In the retina, photoreceptors pass visual information to interneurons, which process it and pass it to retinal ganglion cells (RGCs). Axons of RGCs then travel through the optic nerve, telling the rest of the brain all it will ever know about the visual world. Research over the past several decades has made clear that most RGCs are not merely light detectors, but rather feature detectors, which send a diverse set of parallel, highly processed images of the world on to higher centers. Here, we review progress in classification of RGCs by physiological, morphological, and molecular criteria, making a particular effort to distinguish those cell types that are definitive from those for which information is partial. We focus on the mouse, in which molecular and genetic methods are most advanced. We argue that there are around 30 RGC types and that we can now account for well over half of all RGCs. We also use RGCs to examine the general problem of neuronal classification, arguing that insights and methods from the retina can guide the classification enterprise in other brain regions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allen AE, Storchi R, Martial FP, Petersen RS, Montemurro MA. et al. 2014. Melanopsin-driven light adaptation in mouse vision. Curr. Biol. 24:2481–90 [Google Scholar]
  2. Amthor FR, Takahashi ES, Oyster CW. 1989. Morphologies of rabbit retinal ganglion cells with complex receptive fields. J. Comp. Neurol. 280:97–121 [Google Scholar]
  3. Baccus SA, Olveczky BP, Manu M, Meister M. 2008. A retinal circuit that computes object motion. J. Neurosci. 28:6807–17 [Google Scholar]
  4. Badea TC, Cahill H, Ecker J, Hattar S, Nathans J. 2009. Distinct roles of transcription factors Brn3a and Brn3b in controlling the development, morphology, and function of retinal ganglion cells. Neuron 61:852–64 [Google Scholar]
  5. Badea TC, Nathans J. 2004. Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. J. Comp. Neurol. 480:331–51 [Google Scholar]
  6. Baden T, Berens P, Bethge M, Euler T. 2013. Spikes in mammalian bipolar cells support temporal layering of the inner retina. Curr. Biol. 23:48–52 [Google Scholar]
  7. Barlow HB, Hill RM, Levick WR. 1964. Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. 173:377–407 [Google Scholar]
  8. Barlow HB, Levick WR. 1965. The mechanism of directionally selective units in rabbit's retina. J. Physiol. 178:477–504 [Google Scholar]
  9. Barnstable CJ, Dräger UC. 1984. Thy-1 antigen: a ganglion cell specific marker in rodent retina. Neuroscience 11:847–55 [Google Scholar]
  10. Berson DM. 2008. Retinal ganglion cell types and their central projections. The Senses R Masland, T Albright New York: Elsevier [Google Scholar]
  11. Berson DM, Castrucci AM, Provencio I. 2010. Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice. J. Comp. Neurol. 518:2405–22 [Google Scholar]
  12. Bleckert A, Schwartz GW, Turner MH, Rieke F, Wong RO. 2014. Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types. Curr. Biol. 24:310–15 [Google Scholar]
  13. Bloomfield SA. 1994. Orientation-sensitive amacrine and ganglion cells in the rabbit retina. J. Neurophysiol. 71:1672–91 [Google Scholar]
  14. Breuninger T, Puller C, Haverkamp S, Euler T. 2011. Chromatic bipolar cell pathways in the mouse retina. J. Neurosci. 31:6504–17 [Google Scholar]
  15. Briggman KL, Euler T. 2011. Bulk electroporation and population calcium imaging in the adult mammalian retina. J. Neurophysiol. 105:2601–9 [Google Scholar]
  16. Briggman KL, Helmstaedter M, Denk W. 2011. Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–88 [Google Scholar]
  17. Caldwell JH, Daw NW. 1978. New properties of rabbit retinal ganglion cells. J. Physiol. 276:257–76 [Google Scholar]
  18. Cepko C. 2014. Intrinsically different retinal progenitor cells produce specific types of progeny. Nat. Rev. Neurosci. 15:615–27 [Google Scholar]
  19. Chang L, Breuninger T, Euler T. 2013. Chromatic coding from cone-type unselective circuits in the mouse retina. Neuron 77:559–71 [Google Scholar]
  20. Chen H, Liu X, Tian N. 2014. Subtype-dependent postnatal development of direction- and orientation-selective retinal ganglion cells in mice. J. Neurophysiol. 112:2092–101 [Google Scholar]
  21. Chen S, Li W. 2012. A color-coding amacrine cell may provide a blue-Off signal in a mammalian retina. Nat. Neurosci. 15:954–56 [Google Scholar]
  22. Cheong SK, Tailby C, Solomon SG, Martin PR. 2013. Cortical-like receptive fields in the lateral geniculate nucleus of marmoset monkeys. J. Neurosci. 33:6864–76 [Google Scholar]
  23. Chiao CC, Masland RH. 2003. Contextual tuning of direction-selective retinal ganglion cells. Nat. Neurosci. 6:1251–52 [Google Scholar]
  24. Cleland BG, Levick WR. 1974a. Brisk and sluggish concentrically organized ganglion cells in the cat's retina. J. Physiol. 240:421–56 [Google Scholar]
  25. Cleland BG, Levick WR. 1974b. Properties of rarely encountered types of ganglion cells in the cat's retina and an overall classification. J. Physiol. 240:457–92 [Google Scholar]
  26. Cleland BG, Levick WR, Wässle H. 1975. Physiological identification of a morphological class of cat retinal ganglion cells. J. Physiol. 248:151–71 [Google Scholar]
  27. Daniele LL, Adams RH, Durante DE, Pugh EN Jr, Philp NJ. 2007. Novel distribution of junctional adhesion molecule-C in the neural retina and retinal pigment epithelium. J. Comp. Neurol. 505:166–76 [Google Scholar]
  28. Della Santina L, Inman DM, Lupien CB, Horner PJ, Wong RO. 2013. Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J. Neurosci. 33:17444–57 [Google Scholar]
  29. Devries SH, Baylor DA. 1997. Mosaic arrangement of ganglion cell receptive fields in rabbit retina. J. Neurophysiol. 78:2048–60 [Google Scholar]
  30. Dhande OS, Estevez ME, Quattrochi LE, El-Danaf RN, Nguyen PL. et al. 2013. Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization. J. Neurosci. 33:17797–813 [Google Scholar]
  31. Dhande OS, Huberman AD. 2014. Retinal ganglion cell maps in the brain: implications for visual processing. Curr. Opin. Neurobiol. 24:133–42 [Google Scholar]
  32. Do MT, Yau KW. 2010. Intrinsically photosensitive retinal ganglion cells. Physiol. Rev. 90:1547–81 [Google Scholar]
  33. Duan X, Krishnaswamy A, De la Huerta I, Sanes JR. 2014. Type II cadherins guide assembly of a direction-selective retinal circuit. Cell 158:793–807 [Google Scholar]
  34. Duan X, Qiao M, Bei F, Kim IJ, He Z, Sanes JR. 2015. Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron 85:1244–56 [Google Scholar]
  35. Ekesten B, Gouras P. 2005. Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels. Vis. Neurosci. 22:893–903 [Google Scholar]
  36. Elstrott J, Anishchenko A, Greschner M, Sher A, Litke AM. et al. 2008. Direction selectivity in the retina is established independent of visual experience and cholinergic retinal waves. Neuron 58:499–506 [Google Scholar]
  37. Enroth-Cugell C, Robson JG. 1984. Functional characteristics and diversity of cat retinal ganglion cells: basic characteristics and quantitative description. Investig. Ophthalmol. Vis. Sci. 25:250–67 [Google Scholar]
  38. Estevez ME, Fogerson PM, Ilardi MC, Borghuis BG, Chan E. et al. 2012. Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision. J. Neurosci. 32:13608–20 [Google Scholar]
  39. Euler T, Haverkamp S, Schubert T, Baden T. 2014. Retinal bipolar cells: elementary building blocks of vision. Nat. Rev. Neurosci. 15:507–19 [Google Scholar]
  40. Famiglietti EV Jr, Kaneko A, Tachibana M. 1977. Neuronal architecture of on and off pathways to ganglion cells in carp retina. Science 198:1267–69 [Google Scholar]
  41. Famiglietti EV Jr, Kolb H. 1976. Structural basis for ON-and OFF-center responses in retinal ganglion cells. Science 194:193–95 [Google Scholar]
  42. Farrow K, Teixeira M, Szikra T, Viney TJ, Balint K. et al. 2013. Ambient illumination toggles a neuronal circuit switch in the retina and visual perception at cone threshold. Neuron 78:325–38 [Google Scholar]
  43. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. 2002. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295:1065–70 [Google Scholar]
  44. Hattar S, Lucas RJ, Mrosovsky N, Thompson S, Douglas RH. et al. 2003. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424:76–81 [Google Scholar]
  45. Haverkamp S, Inta D, Monyer H, Wässle H. 2009. Expression analysis of green fluorescent protein in retinal neurons of four transgenic mouse lines. Neuroscience 160:126–39 [Google Scholar]
  46. He S, Levick WR, Vaney DI. 1998. Distinguishing direction selectivity from orientation selectivity in the rabbit retina. Vis. Neurosci. 15:439–47 [Google Scholar]
  47. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. 2013. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500:168–74 [Google Scholar]
  48. Hemmi JM, James A, Taylor WR. 2002. Color opponent retinal ganglion cells in the tammar wallaby retina. J. Vis. 2:608–17 [Google Scholar]
  49. Hong YK, Kim IJ, Sanes JR. 2011. Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus. J. Comp. Neurol. 519:1691–711 [Google Scholar]
  50. Hu C, Hill DD, Wong KY. 2013. Intrinsic physiological properties of the five types of mouse ganglion-cell photoreceptors. J. Neurophysiol. 109:1876–89 [Google Scholar]
  51. Huang ZJ, Zeng H. 2013. Genetic approaches to neural circuits in the mouse. Annu. Rev. Neurosci. 36:183–215 [Google Scholar]
  52. Hubel DH, Wiesel TN. 1962. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. 160:106–54 [Google Scholar]
  53. Huberman AD, Manu M, Koch SM, Susman MW, Lutz AB. et al. 2008. Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 59:425–38 [Google Scholar]
  54. Huberman AD, Wei W, Elstrott J, Stafford BK, Feller MB, Barres BA. 2009. Genetic identification of an On-Off direction-selective retinal ganglion cell subtype reveals a layer-specific subcortical map of posterior motion. Neuron 62:327–34 [Google Scholar]
  55. Hughes S, Watson TS, Foster RG, Peirson SN, Hankins MW. 2013. Nonuniform distribution and spectral tuning of photosensitive retinal ganglion cells of the mouse retina. Curr. Biol. 23:1696–701 [Google Scholar]
  56. Isayama T, O'Brien BJ, Ugalde I, Muller JF, Frenz A. et al. 2009. Morphology of retinal ganglion cells in the ferret (Mustela putorius furo). J. Comp. Neurol. 517:459–80 [Google Scholar]
  57. Jacobs GH. 1993. The distribution and nature of colour vision among the mammals. Biol. Rev. Camb. Philos. Soc. 68:413–71 [Google Scholar]
  58. Jacobs GH, Tootell RB. 1980. Spectrally-opponent responses in ground squirrel optic nerve. Vis. Res. 20:9–13 [Google Scholar]
  59. Jeon CJ, Strettoi E, Masland RH. 1998. The major cell populations of the mouse retina. J. Neurosci. 18:8936–46 [Google Scholar]
  60. Johnson RL, Grant KB, Zankel TC, Boehm MF, Merbs SL. et al. 1993. Cloning and expression of goldfish opsin sequences. Biochemistry 32:208–14 [Google Scholar]
  61. Karten HJ, Brecha N. 1983. Localization of neuroactive substances in the vertebrate retina: evidence for lamination in the inner plexiform layer. Vis. Res. 23:1197–205 [Google Scholar]
  62. Kay JN, Chu MW, Sanes JR. 2012. MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons. Nature 483:465–69 [Google Scholar]
  63. Kay JN, De la Huerta I, Kim IJ, Zhang Y, Yamagata M. et al. 2011. Retinal ganglion cells with distinct directional preferences differ in molecular identity, structure, and central projections. J. Neurosci. 31:7753–62 [Google Scholar]
  64. Kim IJ, Zhang Y, Meister M, Sanes JR. 2010. Laminar restriction of retinal ganglion cell dendrites and axons: subtype-specific developmental patterns revealed with transgenic markers. J. Neurosci. 30:1452–62 [Google Scholar]
  65. Kim IJ, Zhang Y, Yamagata M, Meister M, Sanes JR. 2008. Molecular identification of a retinal cell type that responds to upward motion. Nature 452:478–82 [Google Scholar]
  66. Knight ZA, Tan K, Birsoy K, Schmidt S, Garrison JL. et al. 2012. Molecular profiling of activated neurons by phosphorylated ribosome capture. Cell 151:1126–37 [Google Scholar]
  67. Kong JH, Fish DR, Rockhill RL, Masland RH. 2005. Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. J. Comp. Neurol. 489:293–310 [Google Scholar]
  68. Kuffler SW. 1953. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16:37–68 [Google Scholar]
  69. Kuhrt H, Gryga M, Wolburg H, Joffe B, Grosche J. et al. 2012. Postnatal mammalian retinal development: quantitative data and general rules. Prog. Retin. Eye Res. 31:605–21 [Google Scholar]
  70. Lawrence PM, Studholme KM. 2014. Retinofugal projections in the mouse. J. Comp. Neurol. 522:3733–53 [Google Scholar]
  71. Levick WR. 1967. Receptive fields and trigger features of ganglion cells in the visual streak of the rabbit's retina. J. Physiol. 188:285–307 [Google Scholar]
  72. Li W, DeVries SH. 2004. Separate blue and green cone networks in the mammalian retina. Nat. Neurosci. 7:751–56 [Google Scholar]
  73. Li W, DeVries SH. 2006. Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina. Nat. Neurosci. 9:669–75 [Google Scholar]
  74. Lin B, Masland RH. 2006. Populations of wide-field amacrine cells in the mouse retina. J. Comp. Neurol. 499:797–809 [Google Scholar]
  75. Macosko EZ, Basu A, Satija R, Nemesh J, Shekar S. 2015. Genome-wide expression profiling of thousands of individual cells using nanoliter droplets. Cell In press
  76. Madisen L, Mao T, Koch H, Zhuo JM, Berenyi A. et al. 2012. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15:793–802 [Google Scholar]
  77. Mangrum WI, Dowling JE, Cohen ED. 2002. A morphological classification of ganglion cells in the zebrafish retina. Vis. Neurosci. 19:767–79 [Google Scholar]
  78. Marc RE, Jones BW, Watt CB, Anderson JR, Sigulinsky C, Lauritzen S. 2013. Retinal connectomics: towards complete, accurate networks. Prog. Retin. Eye Res. 37:141–62 [Google Scholar]
  79. Marshel JH, Kaye AP, Nauhaus I, Callaway EM. 2012. Anterior-posterior direction opponency in the superficial mouse lateral geniculate nucleus. Neuron 76:713–20 [Google Scholar]
  80. Masland RH. 2004. Direction selectivity in retinal ganglion cells. The Visual Neurosciences JS Werner, LM Chalupa 451–62 Cambridge, MA/London: MIT Press [Google Scholar]
  81. McLaughlin T, O'Leary DD. 2005. Molecular gradients and development of retinotopic maps. Annu. Rev. Neurosci. 28:327–55 [Google Scholar]
  82. Mills SL, Tian LM, Hoshi H, Whitaker CM, Massey SC. 2014. Three distinct blue-green color pathways in a mammalian retina. J. Neurosci. 34:1760–68 [Google Scholar]
  83. Münch M, Kawasaki A. 2013. Intrinsically photosensitive retinal ganglion cells: classification, function and clinical implications. Curr. Opin. Neurol. 26:45–51 [Google Scholar]
  84. Münch TA, da Silveira RA, Siegert S, Viney TJ, Awatramani GB, Roska B. 2009. Approach sensitivity in the retina processed by a multifunctional neural circuit. Nat. Neurosci. 12:1308–16 [Google Scholar]
  85. Naito J, Chen Y. 2004. Morphologic analysis and classification of ganglion cells of the chick retina by intracellular injection of Lucifer Yellow and retrograde labeling with DiI. J. Comp. Neurol. 469:360–76 [Google Scholar]
  86. Okano T, Kojima D, Fukada Y, Shichida Y, Yoshizawa T. 1992. Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. PNAS 89:5932–36 [Google Scholar]
  87. Olveczky BP, Baccus SA, Meister M. 2003. Segregation of object and background motion in the retina. Nature 423:401–8 [Google Scholar]
  88. Oyster CW, Barlow HB. 1967. Direction-selective units in rabbit retina: distribution of preferred directions. Science 155:841–42 [Google Scholar]
  89. Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ. et al. 2002. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298:2213–16 [Google Scholar]
  90. Pang JJ, Gao F, Wu SM. 2003. Light-evoked excitatory and inhibitory synaptic inputs to ON and OFF α ganglion cells in the mouse retina. J. Neurosci. 23:6063–73 [Google Scholar]
  91. Peichl L. 1991. Alpha ganglion cells in mammalian retinae: common properties, species differences, and some comments on other ganglion cells. Vis. Neurosci. 7:155–69 [Google Scholar]
  92. Peichl L, González-Soriano J. 1994. Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil, and guinea pig. Vis. Neurosci. 11:501–17 [Google Scholar]
  93. Piscopo DM, El-Danaf RN, Huberman AD, Niell CM. 2013. Diverse visual features encoded in mouse lateral geniculate nucleus. J. Neurosci. 33:4642–56 [Google Scholar]
  94. Polyak SL. 1957. The Vertebrate Visual System Chicago: Univ. Chicago Press
  95. Qiu X, Kumbalasiri T, Carlson SM, Wong KY, Krishna V. et al. 2005. Induction of photosensitivity by heterologous expression of melanopsin. Nature 433:745–49 [Google Scholar]
  96. Ramón y Cajal S. 1892. La rétine des vertébrés Lierre, Belg: Van In
  97. Reese BE. 2008. Mosaics, tiling and coverage by retinal neurons. The Senses: Vision RH Masland, T Albright 436–56 Oxford, UK: Elsevier [Google Scholar]
  98. Rivlin-Etzion M, Zhou K, Wei W, Elstrott J, Nguyen PL. et al. 2011. Transgenic mice reveal unexpected diversity of on-off direction-selective retinal ganglion cell subtypes and brain structures involved in motion processing. J. Neurosci. 31:8760–69 [Google Scholar]
  99. Rockhill RL, Euler T, Masland RH. 2000. Spatial order within but not between types of retinal neurons. PNAS 97:2303–7 [Google Scholar]
  100. Rodieck RW. 1998. The First Steps in Seeing Sunderland, MA: Sinauer Assoc.
  101. Rodriguez AR, de Sevilla Müller LP, Brecha NC. 2014. The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. J. Comp. Neurol. 522:1411–43 [Google Scholar]
  102. Roska B, Meister M. 2014. The retina dissects the visual scene in distinct features. The New Visual Neurosciences JS Werner, LM Chalupa 163–82 Cambridge, MA: MIT Press [Google Scholar]
  103. Roska B, Werblin F. 2003. Rapid global shifts in natural scenes block spiking in specific ganglion cell types. Nat. Neurosci. 6:600–8 [Google Scholar]
  104. Russell TL, Werblin FS. 2010. Retinal synaptic pathways underlying the response of the rabbit local edge detector. J. Neurophysiol. 103:2757–69 [Google Scholar]
  105. Sagdullaev BT, McCall MA. 2005. Stimulus size and intensity alter fundamental receptive-field properties of mouse retinal ganglion cells in vivo. Vis. Neurosci. 22:649–59 [Google Scholar]
  106. Sanes JR, Yamagata M. 2009. Many paths to synaptic specificity. Annu. Rev. Cell Dev. Biol. 25:161–95 [Google Scholar]
  107. Sanes JR, Zipursky SL. 2010. Design principles of insect and vertebrate visual systems. Neuron 66:15–36 [Google Scholar]
  108. Schein S, Sterling P, Ngo IT, Huang TM, Herr S. 2004. Evidence that each S cone in macaque fovea drives one narrow-field and several wide-field blue-yellow ganglion cells. J. Neurosci. 24:8366–78 [Google Scholar]
  109. Schmidt TM, Alam NM, Chen S, Kofuji P, Li W. et al. 2014. A role for melanopsin in alpha retinal ganglion cells and contrast detection. Neuron 82:781–88 [Google Scholar]
  110. Schmidt TM, Chen SK, Hattar S. 2011a. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci. 34:572–80 [Google Scholar]
  111. Schmidt TM, Do MT, Dacey D, Lucas R, Hattar S, Matynia A. 2011b. Melanopsin-positive intrinsically photosensitive retinal ganglion cells: from form to function. J. Neurosci. 31:16094–101 [Google Scholar]
  112. Sharpee TO. 2013. Computational identification of receptive fields. Annu. Rev. Neurosci. 36:103–20 [Google Scholar]
  113. Sher A, Devries SH. 2012. A non-canonical pathway for mammalian blue-green color vision. Nat. Neurosci. 15:952–53 [Google Scholar]
  114. Shlens J, Field GD, Gauthier JL, Greschner M, Sher A. et al. 2009. The structure of large-scale synchronized firing in primate retina. J. Neurosci. 29:5022–31 [Google Scholar]
  115. Siegert S, Cabuy E, Scherf BG, Kohler H, Panda S. et al. 2012. Transcriptional code and disease map for adult retinal cell types. Nat. Neurosci. 15:487–95 [Google Scholar]
  116. Siegert S, Scherf BG, Del Punta K, Didkovsky N, Heintz N, Roska B. 2009. Genetic address book for retinal cell types. Nat. Neurosci. 12:1197–204 [Google Scholar]
  117. Simpson JI. 1984. The accessory optic system. Annu. Rev. Neurosci. 7:13–41 [Google Scholar]
  118. Stone C, Pinto LH. 1993. Response properties of ganglion cells in the isolated mouse retina. Vis. Neurosci. 10:31–39 [Google Scholar]
  119. Stone J, Hoffmann KP. 1972. Very slow-conducting ganglion cells in the cat's retina: a major, new functional type?. Brain Res. 43:610–16 [Google Scholar]
  120. Strettoi E, Masland RH. 1996. The number of unidentified amacrine cells in the mammalian retina. PNAS 93:14906–11 [Google Scholar]
  121. Sümbül U, Song S, McCulloch K, Becker M, Lin B. et al. 2014. A genetic and computational approach to structurally classify neuronal types. Nat. Commun. 5:3512 [Google Scholar]
  122. Sun W, Deng Q, Levick WR, He S. 2006. ON direction-selective ganglion cells in the mouse retina. J. Physiol. 576:197–202 [Google Scholar]
  123. Sun W, Li N, He S. 2002. Large-scale morophological survey of rat retinal ganglion cells. Vis. Neurosci. 19:483–93 [Google Scholar]
  124. Tailby C, Solomon SG, Dhruv NT, Majaj NJ, Sokol SH, Lennie P. 2007. A new code for contrast in the primate visual pathway. J. Neurosci. 27:3904–9 [Google Scholar]
  125. Trenholm S, Johnson K, Li X, Smith RG, Awatramani GB. 2011. Parallel mechanisms encode direction in the retina. Neuron 71:683–94 [Google Scholar]
  126. Troy JB, Einstein G, Schuurmans RP, Robson JG, Enroth-Cugell C. 1989. Responses to sinusoidal gratings of two types of very nonlinear retinal ganglion cells of cat. Vis. Neurosci. 3:213–23 [Google Scholar]
  127. Vaney DI, Levick WR, Thibos LN. 1981. Rabbit retinal ganglion cell: receptive field classification and axonal conduction properties. Exp. Brain Res. 44:27–33 [Google Scholar]
  128. Vaney DI, Sivyer B, Taylor WR. 2012. Direction selectivity in the retina: symmetry and asymmetry in structure and function. Nat. Rev. Neurosci. 13:194–208 [Google Scholar]
  129. van Wyk M, Taylor WR, Vaney DI. 2006. Local edge detectors: a substrate for fine spatial vision at low temporal frequencies in rabbit retina. J. Neurosci. 26:13250–63 [Google Scholar]
  130. Wallace DJ, Greenberg DS, Sawinski J, Rulla S, Notaro G, Kerr JN. 2013. Rats maintain an overhead binocular field at the expense of constant fusion. Nature 498:65–69 [Google Scholar]
  131. Wang YV, Weick M, Demb JB. 2011. Spectral and temporal sensitivity of cone-mediated responses in mouse retinal ganglion cells. J. Neurosci. 31:7670–81 [Google Scholar]
  132. Wässle H, Boycott BB. 1991. Functional architecture of the mammalian retina. Physiol. Rev. 71:447–80 [Google Scholar]
  133. Wässle H, Peichl L, Boycott BB. 1981. Morphology and topography of on- and off-alpha cells in the cat retina. Proc. R. Soc. Lond. B Biol. Sci. 212:157–75 [Google Scholar]
  134. Wässle H, Puller C, Müller F, Haverkamp S. 2009. Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J. Neurosci. 29:106–17 [Google Scholar]
  135. Wässle H, Riemann HJ. 1978. The mosaic of nerve cells in the mammalian retina. Proc. R. Soc. Lond. B Biol. Sci. 200:441–61 [Google Scholar]
  136. Wei W, Feller MB. 2011. Organization and development of direction-selective circuits in the retina. Trends Neurosci. 34:638–45 [Google Scholar]
  137. Weng S, Sun W, He S. 2005. Identification of ON–OFF direction-selective ganglion cells in the mouse retina. J. Physiol. 562:915–23 [Google Scholar]
  138. Xiang M, Zhou L, Macke JP, Yoshioka T, Hendry SHC. et al. 1995. The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J. Neurosci. 15:4762–85 [Google Scholar]
  139. Yamagata M, Sanes JR. 2008. Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature 451:465–69 [Google Scholar]
  140. Yamagata M, Sanes JR. 2012. Expanding the Ig superfamily code for laminar specificity in retina: expression and role of contactins. J. Neurosci. 32:14402–14 [Google Scholar]
  141. Yi CW, Yu SH, Lee ES, Lee JG, Jeon CJ. 2012. Types of parvalbumin-containing retinotectal ganglion cells in mouse. Acta Histochem. Cytochem. 45:3201–10 [Google Scholar]
  142. Yin L, Smith RG, Sterling P, Brainard DH. 2009. Physiology and morphology of color-opponent ganglion cells in a retina expressing a dual gradient of S and M opsins. J. Neurosci. 29:2706–24 [Google Scholar]
  143. Yonehara K, Ishikane H, Sakuta H, Shintani T, Nakamura-Yonehara K. et al. 2009. Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion. PLOS ONE 4:e4320 [Google Scholar]
  144. Yonehara K, Shintani T, Suzuki R, Sakuta H, Takeuchi Y. et al. 2008. Expression of SPIG1 reveals development of a retinal ganglion cell subtype projecting to the medial terminal nucleus in the mouse. PLOS ONE 3:e1533 [Google Scholar]
  145. Zhang Y, Kim IJ, Sanes JR, Meister M. 2012. The most numerous ganglion cell type of the mouse retina is a selective feature detector. PNAS 109:E2391–98 [Google Scholar]
  146. Zhao X, Chen H, Liu X, Cang J. 2013. Orientation-selective responses in the mouse lateral geniculate nucleus. J. Neurosci. 33:12751–63 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error