneh U, Paz R. 2012. Amygdala-prefrontal synchronization underlies resistance to extinction of aversive memories. Neuron 75:133–42 [Google Scholar]
  80. Maren S. 2001. Neurobiology of Pavlovian fear conditioning. Annu. Rev. Neurosci. 24:897–931 [Google Scholar]
  81. McMenamin BW, Langeslag SJ, Sirbu M, Padmala S, Pessoa L. 2014. Network organization unfolds over time during periods of anxious anticipation. J. Neurosci. 34:11261–73 [Google Scholar]
  82. Merker B. 2013. Cortical gamma oscillations: the functional key is activation, not cognition. Neurosci. Biobehav. Rev. 37:401–17 [Google Scholar]
  83. Meyer-Lindenberg AS, Olsen RK, Kohn PD, Brown T, Egan MF. et al. 2005. Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch. Gen. Psychiatry 62:379–86 [Google Scholar]
  84. Meyer-Lindenberg AS, Poline JB, Kohn PD, Holt JL, Egan MF. et al. 2001. Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am. J. Psychiatry 158:1809–17 [Google Scholar]
  85. Milner PM. 1974. A model for visual shape recognition. Psychol. Rev. 81:521–35 [Google Scholar]
  86. Miltner WH, Braun C, Arnold M, Witte H, Taub E. 1999. Coherence of gamma-band EEG activity as a basis for associative learning. Nature 397:434–36 [Google Scholar]
  87. Monk CS, Telzer EH, Mogg K, Bradley BP, Mai X. et al. 2008. Amygdala and ventrolateral prefrontal cortex activation to masked angry faces in children and adolescents with generalized anxiety disorder. Arch. Gen. Psychiatry 65:568–76 [Google Scholar]
  88. Mueller EM, Panitz C, Hermann C, Pizzagalli DA. 2014. Prefrontal oscillations during recall of conditioned and extinguished fear in humans. J. Neurosci. 34:7059–66 [Google Scholar]
  89. Nader K, Schafe GE, Le Doux JE. 2000. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature 406:722–26 [Google Scholar]
  90. Nakatani H, van Leeuwen C. 2006. Transient synchrony of distant brain areas and perceptual switching in ambiguous figures. Biol. Cybern. 94:445–57 [Google Scholar]
  91. Narayanan RT, Seidenbecher T, Kluge C, Bergado J, Stork O, Pape HC. 2007a. Dissociated theta phase synchronization in amygdalo-hippocampal circuits during various stages of fear memory. Eur. J. Neurosci. 25:1823–31 [Google Scholar]
  92. Narayanan RT, Seidenbecher T, Sangha S, Stork O, Pape HC. 2007b. Theta resynchronization during reconsolidation of remote contextual fear memory. NeuroReport 18:1107–11 [Google Scholar]
  93. Narayanan V, Heiming RS, Jansen F, Lesting J, Sachser N. et al. 2011. Social defeat: impact on fear extinction and amygdala-prefrontal cortical theta synchrony in 5-HTT deficient mice. PLOS ONE 6:e22600 [Google Scholar]
  94. Nir Y, Fisch L, Mukamel R, Gelbard-Sagiv H, Arieli A. et al. 2007. Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr. Biol. 17:1275–85 [Google Scholar]
  95. Nir Y, Mukamel R, Dinstein I, Privman E, Harel M. et al. 2008. Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat. Neurosci. 11:1100–8 [Google Scholar]
  96. O'Keefe J, Recce M. 1993. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–30 [Google Scholar]
  97. O'Neill PK, Gordon JA, Sigurdsson T. 2013. Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion. J. Neurosci. 33:14211–24 [Google Scholar]
  98. Ossandon T, Jerbi K, Vidal JR, Bayle DJ, Henaff MA. et al. 2011. Transient suppression of broadband gamma power in the default-mode network is correlated with task complexity and subject performance. J. Neurosci. 31:14521–30 [Google Scholar]
  99. Palanca BJ, DeAngelis GC. 2005. Does neuronal synchrony underlie visual feature grouping?. Neuron 46:333–46 [Google Scholar]
  100. Palva S, Monto S, Palva JM. 2010. Graph properties of synchronized cortical networks during visual working memory maintenance. NeuroImage 49:3257–68 [Google Scholar]
  101. Palva S, Palva JM. 2007. New vistas for α-frequency band oscillations. Trends Neurosci. 30:150–58 [Google Scholar]
  102. Pan H, Epstein J, Silbersweig DA, Stern E. 2011. New and emerging imaging techniques for mapping brain circuitry. Brain Res. Rev. 67:226–51 [Google Scholar]
  103. Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D. 2002. Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. Methods Find. Exp. Clin. Pharmacol. 24:Suppl. C91–95 [Google Scholar]
  104. Payne L, Kounios J. 2009. Coherent oscillatory networks supporting short-term memory retention. Brain Res. 1247:126–32 [Google Scholar]
  105. Piskulic D, Olver JS, Norman TR, Maruff P. 2007. Behavioural studies of spatial working memory dysfunction in schizophrenia: a quantitative literature review. Psychiatry Res. 150:111–21 [Google Scholar]
  106. Popa D, Duvarci S, Popescu AT, Léna C, Paré D. 2010. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. PNAS 107:6516–19 [Google Scholar]
  107. Raghavachari S, Kahana MJ, Rizzuto DS, Caplan JB, Kirschen MP. et al. 2001. Gating of human theta oscillations by a working memory task. J. Neurosci. 21:3175–83 [Google Scholar]
  108. Raghavachari S, Lisman JE, Tully M, Madsen JR, Bromfield EB, Kahana MJ. 2006. Theta oscillations in human cortex during a working-memory task: evidence for local generators. J. Neurophysiol. 95:1630–38 [Google Scholar]
  109. Rissman J, Gazzaley A, D'Esposito M. 2008. Dynamic adjustments in prefrontal, hippocampal, and inferior temporal interactions with increasing visual working memory load. Cereb. Cortex 18:1618–29 [Google Scholar]
  110. Robinson OJ, Charney DR, Overstreet C, Vytal K, Grillon C. 2012. The adaptive threat bias in anxiety: amygdala-dorsomedial prefrontal cortex coupling and aversive amplification. NeuroImage 60:523–29 [Google Scholar]
  111. Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ. 1999. Perception's shadow: long-distance synchronization of human brain activity. Nature 397:430–33 [Google Scholar]
  112. Roelfsema PR, Lamme VA, Spekreijse H. 2004. Synchrony and covariation of firing rates in the primary visual cortex during contour grouping. Nat. Neurosci. 7:982–91 [Google Scholar]
  113. Roux F, Uhlhaas PJ. 2014. Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information?. Trends Cogn. Sci. 18:16–25 [Google Scholar]
  114. Roux F, Wibral M, Mohr HM, Singer W, Uhlhaas PJ. 2012. Gamma-band activity in human prefrontal cortex codes for the number of relevant items maintained in working memory. J. Neurosci. 32:12411–20 [Google Scholar]
  115. Sakkalis V. 2011. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput. Biol. Med. 41:1110–17 [Google Scholar]
  116. Sauseng P, Klimesch W, Schabus M, Doppelmayr M. 2005. Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int. J. Psychophysiol. 57:97–103 [Google Scholar]
  117. Scheeringa R, Fries P, Petersson KM, Oostenveld R, Grothe I. et al. 2011. Neuronal dynamics underlying high- and low-frequency EEG oscillations contribute independently to the human BOLD signal. Neuron 69:572–83 [Google Scholar]
  118. Scholvinck ML, Maier A, Ye FQ, Duyn JH, Leopold DA. 2010. Neural basis of global resting-state fMRI activity. PNAS 107:10238–43 [Google Scholar]
  119. Seidenbecher T, Laxmi TR, Stork O, Pape HC. 2003. Amygdalar and hippocampal theta rhythm synchronization during fear memory retrieval. Science 301:846–50 [Google Scholar]
  120. Setsompop K, Kimmlingen R, Eberlein E, Witzel T, Cohen-Adad J. et al. 2013. Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. NeuroImage 80:220–33 [Google Scholar]
  121. Shadlen MN, Movshon JA. 1999. Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24:67–77 [Google Scholar]
  122. Shah AA, Sjovold T, Treit D. 2004. Inactivation of the medial prefrontal cortex with the GABAA receptor agonist muscimol increases open-arm activity in the elevated plus-maze and attenuates shock-probe burying in rats. Brain Res. 1028:112–15 [Google Scholar]
  123. Shah AA, Treit D. 2003. Excitotoxic lesions of the medial prefrontal cortex attenuate fear responses in the elevated-plus maze, social interaction and shock probe burying tests. Brain Res. 969:183–94 [Google Scholar]
  124. Shmuel A, Leopold DA. 2008. Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: implications for functional connectivity at rest. Hum. Brain Mapp. 29:751–61 [Google Scholar]
  125. Siapas AG, Lubenov EV, Wilson MA. 2005. Prefrontal phase locking to hippocampal theta oscillations. Neuron 46:141–51 [Google Scholar]
  126. Siapas AG, Wilson MA. 1998. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21:1123–28 [Google Scholar]
  127. Sigurdsson T, Stark KL, Karayiorgou M, Gogos JA, Gordon JA. 2010. Impaired hippocampal–prefrontal synchrony in a genetic mouse model of schizophrenia. Nature 464:763–67 [Google Scholar]
  128. Sobin C, Kiley-Brabeck K, Daniels S, Khuri J, Taylor L. et al. 2005. Neuropsychological characteristics of children with the 22q11 deletion syndrome: a descriptive analysis. Child Neuropsychol. 11:39–53 [Google Scholar]
  129. Sohal VS, Zhang F, Yizhar O, Deisseroth K. 2009. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 459:698–702 [Google Scholar]
  130. Srinivasan R, Russell DP, Edelman GM, Tononi G. 1999. Increased synchronization of neuromagnetic responses during conscious perception. J. Neurosci. 19:5435–48 [Google Scholar]
  131. Stark K, Xu B, Bagchi A, Lai W, Liu H. et al. 2008. Altered brain microRNA biogenesis contributes to phenotypic deficits in a 22q11-deletion mouse model. Nat. Genet. 40:751–60 [Google Scholar]
  132. Stujenske JM, Likhtik E, Topiwala MA, Gordon JA. 2014. Fear and safety engage competing patterns of theta-gamma coupling in the basolateral amygdala. Neuron 83:919–33 [Google Scholar]
  133. Tallon-Baudry C, Bertrand O, Delpuech C, Permier J. 1997. Oscillatory gamma-band (30–70 Hz) activity induced by a visual search task in humans. J. Neurosci. 17:722–34 [Google Scholar]
  134. Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J. 1996. Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J. Neurosci. 16:4240–49 [Google Scholar]
  135. Tallon-Baudry C, Bertrand O, Fischer C. 2001. Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance. J. Neurosci. 21:RC177 [Google Scholar]
  136. Thiele A, Stoner G. 2003. Neuronal synchrony does not correlate with motion coherence in cortical area MT. Nature 421:366–70 [Google Scholar]
  137. Thierry AM, Gioanni Y, Degenetais E, Glowinski J. 2000. Hippocampo-prefrontal cortex pathway: anatomical and electrophysiological characteristics. Hippocampus 10:411–19 [Google Scholar]
  138. Thomason ME, Hamilton JP, Gotlib IH. 2011. Stress-induced activation of the HPA axis predicts connectivity between subgenual cingulate and salience network during rest in adolescents. J. Child Psychol. Psychiatry 52:1026–34 [Google Scholar]
  139. Tononi G, Srinivasan R, Russell DP, Edelman GM. 1998. Investigating neural correlates of conscious perception by frequency-tagged neuromagnetic responses. PNAS 95:3198–203 [Google Scholar]
  140. Tromp DP, Grupe DW, Oathes DJ, McFarlin DR, Hernandez PJ. et al. 2012. Reduced structural connectivity of a major frontolimbic pathway in generalized anxiety disorder. Arch. Gen. Psychiatry 69:925–34 [Google Scholar]
  141. Uhlhaas PJ, Pipa G, Lima B, Melloni L, Neuenschwander S. et al. 2009. Neural synchrony in cortical networks: history, concept and current status. Front. Integr. Neurosci. 3:17 [Google Scholar]
  142. van Amelsvoort T, Henry J, Morris R, Owen M, Linszen D. et al. 2004. Cognitive deficits associated with schizophrenia in velo-cardio-facial syndrome. Schizophr. Res. 70:223–32 [Google Scholar]
  143. Venkataraman A, Whitford TJ, Westin CF, Golland P, Kubicki M. 2012. Whole brain resting state functional connectivity abnormalities in schizophrenia. Schizophr. Res. 139:7–12 [Google Scholar]
  144. Verwer RW, Meijer RJ, Van Uum HF, Witter MP. 1997. Collateral projections from the rat hippocampal formation to the lateral and medial prefrontal cortex. Hippocampus 7:397–402 [Google Scholar]
  145. von der Malsburg C. 1981. The correlation theory of brain function Intern. Rep. 81-2, Max Planck Inst. Biophys. Chem., Göttingen, West Ger. [Google Scholar]
  146. von Stein A, Sarnthein J. 2000. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int. J. Psychophysiol. 38:301–13 [Google Scholar]
  147. Wagemans J, Elder JH, Kubovy M, Palmer SE, Peterson MA. et al. 2012. A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. Psychol. Bull. 138:1172–217 [Google Scholar]
  148. Wang GW, Cai JX. 2006. Disconnection of the hippocampal-prefrontal cortical circuits impairs spatial working memory performance in rats. Behav. Brain Res. 175:329–36 [Google Scholar]
  149. Wang XJ. 2010. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol. Rev. 90:1195–268 [Google Scholar]
  150. Watrous AJ, Fell J, Ekstrom AD, Axmacher N. 2014. More than spikes: common oscillatory mechanisms for content specific neural representations during perception and memory. Curr. Opin. Neurobiol. 31:33–39 [Google Scholar]
  151. Wheelock MD, Sreenivasan KR, Wood KH, Ver Hoef LW, Deshpande G, Knight DC. 2014. Threat-related learning relies on distinct dorsal prefrontal cortex network connectivity. NeuroImage 102:Part 2904–12 [Google Scholar]
  152. Womelsdorf T, Fries P, Mitra PP, Desimone R. 2006. Gamma-band synchronization in visual cortex predicts speed of change detection. Nature 439:733–36 [Google Scholar]
  153. Yamamoto J, Suh J, Takeuchi D, Tonegawa S. 2014. Successful execution of working memory linked to synchronized high-frequency gamma oscillations. Cell 157:845–57 [Google Scholar]
  154. Yoon T, Okada J, Jung MW, Kim JJ. 2008. Prefrontal cortex and hippocampus subserve different components of working memory in rats. Learn. Mem. 15:97–105 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error