1932

Abstract

Inhibitory neurons, although relatively few in number, exert powerful control over brain circuits. They stabilize network activity in the face of strong feedback excitation and actively engage in computations. Recent studies reveal the importance of a precise balance of excitation and inhibition in neural circuits, which often requires exquisite fine-tuning of inhibitory connections. We review inhibitory synaptic plasticity and its roles in shaping both feedforward and feedback control. We discuss the necessity of complex, codependent plasticity mechanisms to build nontrivial, functioning networks, and we end by summarizing experimental evidence of such interactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-072116-031005
2017-07-25
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/neuro/40/1/annurev-neuro-072116-031005.html?itemId=/content/journals/10.1146/annurev-neuro-072116-031005&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott L, Nelson S. 2000. Synaptic plasticity: taming the beast. Nat. Neurosci. 3:1178–83 [Google Scholar]
  2. Abeles M. 1991. Corticonics: Neural Circuits of the Cerebral Cortex Cambridge, UK: Cambridge Univ. Press
  3. Adrian ED. 1926. The impulses produced by sensory nerve endings. J. Physiol. 61:49–72 [Google Scholar]
  4. Ahmadian Y, Rubin DB, Miller KD. 2013. Analysis of the stabilized supralinear network. Neural Comput. 25:1994–2037 [Google Scholar]
  5. Aizenman CD, Manis PB, Linden DJ. 1998. Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21:827–35 [Google Scholar]
  6. Amit DJ, Brunel N. 1997. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cereb. Cortex 7:237–52 [Google Scholar]
  7. Aström KJ, Murray RM. 2010. Feedback Systems: An Introduction for Scientists and Engineers Princeton, NJ: Princeton University Press
  8. Aviel Y, Horn D, Abeles M. 2005. Memory capacity of balanced networks. Neural Comput. 17:691–713 [Google Scholar]
  9. Aviel Y, Mehring C, Abeles M, Horn D. 2003. On embedding synfire chains in a balanced network. Neural Comput. 15:1321–40 [Google Scholar]
  10. Barrett D. 2012. Computation in balanced networks PhD thesis, Univ. Coll London:
  11. Barrett DT, Denève S, Machens CK. 2016. Optimal compensation for neuron loss. eLife 5:e12454 [Google Scholar]
  12. Barron HC, Vogels TP, Emir UE, Makin TR, O'Shea J. et al. 2016a. Unmasking latent inhibitory connections in human cortex to reveal dormant cortical memories. Neuron 90:191–203 [Google Scholar]
  13. Barron HC, Garvert MM, Behrens TEJ. 2016b. Repetition suppression: a means to index neural representations using BOLD?. Philos. Trans. R. Soc. B 371:20150355 [Google Scholar]
  14. Bathellier B, Ushakova L, Rumpel S. 2012. Discrete neocortical dynamics predict behavioral categorization of sounds. Neuron 76:435–49 [Google Scholar]
  15. Ben-Yishai R, Bar-Or RL, Sompolinsky H. 1995. Theory of orientation tuning in visual cortex. PNAS 92:3844–48 [Google Scholar]
  16. Berkes P, Orbán G, Lengyel M, Fiser J. 2011. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331:83–87 [Google Scholar]
  17. Boerlin M, Machens CK, Denève S. 2013. Predictive coding of dynamical variables in balanced spiking networks. PLOS Comput. Biol. 9:e1003258 [Google Scholar]
  18. Brunel N. 2000. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8:183–208 [Google Scholar]
  19. Brunel N, Hakim V. 1999. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 11:1621–71 [Google Scholar]
  20. Brunel N, Wang XJ. 2001. Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J. Comput. Neurosci. 11:63–85 [Google Scholar]
  21. Brunel N, Wang XJ. 2003. What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation–inhibition balance. J. Neurophysiol. 90:415–30 [Google Scholar]
  22. Buetfering C, Allen K, Monyer H. 2014. Parvalbumin interneurons provide grid cell–driven recurrent inhibition in the medial entorhinal cortex. Nat. Neurosci. 17:710–18 [Google Scholar]
  23. Cafaro J, Rieke F. 2010. Noise correlations improve response fidelity and stimulus encoding. Nature 468:964–67 [Google Scholar]
  24. Carandini M, Heeger DJ. 2012. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13:51–62 [Google Scholar]
  25. Chklovskii DB, Mel BW, Svoboda K. 2004. Cortical rewiring and information storage. Nature 431:782–88 [Google Scholar]
  26. Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P. et al. 2012. Neural population dynamics during reaching. Nature 487:51–56 [Google Scholar]
  27. Clopath C, Büsing L, Vasilaki E, Gerstner W. 2010. Connectivity reflects coding: a model of voltage-based STDP with homeostasis. Nat. Neurosci. 13:344–52 [Google Scholar]
  28. Clopath C, Vogels TP, Froemke RC, Sprekeler H. 2016. Receptive field formation by interacting excitatory and inhibitory synaptic plasticity. bioRxiv 066589. https://doi.org/10.1101/066589 [Crossref]
  29. Constantinescu AO, O'Reilly JX, Behrens TEJ. 2016. Organizing conceptual knowledge in humans with a gridlike code. Science 352:1464–68 [Google Scholar]
  30. Couey JJ, Witoelar A, Zhang SJ, Zheng K, Ye J. et al. 2013. Recurrent inhibitory circuitry as a mechanism for grid formation. Nat. Neurosci. 16:318–24 [Google Scholar]
  31. D'amour J, Froemke R. 2015. Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex. Neuron 86:514–28 [Google Scholar]
  32. Das S, Sadanandappa MK, Dervan A, Larkin A, Lee JA. et al. 2011. Plasticity of local GABAergic interneurons drives olfactory habituation. PNAS 108:E646–54 [Google Scholar]
  33. Debanne D, Gähwiler BH, Thompson SM. 1996. Cooperative interactions in the induction of long-term potentiation and depression of synaptic excitation between hippocampal CA3-CA1 cell pairs in vitro. PNAS 93:11225–30 [Google Scholar]
  34. Diesmann M, Gewaltig MO, Aertsen A. 1999. Stable propagation of synchronous spiking in cortical neural networks. Nature 402:529–33 [Google Scholar]
  35. Doiron B, Litwin-Kumar A, Rosenbaum R, Ocker GK, Josi K. 2016. The mechanics of state-dependent neural correlations. Nat. Neurosci. 19:383–93 [Google Scholar]
  36. Duarte RCF, Morrison A. 2014. Dynamic stability of sequential stimulus representations in adapting neuronal networks. Front. Comput. Neurosci. 8:124 [Google Scholar]
  37. Fiser J, Chiu C, Weliky M. 2004. Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature 431:573–78 [Google Scholar]
  38. Foster DJ, Wilson MA. 2006. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440:680–83 [Google Scholar]
  39. Frémaux N, Gerstner W. 2016. Neuromodulated spike-timing-dependent plasticity, and theory of three-factor learning rules. Front. Neural Circuits 9:85 [Google Scholar]
  40. Frémaux N, Sprekeler H, Gerstner W. 2010. Functional requirements for reward-modulated spike-timing-dependent plasticity. J. Neurosci. 30:13326–37 [Google Scholar]
  41. Froemke RC, Merzenich MM, Schreiner CE. 2007. A synaptic memory trace for cortical receptive field plasticity. Nature 450:425–29 [Google Scholar]
  42. Gaiarsa JL, Caillard O, Ben-Ari Y. 2002. Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci. 25:564–70 [Google Scholar]
  43. Ganguli S, Bisley JW, Roitman JD, Shadlen MN, Goldberg ME, Miller KD. 2008a. One-dimensional dynamics of attention and decision making in LIP. Neuron 58:15–25 [Google Scholar]
  44. Ganguli S, Huh D, Sompolinsky H. 2008b. Memory traces in dynamical systems. PNAS 105:18970–75 [Google Scholar]
  45. Gerstner W, Kistler WM, Naud R, Paninski L. 2014. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition Cambridge, UK: Cambridge Univ. Press
  46. Gerstner W, van Hemmen JL. 1992. Associative memory in a network of ‘spiking’ neurons. Netw. Comput. Neural Syst. 3:139–64 [Google Scholar]
  47. Goldberg JA, Rokni U, Sompolinsky H. 2004. Patterns of ongoing activity and the functional architecture of the primary visual cortex. Neuron 42:489–500 [Google Scholar]
  48. Goldman MS. 2009. Memory without feedback in a neural network. Neuron 61:621–34 [Google Scholar]
  49. Goldman-Rakic PS. 1995. Cellular basis of working memory. Neuron 14:477–85 [Google Scholar]
  50. Haas JS, Nowotny T, Abarbanel HDI. 2006. Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J. Neurophysiol. 96:3305–13 [Google Scholar]
  51. Harish O, Hansel D. 2015. Asynchronous rate chaos in spiking neuronal circuits. PLOS Comput. Biol. 11:e1004266 [Google Scholar]
  52. Harris KD. 2005. Neural signatures of cell assembly organization. Nat. Rev. Neurosci. 6:399–407 [Google Scholar]
  53. Hartmann K, Bruehl C, Golovko T, Draguhn A. 2008. Fast homeostatic plasticity of inhibition via activity-dependent vesicular filling. PLOS ONE 3e2979
  54. Hebb DO. 1949. The Organization of Behavior: A Neuropsychological Approach New York: Wiley
  55. Hendin O, Horn D, Tsodyks MV. 1997. The role of inhibition in an associative memory model of the olfactory bulb. J. Comput. Neurosci. 4:173–82 [Google Scholar]
  56. Hennequin G, Ahmadian Y, Rubin DB, Lengyel M, Miller KD. 2016. Stabilized supralinear network dynamics account for stimulus-induced changes of noise variability in the cortex. bioRxiv 094334. https://doi.org/10.1101/094334 [Crossref]
  57. Hennequin G, Vogels TP, Gerstner W. 2014. Optimal control of transient dynamics in balanced networks supports generation of complex movements. Neuron 82:1394–406 [Google Scholar]
  58. Hertz J, Krogh A, Palmer R. 1991. Introduction to the Theory of Neural Computation Redwood City, CA: Addison-Wesley
  59. Holmgren CD, Zilberter Y. 2001. Coincident spiking activity induces long-term changes in inhibition of neocortical pyramidal cells. J. Neurosci. 21:8270–77 [Google Scholar]
  60. Hopfield JJ. 1982. Neural networks and physical systems with emergent collective computational abilities. PNAS 79:2554–58 [Google Scholar]
  61. Itskov V, Hansel D, Tsodyks M. 2011. Short-term facilitation may stabilize parametric working memory trace. Front. Comput. Neurosci. 5:40 [Google Scholar]
  62. Josselyn SA, Köhler S, Frankland PW. 2015. Finding the engram. Nat. Rev. Neurosci. 16:521–34 [Google Scholar]
  63. Kano M. 1995. Plasticity of inhibitory synapses in the brain: a possible memory mechanism that has been overlooked. Neurosci. Res. 21:177–82 [Google Scholar]
  64. Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. 2003. Spontaneously emerging cortical representations of visual attributes. Nature 425:954–56 [Google Scholar]
  65. Kilman V, van Rossum MCW, Turrigiano GG. 2002. Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABAA receptors clustered at neocortical synapses. J. Neurosci. 22:1328–37 [Google Scholar]
  66. Kleberg FI, Fukai T, Gilson M. 2014. Excitatory and inhibitory STDP jointly tune feedforward neural circuits to selectively propagate correlated spiking activity. Front. Comput. Neurosci. 8:53 [Google Scholar]
  67. Komatsu Y. 1994. Age-dependent long-term potentiation of inhibitory synaptic transmission in rat visual cortex. J. Neurosci. 14:6488–99 [Google Scholar]
  68. Komatsu Y, Iwakiri M. 1993. Long-term modification of inhibitory synaptic transmission in developing visual cortex. NeuroReport 4:907–10 [Google Scholar]
  69. Kremkow J, Aertsen A, Kumar A. 2010. Gating of signal propagation in spiking neural networks by balanced and correlated excitation and inhibition. J. Neurosci. 30:15760–68 [Google Scholar]
  70. Kumar A, Rotter S, Aertsen A. 2010. Spiking activity propagation in neuronal networks: reconciling different perspectives on neural coding. Nat. Rev. Neurosci. 11:615–27 [Google Scholar]
  71. Kumar A, Schrader S, Aertsen A, Rotter S. 2008. The high-conductance state of cortical networks. Neural Comput. 20:1–43 [Google Scholar]
  72. Kurotani T, Yamada K, Yoshimura Y, Crair MC, Komatsu Y. 2008. State-dependent bidirectional modification of somatic inhibition in neocortical pyramidal cells. Neuron 57:905–16 [Google Scholar]
  73. Laje R, Buonomano DV. 2013. Robust timing and motor patterns by taming chaos in recurrent neural networks. Nat. Neurosci. 16:925–33 [Google Scholar]
  74. Landau I, Egger R, Dercksen V, Oberlaender M, Sompolinsky H. 2016. The impact of structural heterogeneity on excitation–inhibition balance in cortical networks. Neuron 92:1106–21 [Google Scholar]
  75. Latham PE, Nirenberg S. 2004. Computing and stability in cortical networks. Neural Comput. 16:1385–412 [Google Scholar]
  76. Li Z, Dayan P. 1999. Computational differences between asymmetrical and symmetrical networks. Netw. Comput. Neural Syst. 10:59–77 [Google Scholar]
  77. Lim S, Goldman MS. 2013. Balanced cortical microcircuitry for maintaining information in working memory. Nat. Neurosci. 16:1306–14 [Google Scholar]
  78. Lim S, Goldman MS. 2014. Balanced cortical microcircuitry for spatial working memory based on corrective feedback control. J. Neurosci. 34:6790–806 [Google Scholar]
  79. Lin L, Osan R, Shoham S, Jin W, Zuo W, Tsien JZ. 2005. Identification of network-level coding units for real-time representation of episodic experiences in the hippocampus. PNAS 102:6125–30 [Google Scholar]
  80. Litwin-Kumar A, Doiron B. 2012. Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat. Neurosci. 15:1498–505 [Google Scholar]
  81. Litwin-Kumar A, Doiron B. 2014. Formation and maintenance of neuronal assemblies through synaptic plasticity. Nat. Commun. 5:5319 [Google Scholar]
  82. Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A. et al. 2012. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484:381–85 [Google Scholar]
  83. Luczak A, Barthó P, Harris KD. 2009. Spontaneous events outline the realm of possible sensory responses in neocortical populations. Neuron 62:413–25 [Google Scholar]
  84. Luz Y, Shamir M. 2012. Balancing feed-forward excitation and inhibition via Hebbian inhibitory synaptic plasticity. PLOS Comput. Biol. 8:e1002334 [Google Scholar]
  85. Maass W, Natschläger T, Markram H. 2002. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14:2531–60 [Google Scholar]
  86. Maffei A, Nataraj K, Nelson SB, Turrigiano GG. 2006. Potentiation of cortical inhibition by visual deprivation. Nature 443:81–84 [Google Scholar]
  87. Mapelli J, Gandolfi D, Vilella A, Zoli M, Bigiani A. 2016. Heterosynaptic GABAergic plasticity bidirectionally driven by the activity of pre- and postsynaptic NMDA receptors. PNAS 113:9898–903 [Google Scholar]
  88. Markram H, Gerstner W, Sjöström PJ. 2011. A history of spike-timing-dependent plasticity. Front. Synaptic Neurosci. 3:1–24 [Google Scholar]
  89. Mehring C, Hehl U, Kubo M, Diesmann M, Aertsen A. 2003. Activity dynamics and propagation of synchronous spiking in locally connected random networks. Biol. Cybern. 88:395–408 [Google Scholar]
  90. Miller P. 2016. Itinerancy between attractor states in neural systems. Curr. Opin. Neurobiol. 40:14–22 [Google Scholar]
  91. Mongillo G, Barak O, Tsodyks M. 2008. Synaptic theory of working memory. Science 319:1543–46 [Google Scholar]
  92. Moore CI, Nelson SB. 1998. Spatio-temporal subthreshold receptive fields in the vibrissa representation of rat primary somatosensory cortex. J. Neurophysiol. 80:2882–92 [Google Scholar]
  93. Morrison A, Diesmann M, Gerstner W. 2008. Phenomenological models of synaptic plasticity based on spike timing. Biol. Cybern. 98:459–78 [Google Scholar]
  94. Murphy BK, Miller KD. 2009. Balanced amplification: a new mechanism of selective amplification of neural activity patterns. Neuron 61:635–48 [Google Scholar]
  95. Okun M, Lampl I. 2008. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat. Neurosci. 11:535–37 [Google Scholar]
  96. Olshausen BA, Anderson CH, Essen DV. 1993. A neurobiological model of visual attention and invariant pattern recognition based on dynamic routing of information. J. Neurosci. 13:4700–19 [Google Scholar]
  97. Ormond J, Woodin MA. 2009. Disinhibition mediates a form of hippocampal long-term potentiation in area CA1. PLOS ONE 4:e7224 [Google Scholar]
  98. Ormond J, Woodin MA. 2011. Disinhibition-mediated LTP in the hippocampus is synapse specific. Front. Cell. Neurosci. 5:17 [Google Scholar]
  99. Ostojic S. 2014. Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons. Nat. Neurosci. 17:594–600 [Google Scholar]
  100. Ozeki H, Finn IM, Schaffer ES, Miller KD, Ferster D. 2009. Inhibitory stabilization of the cortical network underlies visual surround suppression. Neuron 62:578–92 [Google Scholar]
  101. Paille V, Fino E, Du K, Morera-Herreras T, Perez S. et al. 2013. GABAergic circuits control spike-timing-dependent plasticity. J. Neurosci. 33:9353–63 [Google Scholar]
  102. Perisse E, Owald D, Barnstedt O, Talbot CB, Huetteroth W, Waddell S. 2016. Aversive learning and appetitive motivation toggle feed-forward inhibition in the Drosophila mushroom body. Neuron 90:1086–99 [Google Scholar]
  103. Persi E, Hansel D, Nowak L, Barone P, van Vreeswijk C. 2011. Power-law input-output transfer functions explain the contrast-response and tuning properties of neurons in visual cortex. PLOS Comput. Biol. 7:e1001078 [Google Scholar]
  104. Ponce-Alvarez A, Thiele A, Albright TD, Stoner GR, Deco G. 2013. Stimulus-dependent variability and noise correlations in cortical MT neurons. PNAS 110:13162–67 [Google Scholar]
  105. Poo MM, Pignatelli M, Ryan TJ, Tonegawa S, Bonhoeffer T. et al. 2016. What is memory? The present state of the engram. BMC Biol. 14:40 [Google Scholar]
  106. Priebe NJ, Ferster D. 2008. Inhibition, spike threshold, and stimulus selectivity in primary visual cortex. Neuron 57:482–97 [Google Scholar]
  107. Quiroga RQ, Reddy L, Kreiman G, Koch C, Fried I. 2005. Invariant visual representation by single neurons in the human brain. Nature 435:1102–7 [Google Scholar]
  108. Ramirez S, Liu X, Lin PA, Suh J, Pignatelli M. et al. 2013. Creating a false memory in the hippocampus. Science 341:387–91 [Google Scholar]
  109. Recanatesi S, Katkov M, Romani S, Tsodyks M. 2015. Neural network model of memory retrieval. Front. Comput. Neurosci. 9:149 [Google Scholar]
  110. Renart A, de la Rocha J, Barthó P, Hollender L, Parga N. et al. 2010. The asynchronous state in cortical circuits. Science 327:587 [Google Scholar]
  111. Renart A, Parga N, Rolls ET. 1999. Associative memory properties of multiple cortical modules. Netw. Comput. Neural Syst. 10:237–55 [Google Scholar]
  112. Rosenbaum R, Doiron B. 2014. Balanced networks of spiking neurons with spatially dependent recurrent connections. Phys. Rev. X 4:021039 [Google Scholar]
  113. Roudi Y, Latham PE. 2007. A balanced memory network. PLOS Comput. Biol. 3:e141 [Google Scholar]
  114. Rowland DC, Roudi Y, Moser MB, Moser EI. 2016. Ten years of grid cells. Annu. Rev. Neurosci. 39:19–40 [Google Scholar]
  115. Roxin A. 2011. The role of degree distribution in shaping the dynamics in networks of sparsely connected spiking neurons. Front. Comput. Neurosci. 5:8 [Google Scholar]
  116. Rubin D, Van Hooser S, Miller K. 2015. The stabilized supralinear network: a unifying circuit motif underlying multi-input integration in sensory cortex. Neuron 85:402–17 [Google Scholar]
  117. Russo E, Treves A. 2012. Cortical free-association dynamics: distinct phases of a latching network. Phys. Rev. E 85:051920 [Google Scholar]
  118. Semon RW. 1921. The Mneme London: Allen & Unwin
  119. Shadlen MN, Newsome WT. 1994. Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4:569–79 [Google Scholar]
  120. Shu Y, Hasenstaub A, McCormick DA. 2003. Turning on and off recurrent balanced cortical activity. Nature 423:288–93 [Google Scholar]
  121. Sjöström PJ, Häusser M. 2006. A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron 51:227–38 [Google Scholar]
  122. Sjöström PJ, Turrigiano GG, Nelson SB. 2001. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron 32:1149–64 [Google Scholar]
  123. Song HF, Yang GR, Wang XJ. 2016. Training excitatory-inhibitory recurrent neural networks for cognitive tasks: a simple and flexible framework. PLOS Comput. Biol. 12:e1004792 [Google Scholar]
  124. Stagg CJ, Best JG, Stephenson MC, O'Shea J, Wylezinska M. et al. 2009. Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. J. Neurosci. 29:5202–6 [Google Scholar]
  125. Stringer C, Pachitariu M, Steinmetz NA, Okun M, Barthó P. et al. 2016. Inhibitory control of correlated intrinsic variability in cortical networks. eLife 5:e19695 [Google Scholar]
  126. Sudhakaran IP, Holohan EE, Osman S, Rodrigues V, Vijayraghavan K, Ramaswami M. 2012. Plasticity of recurrent inhibition in the Drosophila antennal lobe. J. Neurosci. 32:7225–31 [Google Scholar]
  127. Sussillo D, Abbott L. 2009. Generating coherent patterns of activity from chaotic neural networks. Neuron 63:544–57 [Google Scholar]
  128. Tetzlaff T, Helias M, Einevoll GT, Diesmann M. 2012. Decorrelation of neural-network activity by inhibitory feedback. PLOS Comput. Biol. 8:e1002596 [Google Scholar]
  129. Trefethen LN, Embree M. 2005. Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators Princeton, NJ: Princeton Univ. Press
  130. Tsodyks MV, Sejnowski T. 1995. Rapid state switching in balanced cortical network models. Netw. Comput. Neural Syst. 6:111–24 [Google Scholar]
  131. Tsodyks MV, Skaggs WE, Sejnowski TJ, McNaughton BL. 1997. Paradoxical effects of external modulation of inhibitory interneurons. J. Neurosci. 17:4382–88 [Google Scholar]
  132. Turrigiano G. 2012. Homeostatic synaptic plasticity: local and global mechanisms for stabilizing neuronal function. Cold Spring Harb. Perspect. Biol. 4:a005736 [Google Scholar]
  133. Vallentin D, Kosche G, Lipkind D, Long MA. 2016. Inhibition protects acquired song segments during vocal learning in zebra finches. Science 351:267–71 [Google Scholar]
  134. van Rossum MCW, Turrigiano GG, Nelson SB. 2002. Fast propagation of firing rates through layered networks of noisy neurons. J. Neurosci. 22:1956–66 [Google Scholar]
  135. van Vreeswijk C, Sompolinsky H. 1996. Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724 [Google Scholar]
  136. van Vreeswijk C, Sompolinsky H. 1998. Chaotic balanced state in a model of cortical circuits. Neural Comput. 10:1321–71 [Google Scholar]
  137. Vogels TP, Abbott LF. 2009. Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nat. Neurosci. 12:483–91 [Google Scholar]
  138. Vogels TP, Froemke RC, Doyon N, Gilson M, Haas JS. et al. 2013. Inhibitory synaptic plasticity: spike timing-dependence and putative network function. Front. Neural Circuits 7:119 [Google Scholar]
  139. Vogels TP, Rajan K, Abbott LF. 2005. Neural network dynamics. Annu. Rev. Neurosci. 28:357–76 [Google Scholar]
  140. Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W. 2011. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 334:1569–73 [Google Scholar]
  141. Wang L, Maffei A. 2014. Inhibitory plasticity dictates the sign of plasticity at excitatory synapses. J. Neurosci. 34:1083–93 [Google Scholar]
  142. Weber SN, Sprekeler H. 2017. Learning place cells, grid cells and invariances: a unifying model. bioRxiv 102525. https://doi.org/10.1101/102525 [Crossref]
  143. Wehr M, Zador A. 2003. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 426:442–46 [Google Scholar]
  144. Widloski J, Fiete I. 2014. A model of grid cell development through spatial exploration and spike time–dependent plasticity. Neuron 83:481–95 [Google Scholar]
  145. Williams GV, Goldman-Rakic PS. 1995. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376:572–75 [Google Scholar]
  146. Wilmes KA, Sprekeler H, Schreiber S. 2016. Inhibition as a binary switch for excitatory plasticity in pyramidal neurons. PLOS Comput. Biol. 12:e1004768 [Google Scholar]
  147. Wimmer K, Nykamp DQ, Constantinidis C, Compte A. 2014. Bump attractor dynamics in prefrontal cortex explains behavioral precision in spatial working memory. Nat. Neurosci. 17:431–39 [Google Scholar]
  148. Woodin MA, Ganguly K, Poo M. 2003. Coincident pre-and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl-transporter activity. Neuron 39:807–20 [Google Scholar]
  149. Xue M, Atallah BV, Scanziani M. 2014. Equalizing excitation–inhibition ratios across visual cortical neurons. Nature 511:596–600 [Google Scholar]
  150. Zenke F, Agnes EJ, Gerstner W. 2015. Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks. Nat. Commun. 6:6922 [Google Scholar]
  151. Zenke F, Hennequin G, Gerstner W. 2013. Synaptic plasticity in neural networks needs homeostasis with a fast rate detector. PLOS Comput. Biol. 9:e1003330 [Google Scholar]
/content/journals/10.1146/annurev-neuro-072116-031005
Loading
/content/journals/10.1146/annurev-neuro-072116-031005
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error